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1.  Introduction

Optical scatterometry, also referred to as optical critical 
dimension metrology, has become one of the most important 
techniques for critical dimension (CD) and overlay metrology 
in semiconductor industry due to its inherent speed, noncon-
tact, nondestructive, and inexpensive merits over other tech-
niques, such as scanning electron microscopy (SEM) and 
atomic force microscopy [1–9]. As a model-based metrology 
technique, the implementation of optical scatterometry 
involves two steps [10, 11]. First, in what is known as the 
forward problem, the signature of a nanostructure (typically 
a periodic sub-wavelength structure) under test is measured 
using a proper instrument. Here, the term signature represents 

the optical response of the nanostructure under test, which can 
be in forms of reflectance, ellipsometric angles, Stokes vector 
elements, or Mueller matrix elements etc. The second step 
involves establishment of a light-nanostructure interaction 
model to relate the signature with the structural parameters 
and extraction of the structural parameters under measure-
ment from the measured signature by solving an inverse 
problem with the objective of finding an optimal input to the 
established model whose simulated signature can best match 
the measured one. Previous studies revealed that the measure-
ment uncertainty of optical scatterometry depends on not only 
the quality (e.g. signal-to-noise ratio) of measured signatures 
but also the measurement configuration [12–19]. The latter 
is defined as the combination of measurement conditions in 
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optical scatterometry, such as wavelength, incidence angle, 
azimuthal angle, and/or polarization direction. Moreover, it 
was reported that some measurement configurations could 
help decorrelate the structural parameters [6], which is benefi-
cial to avoid the solution of the inverse problem fall into local 
optima, especially when the number of floating parameters 
increases. For a given measuring instrument, a proper choice 
of the measurement configuration is a significant approach of 
low cost to achieve a higher measurement precision.

Several approaches have been proposed to optimize the 
measurement configuration for optical scatterometry over 
the past decades. Logofătu proposed a sensitivity analysis 
for fitting method by defining the sensitivity as the estimated 
standard uncertainties of structural parameters to optimize 
the measurement configuration for angle-resolved rotating-
analyzer and angle-resolved phase-modulation scatterom-
eters, respectively [12, 13]. Littau et  al investigated several 
optimal diffraction signature scan path selection techniques to 
improve scatterometry precision [14]. Gross et al proposed an 
algorithm to determine the optimal measurement data set by 
minimizing the condition number of a Jacobian matrix with 
elements defined as partial derivatives of the diffraction signa-
ture with respect to the structural parameters [15]. Vagos et al 
developed an uncertainty and sensitivity analysis package 
that can be used to guide the optimization of the measure-
ment model and azimuthal angle [16]. Foldyna et al proposed 
to choose the measurement configurations with small param
eter correlations and small estimated standard uncertainties 
of structural parameters for Mueller matrix scatterometry 
(MMS, also called Mueller matrix ellipsometry based scat-
terometry or Mueller matrix based scatterometry) [17]. In 
order to achieve a higher measurement accuracy in MMS, we 
proposed to optimize the measurement configuration by mini-
mizing the Frobenius norm an introduced configuration error 
propagating matrix [18]. In addition, we also introduced the 
global sensitivity analysis for guiding the choice of measure-
ment configurations and meanwhile avoiding the local prop-
erty of traditional partial derivative-based sensitivity analysis 
[19].

Since the semiconductor industry is primarily interested in 
reproducibility, how to choose measurement configurations 
that could yield a higher measurement precision is thus much 
preferred and also the focus of this research. Based on the 
reported MCO approaches in the literature [12–19], the most 
straightforward approach to fulfill the above goal is to directly 
optimize the estimated uncertainties in the extracted structural 
parameters, which typically vary at different measurement 
configurations and can be treated as the objective functions 
in optimization. We should note that since each structural 
parameter corresponds to an estimated uncertainty, the MCO 
problem will contain M objectives if there are M structural 
parameters under measurement. If we further take parameter 
correlations into account, there will be much more objectives 
(M objectives about estimated uncertainties and M(M  −  1)/2 
objectives about parameter correlations) that need to be 
optimized. Obviously, the MCO problem based on the optim
ization of the estimated uncertainties in the extracted struc-
tural parameters is a multi-objective optimization problem 

and should be addressed with care. However, to the best of our 
knowledge, the MCO problem in optical scatterometry has 
never been surveyed from the point of view of multi-objective 
optimization. The commonly adopted approach in the litera-
ture is to optimize the objective functions (i.e. the estimated 
uncertainties of the structural parameters) one by one [12, 13, 
16, 17]. Since the optimal measurement configurations are 
typically different for different structural parameters, a trivial 
compromise among the selected measurement configurations 
has to be made finally.

