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An analytical and general form factor for any polyhedron is derived on the basis

of a projection method, in terms of the vertex coordinates and topology of the

polyhedron. An integral over the polyhedron equals the sum of the signed

integrals over a set of dissected tetrahedra by defining a sign function, and a

general tetrahedral form factor is established by defining a projection method.

All possible singularities present in the formula are discussed in detail. Using a

MATLAB implementation, illustrative examples are discussed to verify the

accuracy and generality of the method. The use of the scalar product operation

and the sign function in this work allows a general and neat formula to be

obtained for any polyhedron, including convex and concave polyhedra. The

formulas and discussions presented here will be useful for the characterization

of nanoparticles using small-angle scattering techniques.

1. Introduction

The nanostructure form factor, F(q), which is the Fourier

transform (FT) of the particle shape, is of major importance in

the context of small-angle scattering (SAS) techniques, such as

small-angle neutron scattering and small-angle X-ray scat-

tering (Senesi & Lee, 2015a,b; Croset, 2017; Barke et al., 2015).

The ability to compute the form factor for a nanoparticle with

a complex shape is an important goal in SAS because detailed

structural information can only be obtained from SAS when

the correct form factor is adopted. Many particle shape

transformations have been derived, but only for a limited

number of simple particle shapes (Hendricks et al., 1974; Li et

al., 2011; Mittelbach & Porod, 1961; Renaud et al., 2009). A

complex particle shape in SAS techniques is often approxi-

mated as a sphere model, which provides statistically mean-

ingful information but ignores the structural details of the size

and shape, limiting the application of SAS techniques (Murray

et al., 2000; Lee et al., 2009). In many cases, the use of poly-

hedral particles may be advantageous over spherical particles,

since a detailed description of the shape and size of the

nanoparticle can reveal more physical properties that are

relevant in many fields: magnetism (Gruner et al., 2008), optics

and plasmonics (Langille et al., 2012), and catalysis (Yamada

et al., 2011). Therefore, developing an exact and generic form

factor for an arbitrary polyhedral nanoparticle is of wide

interest and practical significance in SAS techniques.

Large collections of nanoparticle transforms have been

derived and implemented in SAS software (Li et al., 2011;

Engel & Laasch, 2020; Lazzari, 2006; Pospelov et al., 2020;

Chourou et al., 2013). Two main solutions have been employed

to analytically calculate the form factors of polyhedra: (i) a
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direct integration solution, using Fubini’s theorem, is suitable

for very simple objects with edges along the coordinate axes,

such as simple prisms (cube, parallelepiped etc.) or simple

pyramids (di-rectangular tetrahedron, square pyramid etc.);

(ii) a generic decomposition solution, which partitions an

object into smaller simple objects that are easy to integrate, in

terms of topology and vertex coordinates, is suitable for some

complex objects (Lien & Kajiya, 1984; Lee & Requicha, 1982).

A generic formula for the polyhedral form factor was derived

decades ago, but singularities were not discussed (Patterson,

1939). Striking contributions are the form factors of polyhedra

established by Croset (2017, 2018), Wuttke (2017, 2021) and

Senesi & Lee (2015a). Croset established a general and exact

formula by performing the calculation on the simplices with

vectorial operations, and generalized the result for quite a

large class of polyhedra and more rounded bodies by using a

cutting procedure; the appeal of this method is that it allows a

generic analysis of the singularities. Wuttke presented a

different derivation that is based on the use of the divergence

theorem and Stokes’s theorem to reduce the volume integral

to surface integrals, and further reduce surface integrals to

straight-line integrals; singularities are cancelled by using

series expansions. Senesi & Lee proposed a general decom-

position method to calculate the form factors of polyhedra by

decomposing a polyhedron into di-rectangular tetrahedral

subunits and deriving the polyhedral form factor as the sum of

each subunit form factor evaluated at different rotated q,

which leads to the limit of the subunit form. Generating an

appropriate decomposition for a complex shape and solving

the basic problem of evaluating the integral over the subunits

are usually the cruces of the decomposition solution, which

decide the goals of exactness and ease of implementation.

In this work, we propose a different derivation of the form

factor for an arbitrary polyhedron using scalar product

operations on vectors and the sign function, and we discuss the

singularities from our formula. We first present a general

formula to calculate the form factor for an arbitrary tetra-

hedron via a projection method. Then, any singularity that

appears in the formula is discussed in detail and removed.

Further, a strategy of the integral over a polyhedron is

established systematically by adding a set of signed integrals

over the dissected tetrahedra. Finally, illustrative examples are

discussed to verify the accuracy and generality of the method.

