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A B S T R A C T

We proposed a completely analytical method to determine the complex refractive index of an ultra-thin film on
an arbitrary substrate by ellipsometry. The method is based on directly solving the polynomial equation derived
from the 2nd-order Taylor expansion of ellipsometric functions without any prior knowledge about electronic
transitions of the material. Numerical simulations demonstrate that the proposed method can be applied to deal
with ultra-thin films with a wide thickness range from a single atomic layer to 5 nm over an ultra-broad spectral
range from deep ultraviolet to infrared regions. With the proposed method, complex refractive indices of typical
two-dimensional (2D) materials, including the monolayer graphene and 1–3 layer WSe2, were experimentally
investigated over an ultra-wide spectral range (193–1690 nm). The proposed method shows great potential in
the accurate determination of complex refractive indices of ultra-thin films especially the emerging 2D materials.

1. Introduction

The complex refractive indices describe the propagation and loss of
the electromagnetic wave in the medium, and they are basic optical
constants of materials [1]. They reflect light–matter interactions, in-
cluding reflection, refraction, absorption, and emission of light in ma-
terials. On one hand, the complex refractive index can not only help us
to investigate basic optical phenomena, such as the photovoltaic (PV),
photoluminescence (PL), optical scattering, and plasma, but also pro-
vide basic physical knowledge on the behind mechanisms, such as the
bandgap, optical transitions, critical points, and band structure [2,3].
On the other hand, these optical constants are basis for optical analysis
and optimal design of related devices [4,5]. Therefore, accurate de-
termination of the complex refractive index is one of the major topics in
the field of material characterization. It is of great importance for the
design and control of novel materials and related devices.

Spectroscopic ellipsometry is the most commonly used and powerful
technique to determine the optical constants of nanofilms [1–3,6–9].
Compared with other techniques, such as methods based on the trans-
mission/reflection/absorption spectra [10–12], the ellipsometry detects
the polarization state change of the light after reacting with the sam-
ples, and can provide enough information in one measurement to solve
the complex refractive index without any additional functions, such as

the Kramers-Kronig relation [1]. The traditional ellipsometric analysis
contains two basic procedures, namely the forward modeling and the
inverse data fitting [6]. There are two main problems in the traditional
ellipsometric method to determine the optical constants of materials
especially ultra-thin absorbing films. The first one is that one needs
much prior knowledge about the material, such as the bandgap, the
positions and types of the optical transitions, to establish an appropriate
forward model and to obtain reliable initial parameters for the inverse
fitting. The second issue is that there are too many parameters to be
determined in an absorbing film, and mutual coupling between para-
meters will make the inverse fitting procedure time-consuming and
easily falling into a local optimum or non-convergent. For an ultra-thin
absorbing film, the optical index usually changes with the thickness of
the film due to scaling effect [7–9,13], which enhances the coupling
between the optical constants and the film thickness. For some emer-
ging two-dimensional (2D) materials, which are typical ultra-thin films,
the physical knowledge about the optical properties remains unknown.
Bad initial parameters and high correlations between parameters make
the fitting procedure time consuming and easily falling into a local
optimum or non-convergent, and the accuracy even reliability of the
final results will be significantly reduced. Therefore, the traditional
ellipsometric methods based on iterative fitting have difficulties and
limitations in evaluating the complex refractive indices of ultra-thin
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absorbing films.
To address the above issues, several techniques were developed to