In this paper, the multi-objective genetic algorithm (MOGA) 
is introduced to deal with the MCO problem in optical scat-
terometry. The classical approach to solve a multi-objective 
optimization problem is to assign a weight to each objective 
function so that the problem is converted to a single objective 
optimization problem. The main difficulty with this approach 
is selecting a proper weight vector for each run. Typically, 
different weight vectors will lead to different optimal results. 
For this reason, we resort to the multi-objective optimization 
algorithm, by which multiple objectives could be optimized 
simultaneously. The genetic algorithm (GA) is a metaheuristic 
inspired by the mechanism of natural selection and natural 
genetics [20]. In the GA, a population of candidate solutions 
to the optimization problem is evolved towards better solu-
tions through successive iterations called generations. A new 
generation is formed using the bio-inspired operators, such 
as mutation, crossover and selection, according to the fitness 
value of each candidate solution. After several generations, 
the algorithm is expected to converge to the optimum or sub-
optimal solution of the problem. Due to the population-based 
nature of the GA, it is an ideal candidate for solving multi-
objective optimization problems [21, 22], and is thus chosen 
to probe the optimal measurement configuration for optical 
scatterometry.

The remainder of this paper is organized as follows. In sec-
tion 2, the inverse problem in optical scatterometry is firstly 
revisited. The estimation of the uncertainties in the extracted 
structural parameters as well as parameter correlations is also 
briefly introduced. Then, we reformulate the MCO problem 
in optical scatterometry as a multi-objective optimization 
problem. The solution of the MCO problem by MOGA is 
briefly introduced with an emphasis on important concepts 
related with MOGA. In section  3, the MMS is exemplified 
to illustrate the implementation of MOGA for optimizing the 
combination of incidence and azimuthal angles in measuring a 
Si grating. Monte Carlo simulations are performed to demon-
strate the feasibility of MOGA in handling the MCO problem. 
Some conclusions are finally drawn in section 4.

2.  Method

2.1.  Inverse problem in optical scatterometry

Without loss of generality, we denote the structural param
eters under measurement as a M-dimensional vector p  =  [p1, 
p2, …, pM]T, where the superscript ‘T’ represents the trans-
pose. The signature measured at a measurement configuration 
a  =  [a1, a2, …, aL]T is denoted as an N-dimensional vector 
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y  =  [y1, y2, …, yN]T, where a1, a2, …, aL represent the mea-
surement conditions such as wavelength, incidence angle and 
azimuthal angle in the experiment, and y1, y2, …, yN repre-
sent the measured data in terms of reflectance, ellipsometric 
angles, Stokes vector elements, or Mueller matrix elements 
etc. The corresponding theoretical signature calculated at the 
same measurement configuration for any vector p is denoted 
as f(p, a)  =  [f1(p, a), f2(p, a), …, fN(p, a)]T. The χ2 function is 
usually adopted to estimate the fitting error between the mea-
sured and theoretical signatures, which is defined as

χ2 =

N∑
k=1

wk[yk − fk(p, a)]2 = [y − f(p, a)]TW [y − f(p, a)] ,

� (1)
where wk (k  =  1, 2, …, N) are the weighting factors, which 
are usually chosen to be wk = 1/σ2(yk) with σ2(yk) being 
the variances of the measured signature, and W is an N  ×  N 
diagonal matrix with diagonal elements being wk. The inverse 
problem in optical scatterometry is typically formulated as a 
least-square regression problem such that

p̂ = arg min
p∈Ω

[y − f(p, a)]TW [y − f(p, a)] ,� (2)

where p̂ denotes the solution of the inverse problem consisting 
of the extracted structural parameters, and Ω is the associated 
domain of the structural parameters. In the solution of equa-
tion  (2), typically only p is floated while both a and W are 
fixed.