The method described herein is regarded as a supplement to

existing methods and will facilitate the characterization of

nanomaterials when using SAS techniques.

2. The tetrahedral form factor: principle of the
projection method

Definition 1. The form factor of an object, denoted as F(q),

which is the FT of the particle defined by volume V, can be

described as (Guinier & Fournet, 1955; Roe, 2000; Warren,

1990; Guinier, 1963)

F qð Þ ¼
R
V

exp iq � rð Þ dr; ð1Þ

where q is the scattering vector and r is a position vector.

Definition 2. The scattering intensity is proportional to the

form factor amplitude for the individual particle:

I qð Þ / F qð Þ
�� ��2: ð2Þ

The formula mentioned above will be used to calculate SAS

images from individual three-dimensional particles discussed

in this work, as it allows the extraction of relevant structural

information from a single scattering pattern of an individual

particle, provided that the particle can be adequately

described by a parameterized geometric model. The compu-

tation of SAS from an assembled system composed of multiple

types of particles (such as a single-component monodisperse

system, a single-component polydisperse system, a multi-

component monodisperse system, a multi-component poly-

disperse system, crystal structure etc.) is an interesting and

important question, although beyond the scope of the present

work.

The basic subunit of a polyhedron is the tetrahedron, and

the integration over the polyhedron equals the sum of the

integrations over all tetrahedra, according to the linearity

property of the FT. However, one must first solve the basic

problem of evaluating an integral over the tetrahedron. For an

orthogonal unit tetrahedron, it is straightforward to derive the

form factor by Fubini’s theorem. As a consequence, a

projection method that has been widely used for deriving the

volume, mass or moment of inertia of a solid is adopted in this

work for deriving the form factor of an arbitrary tetrahedron.

The form factor in equation (1) can be described by the

coordinate components:

F qð Þ ¼
R
V

exp iq � rð Þ dr

¼
R
V

exp iðqxxþ qyyþ qzzÞ
� �

dx dy dz: ð3Þ

Proposition 1. The form factor for an arbitrary tetrahedron

given by its four vertices (v0, v1, v2, v3), where v0 is located at

the projection origin and v1, v2, v3 are specified in the sequence

so that the normal vector of the face always points away from

the tetrahedron, can be conveniently computed from

FtetraðqÞ ¼ detðTÞ
�� ��n i

q � v1ð Þ q � v1 � q � v2ð Þ q � v1 � q � v3ð Þ

� exp½iðq � v1Þ� þ
i

q � v2ð Þ q � v2 � q � v1ð Þ q � v2 � q � v3ð Þ

� exp i q � v2ð Þ
� �

þ
i

q � v3ð Þ q � v3 � q � v2ð Þ q � v3 � q � v1ð Þ

� exp i q � v3ð Þ
� �

þ
�i

q � v1ð Þ q � v2ð Þ q � v3ð Þ

o
; ð4Þ
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in which

q � vi ¼ qxxi þ qyyi þ qzzi; i ¼ 1; 2; 3; ð5Þ

and |det(T)| is the absolute value of the determinant of the

matrix T:

T ¼

x1 x2 x3

y1 y2 y3

z1 z2 z3

2
4

3
5: ð6Þ

Proof. Consider an arbitrary tetrahedron with four vertices: v0

(0, 0, 0), v1 (x1, y1, z1), v2 (x2, y2, z2), v3 (x3, y3, z3). Taking v0 as

the projection origin, we define a linear transformation matrix

T which relates the old coordinate system (x, y, z) to the new

system (x0, y0, z0) by

x

y

z

2
4

3
5 ¼ T

x0

y0

z0

2
4

3
5 ¼

x1 x2 x3

y1 y2 y3

z1 z2 z3

2
4

3
5 x0

y0

z0

2
4

3
5: ð7Þ

Under this transformation, an arbitrary tetrahedron in the

old coordinate system (x, y, z) can be projected to the

orthogonal unit tetrahedron in the new coordinate system

(x0, y0, z0) with coordinates v00ð0; 0; 0Þ, v01ð1; 0; 0Þ, v02ð0; 1; 0Þ,

v03ð0; 0; 1Þ. According to this transformation, equation (3)

becomes

FðqÞ ¼

Z
V

exp iðqxxþ qyyþ qzzÞ
� �

dx dy dz

¼

Z
V

exp
�
i q � v1ð Þx0 þ i q � v2ð Þy0

þ i q � v3ð Þz0
� dx; dy; dzð Þ

dx0; dy0; dz0ð Þ

����
����dx0 dy0 dz0

¼ detðTÞ
�� �� Z

V

exp
�
i q � v1ð Þx0 þ i q � v2ð Þy0

þ i q � v3ð Þz0
�

dx0 dy0 dz0

¼ detðTÞ
�� �� Z

1

0

Z1�z0

0

Z1�z0�y0

0

exp
�
i q � v1ð Þx0

þ i q � v2ð Þy0 þ i q � v3ð Þz0
�

dx0 dy0 dz0: ð8Þ

Since the integral region is defined as positively oriented in

this work, we take the absolute value of the determinant of the

matrix T in the integration to ensure that the volume inte-

gration is always positive in the coordinate transformations.