avoid the shortage of traditional ellipsometric methods based on in-
verse fitting. A classic point-by-point method can solve the complex
refractive index directly from the complex ellipsometric ratio by ap-
plying the Fresnel equations [1]. However, this method can only deal
with the pseudo optical constants of bulk materials. Many researchers
used multi-incidence ellipsometry or combined the transmission or re-
flection with the ellipsometry to reduce the correlations between
parameters in ellipsometry [14–17]. Urban et al. developed a new
geometry of numerical ellipsometry named the n-k plane method,
which can overcome the problem of multiple solutions and local solu-
tion in traditional ellipsometric methods based on least squares fitting
[18–21]. Based on the determination of contours of the ellipsometric
function and constrained splines, Gilliot et al. extracted the complex
refractive index of absorbing films and investigated the correlations
between the dielectric function, thickness and morphology of very thin
films [22–24]. Although these above techniques find wide applications
in accurate determination of optical constants of various thin films,
they are still based on the iterative framework and not analytical. Some
researchers developed semi-analytical solutions to determine the op-
tical constants of thin films based on polynomial representation of the
ellipsometric functions, such as the fifth-degree polynomial method for
transparent films [25], and the sixth-degree polynomial method for
absorbing films [26]. Recently, several analytical methods based on the
approximation of the ellipsometric functions have been presented to
deal with the ellipsometry for ultra-thin films [27–34]. Adamson de-
monstrated an analytical formula based on 1st-order approximate
Taylor expansion to directly determine the optical constants of 2D
ultra-thin films from the measured ellipsometric parameters [27–29].
However, Adamson only presented simulation results to verify his for-
mula, which lacks experimental argumentation. Very recently, Jung
et al. proposed a similar formula based 1st-order Taylor expansion, and
then experimentally investigated the optical permittivity of 2D transi-
tionmetal dichalcogenides (TMDCs) [30]. Due to the long-wave limit,
the 1st-order approximate formula is only accurate for the visible and
infrared spectral regions [28,30]. Nestler and Helm proposed a 2nd-
order approximate formula, and they simultaneously determined the
refractive index and thickness of ultra-thin polymer films using the
formula [31]. However, their formula is suitable for transparent films
with thickness greater than 5 nm.

In this paper, aiming to overcome the limitations of the existing
techniques, we proposed a totally analytical method to deal with the
inverse ellipsometry for ultra-thin films without prior knowledge of
electronic transitions. A polynomial equation about the complex re-
fractive index is derived from the 2nd-order Taylor expansion of the
ellipsometric functions. The exact solution for the complex refractive
index can be obtained by two steps: (1) solving the polynomial equation
about the complex refractive index by using the Ferrari method; (2)
filtering the false solutions by basic physical constraint. The proposed
method can be applied to evaluate the complex refractive index of an
ultra-thin absorbing film on an arbitrary substrate. The applicability
and advantages have been discussed through numerical simulations.
Results demonstrate that the proposed method can be applied for wider
wavelength range (from deep ultraviolet to infrared regions) and
thickness range (< 5nm) with much higher accuracy than the previous
1st-order Taylor approximate formula. With the proposed method, we
experimentally investigate the complex refractive indices of typical 2D
materials, including the monolayer graphene and 1–3 layer WSe2 over
an ultra-wide spectral range (193–1690 nm).

2. Principles and methods

As schematically illustrated in Fig. 1, the ellipsometry investigates
the optical properties and the morphology of a thin film by detecting
the polarization state change of the light reflected from the sample [1].

The polarization state change is usually described by two ellipsometric
angles, i.e., the amplitude ratio angle Ψ and the phase difference Δ,
which are defined by the reflection coefficients of the p- and s-com-
ponent of the polarized light:

= =ρ exp i
r
r

tan Ψ ( Δ) ,p

s (1)

where, ρ is usually called the complex ellipsometric ratio, rp and rs refer
to the reflection coefficient of the p-polarization light and that of the s-
polarization light, respectively.

For an ultra-thin film sample, it consists of three parts, namely the
surrounding medium (usually air), thin film, and supported substrate.
The ellipsometry involves two interfaces, i.e., the air/film interface and
the film/substrate interface as shown in Fig. 1. Drude’s reflection
coefficients can be calculated by the Fresnel equations:
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where, θ0 and θ1 are the incident angle and the refractive angle on the
air/film interface respectively, λ is vacuum wavelength of the polarized
light, N0 and Ns are the complex refractive index of the ambient
medium and that of the substrate respectively, dT and NT = n − ik are
the thickness and complex refractive index of the film, n and k refer to
the refractive index and the extinction coefficient respectively. Ac-
cording to Snell’s law, we have Ns∙sinθ0 = N0∙sinθ1.

Since the thickness of an ultra-thin film is of atomic level, it satisfies
the condition of 2πdT/λ ≪ 1 especially for the long-wavelength range.
Then, ρ can be expressed analytically as a power series in the terms of
ϕ = 2πdT/λ. Here, we approximate ρ by using the Taylor expansion at
dT = 0 to get the following 2nd-order approximate formula:

= + ′ +
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Herein, ρ(0) = rp/rs|ϕ=0 represents the ellipsometric ratio of the bare
substrate, and it can be calculated by Eq. (2) if we set ϕ= 0. And it also
can be obtained by ellipsometry on the bare substrate according to Eq.
(1). The latter is preferred to eliminate the experimental errors.