The uncertainty in the measured signature will be prop
agated into the extracted structural parameters in the solution 
of equation  (2). The uncertainty in the extracted structural 

account in the uncertainty estimation in equation  (6) [23]. 
According to equation (3), we can also estimate the correla-
tion coefficient between parameters pi and pj by

ρ(pi, pj) =

√
Cij√

Cii
√

Cjj
,

�

(7)

which takes values between  −1 and 1 with 0 meaning no 
(linear) correlation and  −1 or 1 meaning perfect (linear) cor-
relation, and moreover, ρ(pi, pj)  =  ρ(pj, pi).

2.2.  Measurement configuration optimization  
by multi-objective genetic algorithm

As revealed in the previous work [12, 13], different mea-
surement configurations will lead to extracted structural 
parameters with different precisions. It is highly desirable 
that if we could pick out the configurations that lead to a 
higher parameter precision, namely smaller uncertainties 
in the extracted structural parameters. In addition, some 
measurement configurations could yield weaker parameter 
correlations [6], which are beneficial to the solution of the 
inverse problem in optical scatterometry, especially for com-
plex nanostructures with a large number of structural param
eters under measurement. Since smaller uncertainties in the 
extracted structural parameters do not necessarily indicate 
weaker parameter correlations [17], it is also preferred to 
choose the configurations with smaller correlation coeffi-
cients between the structural parameters. Based on the above 
description, the MCO problem in optical scatterometry can 
be formulated as

parameters can be estimated according to the covariance 
matrix of p defined as

C =
(

J̃TJ̃
)−1

,� (3)

where J̃ = W1/2 J with J being the Jacobian matrix with 
respect to p, whose (k, i)th element is given by

Jki =
∂fk(p, a)

∂pi

∣∣∣∣
p=p̂

.� (4)

With equation  (3), the standard deviation of the extracted 
structural parameter pi (i  =  1, 2, …, M) can be estimated from 
the ith diagonal element of C by

σ(pi) =
√

Cii.� (5)

We can further estimate the uncertainty in parameter pi by

u(pi) = κσ(pi),� (6)

where κ is the coverage factor associated with the prescribed 
confidence level. Since the uncertainty of Type B in optical 
scatterometry is typically constant at different measurement 
configurations, we only take the error sources of Type A into 

min
a∈Ξ




max
p∈Ω

[u(p1)] , max
p∈Ω

[u(p2)] , . . . , max
p∈Ω

[u(pi)] , . . . , max
p∈Ω

[u(pM)] ;

max
p∈Ω

[|ρ(p1, p2)|] , max
p∈Ω

[|ρ(p1, p3)|] , . . . , max
p∈Ω

[|ρ(pi, pj)|] , . . . , max
p∈Ω

[|ρ(pM−1, pM)|]


 ,

�
(8)

where u(pi) and |ρ(pi, pj)| (i, j  =  1, 2, …, M and i  <  j) are 
estimated according to equations  (3)–(7) by replacing the 
value of p (p = p̂) in equation (4) with a given central value 
from a parameter domain Ω. It is noted that, here we take the 
absolute value of ρ(pi, pj), |ρ(pi, pj)|, as the objective, since 
the parameter correlation coefficient ρ(pi, pj) takes a value 
between  −1 and 1. Considering the local property of the par-
tial derivative in equation (4) for the definition of the Jacobian 
matrix J, which typically varies with the given central value 
of p because of the nonlinearity of f(p, a), we first scan the 
values of the objectives u(pi) and |ρ(pi, pj)| by changing the 
central value of p from the domain Ω for their maxima. Then 
we scan the maxima of u(pi) and |ρ(pi, pj)| obtained at dif-
ferent measurement configurations a from the domain Ξ for 
the minimum of each objective. The configuration that cor-
responds to the minima of all the objectives will be the final 
optimal configuration. The rationale behind the ‘max-min’ 
optimization given in equation  (8) is that, if the achieved 
optimal measurement configuration is workable even in the 
worst case of u(pi) and |ρ(pi, pj)| in a parameter domain, we 
have reasons to believe that it should be applicable for other 
cases of u(pi) and |ρ(pi, pj)| in the same parameter domain. The 
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former (internal) scan ensures the robustness of the optim
ization process for the changes of central values. The latter 
(external) scan ensures the optimization of the overall param
eter precision and correlation. Note also that in equation (8) 
the external ‘min’ operator is not to find the minimum among 
all the objectives, but to try to find the minimum of each 
objective. Obviously, equation (8) describes a multi-objective 
minimization problem that consists of M(M  +  1)/2 objectives 
for a M-dimensional vector p.