Finally, we present the integral over an orthogonal unit

tetrahedron based on the above transformation:

FtetraðqÞ ¼ detðTÞ
�� �� Z

1

0

Z1�z0

0

Z1�z0�y0

0

exp
�
i q � v1ð Þx0

þ i q � v2ð Þy0 þ i q � v3ð Þz0
�

dx0 dy0 dz0

¼ detðTÞ
�� �� Z

1

0

exp i q � v3ð Þz0
� �

dz0
Z1�z0

0

exp i q � v2ð Þy0
� �

dy0

�

Z1�z0�y0

0

exp i q � v1ð Þx0
� �

dx0

¼ detðTÞ
�� ��n i

q � v1ð Þ q � v1 � q � v2ð Þ q � v1 � q � v3ð Þ

� exp i q � v1ð Þ
� �

þ
i

q � v2ð Þ q � v2 � q � v1ð Þ q � v2 � q � v3ð Þ

� exp i q � v2ð Þ
� �

þ
i

q � v3ð Þ q � v3 � q � v2ð Þ q � v3 � q � v1ð Þ

� exp i q � v3ð Þ
� �

þ
�i

q � v1ð Þ q � v2ð Þ q � v3ð Þ

o
: ð9Þ

Remark 1. The volume integral can be represented as a surface

integral over the boundary of the tetrahedron, which is

consistent with the divergence theorem. Let us call the face to

which v1, v2 and v3 belong the base of the tetrahedron, with

respect to the origin v0. With this projection method, there is

no need to further decompose a tetrahedron into many di-

rectangular tetrahedra, as assumed by Senesi & Lee (2015a).

Remark 2. The analytic form factor (4) shows that there are

some problems for computer implementation: division by zero

at the singularities and loss of arithmetic precision near the

singularities. Proper treatment of the formula that takes care

of these singularities would be more practical for computing

form factors at arbitrary wavevectors.

3. Statements about the singularities

As mentioned above, there exist some directions of q for

which the form factor presents singularities for computer

implementation: q may tend to zero, q may be perpendicular

to a point (q � vi = 0, i = 1, 2, 3), q may be perpendicular to a

single edge (q � vi � q � vj = 0, i, j = 1, 2, 3) or q may be

perpendicular to a face (q � vi � q � vj = q � vi � q � vk = 0, i, j,

k = 1, 2, 3). Croset (2017) suggested that the degree of this

singularity is closely related to the asymptotic envelope of

F(q) for different q directions, which goes as q�3, q�2 or q�1

depending on whether q is large, q is perpendicular to an edge

or q is perpendicular to a face. Then, Croset (2018) rederived

the asymptotic behaviour by using the sections method.

Wuttke (2021) used series expansions to overcome numeric
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instabilities for small q and q||. Wuttke pointed out that F(q) is

a holomorphic function of each Cartesian component of q;

therefore any apparent singularity is removable. In this

section, we present some different derivations which can

overcome numeric instabilities from our proposed formula.

3.1. q perpendicular to a point’s position vector

Proposition 2. If it happens that a given vector q is exactly or

almost perpendicular to a point’s position vector vi (q � vi = 0,

i = 1, 2, 3) without being normal to either the edge or the face

to which this point belongs, the analytic form factor becomes

FP qð Þ ¼ detðTÞ
�� ��n i

ðq � vjÞ
2
ðq � vj � q � vkÞ

� exp iðq � vjÞ
� �

þ
i

ðq � vkÞ
2
ðq � vk � q � vjÞ

� exp iðq � vkÞ
� �

þ
iðq � vj þ q � vkÞ � ðq � vjÞðq � vkÞ

ðq � vjÞ
2
ðq � vkÞ

2

o
;

ð10Þ

where vj, vk are the two other points besides vi (i = 1, 2, 3).