In Eq. (3), the 1st-order and 2nd-order coefficients are given by
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Fig. 1. Scheme of the ellipsometry for a thin film.
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where, the abbreviations A, B, and C have the following forms as given
by
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It can be seen that these coefficients as given by Eq. (6) are in-
dependent of the film, and they can be calculated by the incident angle
and indices of the substrate and surrounding medium.

By inserting Eqs. (4) and (5) into Eq. (3), we can obtain
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Eq. (7) can be rewritten as a quartic equation about NT
2:
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The coefficients in Eq. (8) are given by
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If we know the thickness of the thin film in advance, we can cal-
culate the complex refractive index of the film analytically from the
measured ellipsometric angles (Ψ, Δ) at each wavelength. Here, we will
give details about the process for obtaining the exact solution for the
complex refractive index of the film. We can use Ferrari method to solve
the quartic equation shown in Eq. (8), and the solution is given by
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where in, the forms following ‘± s’ should have the same sign. If U= 0,
y is given by

= − −y α U5
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otherwise, y has the following form

= − − +y α U P
U

5
6 3

, (11b)

where P, Q, and U are given by
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Here, α, β, and γ can be calculated by a, b, c, d, and e as defined in Eq.
(9)

= − +α
a

c
a

3b
8

,
3

2 (13a)

= − +β b
a

b c
a

d
a8

·
2

,
3

3 2 (13b)

= − + − +γ b
a

b c
a

bd
a

e
a

3
256 16 4

.
4

4

2

3 2 (13c)

According to Eq. (10), there will be eight mathematical solutions for
NT, but only one of them is true. Two steps can help us to find the final
exact solution for the complex refractive index of the film. Firstly, we
can filter most of the false solutions by simply checking whether sa-
tisfies the basic physical constraint, i.e., n = real(NT) > 0,
k = − imag(NT) > 0 and |NT|> 1. Secondly, we can plug the re-
maining solutions into the ellipsometric functions as shown in Eqs. (1)
and (2), and compare the calculated ellipsometric angles with measured
ones to finally obtain the exact complex refractive index of the film.
Fig. 2 shows the flow chart of the above procedures. By using the
proposed method, one can analytically determine the optical constants
(including the refractive index n and the extinction coefficient k) of an
ultra-thin absorbing film by ellipsometry without any prior knowledge
about the material, such as the bandgap and the electronic transitions.

3. Results and discussion

3.1. Numerical simulations

In this part, we will present the applicability and advantages of the
proposed method in evaluating the complex refractive index of an ultra-
thin absorbing film via numerical simulations. The proposed method is
based on the 2nd-order Taylor expansion of the ellipsometric ratio into
the terms of ϕ = 2πdT/λ as shown in Eq. (7). Obviously, it is an

Fig. 2. Flow chart of the proposed analytical method to determine the complex
refractive index of an ultra-thin absorbing film by elliposometry.
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approximate formula, and its accuracy is significantly affected by
parameters involving in the expression, including the film thickness dT,
the wavelength λ, the index of the substrate N0, and the index of the
target film material NT. Here, we will discuss the influences of these
parameters on the final accuracy of the proposed method.

Firstly, we make a comparison between the proposed 2nd-order
approximation method and the most commonly used 1st-order ap-
proximation [30]. In the simulations, the indices of the substrate and
the film are given with specific values (Ns = 4.2–1.3i and NT = 3.8–1i),
and the incidence is set as θ0 = 60°. The film thickness dT is within a
range from 0.1 nm to 5 nm, and the wavelength λ is over a range from

200 nm to 1600 nm. The difference between the ellipsometric angles
calculated by the Taylor expansion approximate formula and those
calculated by the exact ellipsometric functions, and the ellipsometric
angle difference is noted as (δΨ, δΔ). Fig. 3(a) and (b) demonstrate the
simulated results (δΨ, δΔ) versus the wavelength with a specific
thickness dT = 2 nm, and Fig. 3(c) and (d) show simulated results (δΨ,
δΔ) versus the film thickness under a specific wavelength λ= 1000 nm.
The blue dashed lines and red solid lines represent results for the 1st-
order approximation and the 2nd-order approximation, respectively. It
can be seen from Fig. 3, the ellipsometric errors (δΨ, δΔ) become larger
with the wavelength decreasing and with the thickness increasing for
both the 1st-order and the 2nd-order approximations. This means the
Taylor approximate methods are suitable to evaluate optical constants
for thin films over long wavelengths. In addition, as expected, the
proposed 2nd-order approximate method obviously shows much
smaller errors (δΨ, δΔ), indicating that it has a higher accuracy than the
1st-order approximation especially for relatively thick films over short
wavelengths. We can conclude that compared with the 1st-order ap-
proximation, the proposed 2nd-order approximate method can be ap-
plied to evaluate the complex refractive index of thin films with a much
wider thickness range over a much broader wavelength range.

In the second simulations, we focus on investigating the influences
of the indices of the film and the substrate on the accuracy of the
proposed method. The absolute error in ellipsometric angles (δΨ, δΔ) is
again taken as the evaluation criteria. In the simulations, the refractive
index n of the target film ranges from 0.5 to 5, while the extinction
coefficient k is from 0 to 5. The incidence and the wavelength are set at
60° and 1000 nm, respectively. To perform a comprehensive in-
vestigation, three different substrates, including the low-index sapphire
(Ns = 1.76), high-index silicon (Si) (Ns = 3.8), and absorbing copper
(Cu) (ns = 0.343–6.789i), are taken into consideration. Fig. 4 shows the
absolute errors of ellipsometric angles (δΨ, δΔ) as function of the re-
fractive index n and extinction coefficient k of the film on different
substrates. It can be observed from Fig. 4 that the ellipsometric errors
(δΨ, δΔ) gradually become larger with the increase of both the re-
fractive index n and the extinction coefficient k of the target film. This
phenomenon tells us that it is better to use the approximate Taylor
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expression to deal with relatively low-index materials.
The proposed method exhibits significantly different accuracies

when the film is on different substrates as shown in Fig. 4. The ellip-
sometric errors (δΨ, δΔ) are much larger for low-index substrate than
those of high-index substrate whether it is transparent or not. For the
Sapphire substrate, the deviations in ellipsometric angles can as large as
the level of 1°. While for the Si and Cu substrates, the deviations in
ellipsometric angles are of 10−3 degree, which is smaller than the
measurement accuracy (~0.01°) of a general spectroscopic ellipso-
metry, and they can be neglected in practice. Simulation results in
Fig. 4 tell us that the proposed method is more suitable to deal with
low-index thin films on a high-index substrate. However, it should be
noted that the low-index thin film and high-index substrate will ex-
tremely reduce the proportion of the effective optical response in the
ellipsometry, namely the signal-to-noise-ratio (SNR) is reduced.
Therefore, in practice, it is a compromise between the choice of sub-
strate and the measurement SNR when we use the approximate Taylor
formula to determine the optical constants of a thin film.

Finally, simulations on 2D MoS2 films on Si substrate with thickness
ranging from a monolayer to 7 layers are taken as examples to verify
the proposed method in. In the simulations, the incidence is set as 60°,
and wavelength range is from 193 nm to 1690 nm. Each layer of MoS2
is assumed to have a nominal thickness 0.615 nm, and the complex
index of 2D MoS2 from a previous publication [7] is chosen as the re-
ference NTR. Using the NTR and the above given parameters, we can
calculate the exact ellipsometric angles of 2D MoS2 with different layers
according to the ellipsometric functions as given by Eqs. (1) and (2).
Then we can resolve the complex index NT from the ellipsometric angles
by using the 2nd-order approximate formula. Fig. 5 illustrates the cal-
culated NT from ellipsometric angles of different layers compared with
the reference index NRT. It can be seen that the deviations (δn, δk) in the
refractive index and the extinction coefficient from their reference va-
lues change significantly with the wavelength as well as the layer
number (i.e., the thickness) of the 2D MoS2 thin film. Overall, the de-
viations (δn, δk) are much smaller over the long wavelength range than
those over the short wavelength range as expected. For the infrared
range (λ > 700 nm), δn is less than 0.005 and δk is less than 0.01 for
all the 1–7 layer 2D MoS2 thin films, which is of a very high level for
optical constant determined by ellipsometry. On the other hand, the
deviations (δn, δk) monotonously increase with the layer number in-
crease, again indicating that the proposed method is more accurate for
thinner film. It can be observed that for the 2D MoS2 below 5 layers, the

maximum errors in both n and k are less than 0.1 over the ultra spectral
range of 193–1690 nm, which is of an acceptable level. Thus, the
proposed method can be expected to evaluate the optical constants of
ultra-thin films especially 2D materials analytically from the measured
ellipsometric angles with a rather high accuracy.