Proof. For this purpose, we consider the following case when

q � v1 = 0. Recalling the integral expression (8) of the form

factor, we have

FP qð Þ ¼ detðTÞ
�� �� Z

1

0

Z1�z0

0

Z1�z0�y0

0

exp
�
iðq � v1Þx

0

þ i q � v2ð Þy0 þ i q � v3ð Þz0
�

dx0 dy0 dz0

¼ detðTÞ
�� �� Z

1

0

exp iðq � v3Þz
0

� �
dz0

Z1�z0

0

exp iðq � v2Þy
0

� �
dy0

�

Z1�z0�y0

0

1 dx0

¼ detðTÞ
�� ��n i

ðq � v2Þ
2
ðq � v2 � q � v3Þ

� exp iðq � v2Þ
� �

þ
i

ðq � v3Þ
2
ðq � v3 � q � v2Þ

� exp iðq � v3Þ
� �

þ
iðq � v2 þ q � v3Þ � ðq � v2Þðq � v3Þ

ðq � v2Þ
2
ðq � v3Þ

2

o
:

ð11Þ

Similar results can be obtained by performing the same

operations for the other two cases when q � v2 = 0 and when

q � v3 = 0. Finally, we obtained formula (10).

To illustrate the loss of arithmetic accuracy near the

singularity (q � vi = 0), Fig. 1 compares formula (10) with

formula (4) for a tetrahedral form factor. For |q � vi| close to or

below 10�9, the results obtained from formula (4) show

numeric instabilities while formula (10) works well. There is a

wide range above 10�9 where the two methods are in good

agreement. In practice, if |q � vi /q � vm| (m = j, k) is close to the

machine epsilon, then it is adequate to let q � vi = 0.

3.2. q perpendicular to an edge

Proposition 3. When q is exactly or almost perpendicular to

the edge vivj without being normal to the face to which this

edge belongs, we have q � vi� q � vj = 0, that is q � vi = q � vj (i =

1, 2, 3), and the analytic form factor becomes

FE qð Þ ¼ detðTÞ
�� ��n i

ðq � vkÞðq � vk � q � viÞ
2

� exp iðq � vkÞ
� �

�
i

ðq � viÞ
2
ðq � vkÞ

þ
iðq � vkÞ � 2iðq � viÞ � ðq � viÞ

2
þ ðq � viÞðq � vkÞ

ðq � viÞ
2
ðq � vk � q � viÞ

2

� exp iðq � viÞ
� �o

; ð12Þ

where vk is the other point besides vi and vj.

Proof. Without loss of generality, let us study the case when

q � v1 = q � v2. Substituting q � v1 for q � v2 (or substituting

q � v2 for q � v1), the analytic form factor can be computed as
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Figure 1
The plot shows the form factor versus |q � vi| for a tetrahedron at the off-
symmetric direction (1, 2, 3)/141/2 (the base is an equilateral triangle in the
xy plane, oriented so that an edge points in the x direction, with edge
length L = 1). Red circles are computed using formula (4). For |q � vi| <
10�9 (|q � vi/q � vm| < 10�8, m = j, k), round-off errors dominate. The blue
line is computed by formula (10).
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FE qð Þ ¼ detðTÞ
�� �� Z

1

0

Z1�z0

0

Z1�z0�y0

0

exp
�
iðq � v1Þx

0 þ iðq � v2Þy
0

þ iðq � v3Þz
0
�

dx0 dy0 dz0

¼ detðTÞ
�� �� Z

1

0

exp iðq � v3Þz
0

� �
dz0

Z1�z0

0

exp iðq � v1Þy
0

� �
dy0

�

Z1�z0�y0

0

exp iðq � v1Þx
0

� �
dx0

¼ detðTÞ
�� ��n i

ðq � v3Þðq � v3 � q � v1Þ
2

� exp iðq � v3Þ
� �

�
i

ðq � v1Þ
2
ðq � v3Þ

þ
iðq � v3Þ � 2iðq � v1Þ � ðq � v1Þ

2
þ ðq � v1Þðq � v3Þ

ðq � v1Þ
2
ðq � v3 � q � v1Þ

2

� exp iðq � v1Þ
� �o

: ð13Þ

Similar results can be obtained by performing the same

operations for the other two cases when q � v1 = q � v3 and

when q � v2 = q � v3. Finally, we obtained formula (12).

To illustrate the loss of arithmetic accuracy near the

singularity (q � vi = q � vj), Fig. 2 compares formula (12) with

formula (4) for the same tetrahedral form factor as in Fig. 1.

For |q � vi � q � vj| below 10�10, results obtained from formula

(4) show numeric instabilities while formula (12) works well,

and there is a wide range above 10�10 where the two methods

are in good agreement. In practice, if |q � vi � q � vj| is smaller

than the machine epsilon, then it is adequate to let q � vi =

q � vj.

3.3. q perpendicular to a face

Proposition 4. When q is exactly or almost perpendicular to a

face specified by its three vertices vi (i = 1, 2, 3) without being

zero, we have q � vi � q � vj = q � vi � q � vk = 0, that is q � vi =

q � vj = q � vk, and the analytic form factor can be expressed by

the following formula:

FF qð Þ ¼ detðTÞ
�� ��n �i

ðq � viÞ
3
þ

2iþ 2ðq � viÞ � iðq � viÞ
2

2ðq � viÞ
3

� exp iðq � viÞ
� �o

: ð14Þ

The formula can be expressed by three alternatives (i.e. q � vi =

q � v1 or q � vi = q � v2 or q � vi = q � v3).

Proof. Substituting q � v1for q � v2 and q � v3, the analytic form

factor can be reduced to the following form:

FF qð Þ ¼ detðTÞ
�� �� Z

1

0

Z1�z0

0

Z1�z0�y0

0

exp
�
iðq � v1Þx

0
þ iðq � v2Þy

0

þ iðq � v3Þz
0
�

dx0 dy0 dz0

¼ detðTÞ
�� �� Z

1

0

exp iðq � v1Þz
0

� �
dz0

Z1�z0

0

exp iðq � v1Þy
0

� �
dy0

�

Z1�z0�y0

0

exp iðq � v1Þx
0

� �
dx0

¼ detðTÞ
�� ��n �i

ðq � v1Þ
3
þ

2iþ 2ðq � v1Þ � iðq � v1Þ
2

2ðq � v1Þ
3

� exp iðq � v1Þ
� �o

: ð15Þ
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Figure 2
The plot shows the form factor versus the difference between q � vi and
q � vj for the same tetrahedron as in Fig. 1. Red circles are computed using
formula (4). For |q � vi � q � vj| < 10�10, round-off errors dominate. The
blue line is computed by formula (12).

Figure 3
The plot shows the form factor versus the difference |�q � v| between
q � vi, q � vj and q � vk for the same tetrahedron as in Fig. 1. Red circles are
computed using formula (4). For |�q � v| < 10�5, round-off errors
dominate. The blue line is computed by formula (14).
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The singularity is removed in this case and two other

expressions can be used as alternatives for the same case.

To illustrate the loss of arithmetic accuracy near the

singularity (q � vi = q � vj = q � vk), Fig. 3 compares formula (14)

with formula (4) for the same tetrahedral form factor as in

Fig. 1. For the difference between q � vi, q � vj and q � vk below

10�5 (|�q � v| < 10�5), results obtained from formula (4) show

numeric instabilities while formula (14) works well, and there

is a range above 10�5 where the two methods are in good

agreement. In practice, if |�q � v| is smaller than the machine

epsilon, then it is adequate to let q � vi = q � vj = q � vk.

3.4. q tends to zero

Proposition 5. When q tends to zero, an approximate

expression of the form factor can be given with the following

formula:

FV qð Þ ¼ Vplhd þ detðTÞ
�� �� iðq � v1 þ q � v2 þ q � v3Þ

24
; ð16Þ

where Vplhd is the volume of the polyhedron.

Proof. When q is relatively small, rounding errors can grossly

distort the form factor. As a remedy, we compute the form

factor for small q by performing a first-order Taylor expansion

of formula (4):

FV qð Þ ¼ detðTÞ
�� �� Z

1

0

Z1�z0

0

Z1�z0�y0

0

exp
�
iðq � v1Þx

0 þ iðq � v2Þy
0

þ iðq � v3Þz
0
�

dx0 dy0 dz0

¼ detðTÞ
�� �� Z

1

0

Z1�z0

0

Z1�z0�y0

0

n
1þ

�
iðq � v1Þx

0 þ iðq � v2Þy
0

þ iðq � v3Þz
0
�
þO qð Þ

o
dx0 dy0 dz0

’
detðTÞ
�� ��

6
þ detðTÞ
�� �� iðq � v1 þ q � v2 þ q � v3Þ

24

’ Vplhd þ detðTÞ
�� �� iðq � v1 þ q � v2 þ q � v3Þ

24
: ð17Þ

To illustrate the loss of arithmetic accuracy near the

singularity (q = 0), Fig. 4 compares the first-order Taylor

expansion (16) with formula (4) for the same tetrahedral form

factor as in Fig. 1. For |qL| close to or below 10�4, results

obtained from formula (4) show numeric instabilities owing to

the round-off errors near the singularity, while the Taylor

expansion (16) works well below 10�4, and there is a range

above 10�4 where the two methods are in good agreement.