3.2. Experiments

In this section, experiments are performed on the analytical de-
termination of the optical constants of two typical 2D materials, in-
cluding a monolayer graphene and 1–3 layer WSe2, to further verify the
proposed method. The experimental setup is based on a Mueller matrix
ellipsometer (ME-L, Wuhan Eoptics Technology Co., Wuhan, China)
[35,36] whose applicable wavelength range covers 193–1690 nm. It
should be clarified that since the proposed formula is based on Taylor
expansion of the ellipsometric ratio, it can only be applied to solve one
pair of optical constants of materials without optical anisotropy.
Therefore, the Mueller matrix ellipsometer is not necessary, and re-
searchers can also use a standard ellipsometer to perform the experi-
mental investigation. For optically isotropic samples, the off-diagonal
elements in the Mueller matrix are zero, and the diagonal elements
determine ellipsometric angles, i.e., cos(2Ψ) = −(m12 + m21)/2 and
tan(Δ) = (m34 − m43)/(m33 + m44), where mij is the normalized
Mueller matrix elements in the i-th row and j-th coloum [1]. In the
experiments, the ellipsometric angles (Ψ, Δ) of the 2D film samples as
well as the bare substrate are obtained at the incident angle of 65° in
air. All the 2D materials in this paper were prepared by the chemical
vapor deposition (CVD) method, and the sapphire is chosen as the
substrate. Figs. 6 and 7 demonstrate the experimental results of the
graphene and 2D WSe2, respectively.

The ellipsometric angles over 193–1690 nm measured by the el-
lipsometer are shown in Fig. 6(a) and (b). It can be seen that the
measured ellipsometric angles contain instrument noises and they ex-
hibit poor SNR due to the weak optical response of the monolayer
graphene in the ellipsometry. The nominal thickness of the monolayer
graphene is 0.335 nm, which has been widely known and accepted
[37]. The complex index of the substrate has been determined sepa-
rately by the ellipsometer in advance, and the index of the air is ideally
assumed as 1. With these parameters, the complex refractive index of
the monolayer graphene can be analytically resolved from the mea-
sured ellipsometric angles by the approximate Taylor expansions.
Fig. 6(c) and (d) present the refractive index n and the extinction
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coefficient k respectively determined by our 2nd-order method com-
pared with results determined by the 1st-order formula. We can observe
that the optical constant spectra contain obvious fluctuations over the
concerned wavelength range. These fluctuations can be attributed to
the measured noises in the ellipsometric angles. Both of the proposed
2nd-order or the previous 1st-order approximate formulas solve the
optical constants point by point, therefore the random noises in ellip-
sometric angles are correspondingly reflected as fluctuations in the final
results. Nevertheless, the optical constants are with high agreement
with those in previous publications [6], and the major absorption peak
due to the π-to-π* exciton transition in the graphene can be clearly
distinguished at about 260 nm (4.75 eV). Fig. 6(e) and 6(f) give the
absolute errors between the calculated and the measured ellipsometric

angles. Without doubts, the ellipsometric errors (δΨ, δΔ) of our method
are much smaller than those of the 1st-order approximate formula
especially over the short wavelength range. These results indicate that
the proposed method is more accurate than the published 1st-order
approximate method in evaluating the optical constants of ultra-thin
absorbing films.

It should be noted that the proposed method cannot deal with the
optical anisotropy in materials. 2D layered films are optical anisotropic,
and they have different optical constants in directions parallel and
perpendicular to the measurement plane, i.e, the in-plane and out-of-
plane directions. However, due to the limited thickness of a 2D film, the
out-of-plane optical response is rather weak, and the ellipsometry
mainly counts on the in-plane optical response [38]. Therefore, when
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method using classical oscillator model, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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using the proposed method to determine the in-plane optical constants
of 2D materials (or other ultra-thin films), the ignorance of the optical
anisotropy is reasonable.