Furthermore, only a first-order Taylor expansion is needed for

small q.

Remark 3. Let us summarize Section 3 for reliably computing

the form factor at arbitrary wavevectors. The algorithm

involves a switch program to check whether formula (4) or a

series of variants [equations (10), (12), (14) and (16)] around

the singularities were used to compute the form factor. For the

basic tetrahedron, we have discussed the q range to determine

which algorithm to use, which is heuristic for computer

implementation. Some numerical estimates or a series

expansion around singularities being considered to deal with

those possible singularities, as described by Wuttke (2021) and

Croset (2017), are worthy of mention.

4. The form factor for any polyhedron

Proposition 6. Consider an arbitrary polyhedron given by its K

faces �k (k = 1, . . . , K) and let each face be an Nk-gon, given

by the vertices specified in the sequence vk
1; vk

2; . . . ; vk
Nk

so that

the normal vector of the face �k is outward; then the form

factor for the polyhedron is computed from

Fplhd qð Þ ¼
PK
k¼1

PNk�2

i¼1

�i
kFi

k-tetra qð Þ; ð18Þ

where Fi
k-tetraðqÞ is the ith tetrahedral form factor based on the

kth face of the polyhedron and �i
k is a sign function consid-

ering that each tetrahedron can make a positive or negative

contribution to the whole integration. Significantly, the normal

vector of the face in Proposition 6 points away from the

polyhedron; however, the normal vector of the face in

Proposition 1 points away from the tetrahedron. They may

point in opposite directions. When they point in the same

direction, we say that the tetrahedron is positively correlated
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Figure 4
The plot shows the form factor versus |qL| for the same tetrahedron as in
Fig. 1. Red circles are computed using formula (4). For |qL| < 10�4, round-
off errors dominate. The blue line is computed by the Taylor expansion
(16).
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with the polyhedron and �i
k ¼ 1; otherwise it has a negative

contribution and �i
k ¼ �1.

Proof. According to the linearity property of the Fourier

transform, an integral over a polyhedron can be broken into

sets of integrals over polygonal cones,

Fplhd qð Þ ¼
PK
k¼1

Fk
p-cone qð Þ; ð19Þ

where Fk
p-coneðqÞ is the form factor for the polygonal cone

whose base is the face �k of the polyhedron and the tip

lies at the origin v0. Face �k, composed of Nk vertices, can

be dissected sequentially into Nk � 2 triangles, Tk
i ¼

fvk
1; vk

iþ1; vk
iþ2g, 1 � i � Nk � 2, by taking the vertex vk

1 as the

common vertex of the triangles. Each triangle Tk
i with the

origin v0 forms a tetrahedron Qk
i ¼ fv0; vk

1; vk
iþ1; vk

iþ2g; an

integral over a polygonal cone equals the sum of integrals over

all tetrahedra:

Fk
p-cone qð Þ ¼

PNk�2

i¼1

Fi
k-tetra qð Þ; ð20Þ

where Fi
k-tetraðqÞ is the ith tetrahedral form factor based on the

kth face. From formulas (19) and (20), an integral over a

polyhedron equals the sum of integrals over all tetrahedra:

Fplhd qð Þ ¼
PK
k¼1

PNk�2

i¼1

Fi
k-tetra qð Þ: ð21Þ

Finally, a sign function �i
k is introduced considering that

each tetrahedral form factor can make a positive or negative

contribution to the whole integral; the integral over the

polyhedron equals the sum of the signed integral over each

tetrahedron:

F qð Þ ¼
PK
k¼1

PNk�2

i¼1

�i
kFi

k-tetra qð Þ: ð22Þ

We summarize the proposed method of calculating the form

factor of any polyhedron in Fig. 5, which may provide a helpful

visualization.

Remark 4. The expression of the polyhedral form factor in its

final form involves only the apex coordinates and its topology;

there is no need to actually decompose the polyhedron as

described above, and the result presented here is consistent

with the result given by Croset (2017) who used a different

method and vectorial notations in his work.

Remark 5. The use of the scalar product operation and the sign

function �i
k in this work allows us to obtain a general and neat

formula for any polyhedron, including convex and concave

polyhedra.

Remark 6. The total number of computations is linearly

proportional to the number of vertices, i.e. 2(V � 2), where V

is the number of vertices of the polyhedron. The computation

time can be greatly reduced for a particle with certain

symmetries. For instance, assuming that parts P1 and P2 are the

same size and shape but in different orientations, F2 can be

generated by performing a rotation and translation transfor-

mation of F1, according to the property of the FT

F2 qð Þ ¼ F1 R�1q
� �

expðiq � rÞ; ð23Þ

where r is a shift vector and R is a rotation matrix used to

implement different q directions.
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Figure 5
Overview of the proposed method.
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5. Illustrative examples

Code for computing the form factor of any polyhedron, based

on all the above, has been implemented in a MATLAB

program and published at Github (https://github.com/

xiuguochen/Small-angle-X-ray-scattering). Several examples

were studied in order to verify the accuracy and generality of

the method: a cube and a trapezoidal section model have been

checked against the reference expressions in an accuracy

study. A series of scattering patterns from different particle

shapes (regular octahedron, dodecahedron, icosahedron and

concave cube) and different q directions are discussed as part

of a generality study.
5.1. Accuracy test

An accuracy test was performed for a particle shape, the

form factor of which can be calculated by direct integration

using Fubini’s theorem. We now study

the well known case of a cube with side

lengths a = 30 nm, b = 20 nm, h = 40 nm,

having the form factor as formula (24)

when oriented as shown in the inset of

Fig. 6(a):

Fðqx; qy; qzÞ ¼ abh sinc
qxb

2

� �

� sinc
qyb

2

� �
sinc

qzb

2

� �
:

ð24Þ

Since the cardinal sine function

sinc(x) = sin(x)/x has an analytic conti-

nuation at x = 0, i.e. sinc(0) = 1, the

numeric implementation is unproble-

matic. The code underwent tests for

symmetric and asymmetric directions of

q (along the symmetry axis and off the

symmetry axis) to demonstrate the

numerical stability. Figs. 6(a) and 6(b)

are the two-dimensional reciprocal-

space maps (RSMs) in the symmetric

and asymmetric directions for the cubic

particle, respectively. Figs. 6(c) and 6(d)

are comparisons of the scattering

intensity between the two methods over

a one-dimensional qx slice, which show

good agreement. In order to further

illustrate the accuracy of this method,

Figs. 6(e) and 6( f) show the absolute

errors of the scattering intensity

between the two methods in logarithmic

form. Both results show that the abso-

lute errors around the singularity

(qx!0) are much larger than those far

from the singularity, but the calculation

around the singularity obtained from

the proposed method still possesses a

high accuracy (�I < e�10).

Fig. 7 presents the case of an isosceles trapezoidal section

model with side lengths a = 30 nm, b = 20 nm, h = 40 nm,

sidewall angle � = 20�, having the form factor as formula (25)

when oriented as shown in the inset of Fig. 7(a):

Fðqx; qy; qzÞ ¼	expð�iqxa=2Þfexp½�iðqy � qx tan �2Þb� � 1g

qxðqx tan �2 � qyÞ

þ
expðiqxa=2Þfexp½�iðqx tan �1 þ qyÞb� � 1g

qxðqx tan �1 þ qyÞ




�
2 sinðqzh=2Þ

qz

expðiqyb=2Þ: ð25Þ

We also give the two-dimensional RSMs [Figs. 7(a) and

7(b)], comparisons of the scattering intensity over a one-
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Figure 6
Comparisons of the scattering intensity for a cube between the direct integration method and the
proposed method, where the particle is oriented as shown in the inset. (a) and (b) are the two-
dimensional RSMs in the symmetric and asymmetric directions; (c) and (d) are comparisons of the
scattering intensity between the two methods over the one-dimensional qx slice; (e) and ( f ) show
the absolute errors of the scattering intensity between the two methods in logarithmic form.
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dimensional qx slice [Figs. 7(c) and 7(d)] and the absolute

errors of the scattering intensity between the two methods

[Figs. 7(e) and 7( f)], for the symmetric and asymmetric

directions of q. The results show that the calculation around

the singularity (qx! 0) obtained from the proposed method

still possesses a high accuracy (�I < e�10), which further

demonstrates that the two methods are in good agreement and

the proposed method is a reasonable approximation with

decent accuracy and numerically stable.

As is evident, the scattering maps from the cube and the

isosceles trapezoidal section model display anisotropic scat-

tering behaviours, with higher intensity distributions in the

directions perpendicular to the particles’ surfaces. This shape-

dependent scattering may provide a good criterion to identify

particle shape during SAS characterization [for instance, the

angle of the line at peak positions in Fig. 7(a) corresponds

directly to the sidewall angle �, which provides a simple and

intuitive method for extracting the average sidewall angle

from the scattering data].