Finally, we experimentally evaluate the optical constants of 2D
WSe2 with the thickness ranging from a monolayer to 3 layers. The 2D
WSe2 films were grown on gold foil by an ultrafast ambient-pressure
CVD method using WO3 powder and Se pellets as precursors, and then
were transferred onto polished sapphire substrates. Details about the
preparation and characterization of the 2D WSe2 samples can be found
in our previous publication [8]. The thicknesses of the 2D WSe2 films
can be determined by using atomic force microscope (AFM), and they
are 0.661 nm, 1.123 nm, and 1.853 nm for the monolayer, the bilayer,
and the trilayer WSe2. Similar with the graphene, the complex index of
the sapphire substrate has been determined separately by the ellips-
ometer in advance, and the index of the air is ideally assumed as 1.
Then, the complex refractive index of the 2D WSe2 films can be eval-
uated by the proposed 2nd-order Taylor approximate method. Since the
optical constants including the refractive indices and the dielectric
functions of 2D WSe2 have been relatively widely investigated by
spectroscopic ellipsometry [8,39,40], we have enough prior knowledge
about the critical points and electronic transitions of 2D WSe2, which
can help us easily construct a reliable optical model for traditional el-
lipsometric analysis. Therefore, the measured ellipsometric spectra are
also analyzed by the traditional method based on iterative fitting pro-
cedure to make a comparison and verify the proposed analytical for-
mula. A classic stacking model containing the ambient air, the WSe2
film layer, and the substrate, is used to embody the optical structure of
the 2D WSe2 film on the sapphire substrate. According to literatures
[8], the dispersive properties of 2D WSe2 over the concerned spectral
range are described by a classical oscillator model, combining 3 Co-
dy–Lorentz oscillators and 5 Lorentz oscillators. With the established
optical model and parameterized oscillator model, theoretical ellipso-
metric spectra can be calculated by the transmission matrix method,
and then they are fitted to the measured data by using the Levenberg-
Marquardt (LM) algorithm.

Fig. 7 comparative presents the complex refractive indices of the 2D
WSe2 films determined by both of the proposed 2nd-order Taylor ap-
proximate method and the traditional inverse fitting method based on
models. It can be observed that the two sets of results show extremely
high agreement with each other over the whole spectral range. The
optical constant curves determined by the oscillator fitting method are
smooth and continuous, while results by the proposed method are ob-
tained point by point and contain random fluctuations due to the
measurement noises in the ellipsometric angles. All the feature ab-
sorption peaks (marked with uppercase letters A-G as shown in Fig. 7)
can be unambiguously identified from the calculated extinction coef-
ficient k of 2D WSe2. The positions of these feature peaks agree well
with the fitting results and those in previous publications [8]. These
absorption peaks correspond to specific optical transitions in 2D WSe2.
In the traditional ellipsometric analysis, one must know lots of prior
knowledge about the optical transitions, such as the bandgap, the po-
sitions and types of the transitions, etc., to successfully implement an
appropriate model. Without the prior knowledge, the fitting procedure
would suffer bad initial parameters, which will reduce the accuracy
even reliability of the final results and cost more time. Our proposed
method can analytically evaluate the optical constants directly from the
measured ellipsometric angles, and it has the advantage of in-
dependency on any prior knowledge of the optical transitions of the
material.

4. Conclusions

In summary, we proposed an analytical formula to deal with the
inverse ellipsometry of an ultra-thin film on arbitrary substrates based
on 2nd-order Taylor expansion of ellipsometric functions. Detailed
derivations were presented to obtain a polynomial equation about the

complex refractive index from the 2nd-order Taylor expansion. The
exact solution for the complex refractive index can be obtained by two
steps: (1) solving the polynomial equation by using the Ferrari method;
(2) filtering the false solutions by basic physical constraints. Numerical
simulations were performed to discuss the applicability and advantages
of the proposed method compared with the previous 1st-order Taylor
formula. Results demonstrate that the proposed method: (1) can be
applied for ultra-thin films with wider thickness range from a single
atomic layer to 5 nm; (2) can be applied for ultra-wide spectral range
from deep ultraviolet to infrared regions; (3) has about an order of
magnitude higher accuracy than the 1st-order Taylor formula. With the
proposed method, we experimentally investigated the complex re-
fractive indices of typical 2D materials, including the monolayer gra-
phene and 1–3 layer WSe2 over an ultra-wide spectral range
(193–1690 nm). Results calculated by the proposed method show high
agreement with those obtained by traditional ellipsometric analysis
based on inverse fitting, which demonstrates the validity of the pro-
posed method. The present work provides a new way to extend the
ellipsometry to explore the optical properties of ultra-thin films espe-
cially novel 2D materials with complex and unknown electronic char-
acteristics.
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