5.2. Generality test

Upon verifying the accuracy of this method, we think that

this approach is valid for any polyhedron including convex and

concave polyhedra. We performed generality tests for a suite

of particles (octahedron, dodecahedron, icosahedron and a

concave cube) and for different q directions. The orientations

and vertices for these Platonic polyhedra have been defined

many times in the literature and will not

be repeated here; interested readers are

referred to Wolfram (2013). The simu-

lated single-particle scattering pattern

(Fig. 8) shows a highly symmetrical

scattering feature, with the centre

consisting of a series of closed ring

features, gradually changing from

discontinuous ring features to fringe

features, in which structure-related

features appear, as described by Barke

et al. (2015). The scattering of the

polyhedron in the low-q region shows

shape-independent behaviour, while the

shape dependence becomes apparent in

the high-q region. The difference in the

scattering behaviour may be used to

distinguish particle shape during SAS

characterization, provided that the

particle can be adequately described by

a parametric geometry model.

Again, these patterns present aniso-

tropic scattering distributions. Highly

anisotropic particles exhibit more

anisotropic behaviours at higher q. This

can clearly be seen by comparing the

maps from the cube and the icosahe-

dron. With the increase of sphericity, the

two-dimensional scattering profile

appears more isotropic.

It is noteworthy that the scattering of

the particle is typically determined by

size, shape and orientation. Since we

have studied the singularity of F(q) for

every direction, we were able to show

the dependence of F(q) on the q direc-

tion. Let us take the dodecahedron as

an example. Fig. 9 shows the scattering

images under different rotation angles

(i.e. different q directions); the images

immediately show different behaviours,

demonstrating that the oriented

scattering data contain true three-
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Figure 7
Comparisons of the scattering intensity for an isosceles trapezoidal section model between the
direct integration method and the proposed method, where the particle is oriented as shown in the
inset. (a) and (b) are the two-dimensional RSMs in the symmetric and asymmetric directions; (c)
and (d) are comparisons of the scattering intensity between the two methods over the one-
dimensional qx slice; (e) and ( f ) show the absolute errors of the scattering intensity between the two
methods in logarithmic form.

 s16005767, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1107/S160057672201130X

 by H
uazhong U

niversity O
f Sci &

 T
ech, W

iley O
nline L

ibrary on [19/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



dimensional structure information. Although the dodecahe-

dron particle becomes more spherical, the scattering images

taken for different orientations are extremely diverse. This is

what makes diffraction from the dodecahedron different from

spherical diffraction – while the scattering from a sphere

appears at the same q along the different directions, that from

a polyhedron depends on both the shape and orientation of

the particle. The strong directionality and shape sensitivity

(even for nearly spherical shapes) demonstrate that accurate

descriptions of particle morphologies will have far-reaching

effects on SAS as a characterization tool for studying particle

properties.

6. Conclusion

We have shown that the use of a projection method and the

sign function allows us to obtain an exact and general form

factor of any polyhedron using only the apex coordinates and

the apex connections. The obvious singularities are discussed

in detail from our formulas [equations (4), (10), (12), (14), (16)

and (18)]. The formula is valid for any polyhedron, including

the convex polyhedron and the concave polyhedron. Several

examples were studied in this work in order to verify the

accuracy and generality of the method.

The first advantage of the proposed method is the use of the

scalar product operation and the sign function instead of the

mixed product (the scalar product and the vector product) as

described in previous work, which allows us to obtain a

general and neat form factor formula for any polyhedron.

The second advantage of the proposed method is that it has

the ability to intuitively identify the direction of the q vector in

which the singularity appears, and the treatments around the

singularities are accurate and numerically stable. Any

apparent singularity has been removed and the variants of the

form factor have been established analytically.

The third advantage of the proposed method is that the

expression of the formula involves only the apex coordinates

and their connections, and the implementation of the method

is very simple by sequentially scanning over the surfaces of the

polyhedron, avoiding the need for decomposition.
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Figure 8
The simulated single-particle scattering images. (a) Octahedron, (b)
dodecahedron, (c) icosahedron, (d) concave cube.

Figure 9
Scattering images of the dodecahedron at different q orientations (i.e. the particle rotating at different ’, !, � angles along the x, y and z axes,
respectively).
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The ideas presented herein will be useful in the calculation

of not only single-particle scattering but also the assembled

system made of polyhedral particles. The formulas and

discussions presented here are useful for computing the scat-

tering intensities from nanoparticles or clusters, as well as

understanding the relevant three-dimensional structure

information from scattering patterns. This work will further

serve as a stepping-stone for different diffraction modes

including transmission, grazing incidence and reflection

modes.
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