For a single-objective optimization problem, we attempt to 
find the best solution, which is typically absolutely superior 
to all other alternatives. However, in a multi-objective sce-
nario, such as the MCO problem described in equation  (8), 
it is almost impossible for us to find a solution that could 
simultaneous optimize all the objectives. A possible approach 
to solve the multi-objective problem is to find a set of solu-
tions, each of which could satisfy the objectives at an accept-
able level without being dominated by other alternatives. 
Mathematically, for a K-objective minimization problem with 
K-objective being {z1  =  g1(x), z2  =  g2(x), …, zK  =  gK(x)}, 
a solution x is said to dominate anther feasible solution y 
(x � y), if and only if, gi(x)  ⩽  gi(y) for all indices i  ∈  {1, 2, 
…, K} and gj(x)  <  gj(y) for at least on index j  ∈  {1, 2, …, 
K} [21, 22]. A solution is said to be Pareto optimal if it not 
dominated by any other solution in the solution space. The 
concept of the Pareto optimal solution and the dominated 
solution is schematically shown in figure 1(a). Obviously, for 
a Pareto optimal solution, an improvement in any objective is 
impossible without sacrificing at least one of the other objec-
tives. The set of all the feasible nondominated solutions in the 
solution space is referred to as the Pareto optimal set, and the 
set of the objective function values corresponding to a Pareto 
optimal set in the objective space is called the Pareto front. 
The aim of MOGA is to identify the solutions in the Pareto 
optimal set, namely the Pareto optimal solutions, for a multi-
objective optimization problem. To do this, MOGA adopts a 
mechanism called Pareto ranking to assign a proper fitness 
value to each candidate solution [20]. As schematically shown 
in figure 1(b), the Pareto ranking procedure is illustrated as 
follows: assigning rank 1 to the nondominated solutions and 
removing them from contention, then finding the next set of 
nondominated solutions and assigning rank 2 to them, and 
repeating this process until the entire population is ranked. 

For a minimization problem, a lower rank corresponds to a 
better solution. Many other Pareto ranking approaches have 
also been proposed over the past decades. One can consult 
[21, 22] for more details about MOGA. The specific imple-
mentation of MOGA in this paper was carried out by using 
the ‘gamultiobj’ function in MATLAB® (version R2014a, The 
MathWorks, Inc., Natick, MA, USA) running on a worksta-
tion equipped with double 2.0 GHz Intel Xeon CPUs.

3.  Results and discussion

To demonstrate the feasibility of MOGA in optimizing mea-
surement configurations for optical scatterometry, we take 
the spectroscopic MMS as an example. Compared with other 
scatterometry techniques, MMS can provide much more 
useful information about the sample by exploring the col-
lected 4  ×  4 Mueller matrix and has demonstrated a great 
potential in semiconductor manufacturing [6–9]. In spectro-
scopic MMS, it is the common practice to vary the wave-
length λ in a spectral range with the incidence angle θ and 
azimuthal angle φ fixed at specified values [6–9], where φ is 
defined as the angle between the plane of incidence and the 
periodic direction of the nanostructure under test. The MCO 
problem for spectroscopic MMS is to find the optimal combi-
nation of incidence and azimuthal angles, namely the vector 
a  =  [θ, φ]T, with which a higher measurement precision can 
be achieved. The nanostructure under test in this section is a 

Figure 1.  (a) Schematic of the Pareto optimal solution and the dominated solution for a multi-objective minimization problem,  
(b) schematic of the Pareto ranking based fitness assignment, where the number is the assigned rank of the corresponding solution.

Figure 2.  SEM cross-section image of the investigated Si grating.

Meas. Sci. Technol. 29 (2018) 045014



X Chen et al

5

1D Si grating [18, 19], whose SEM cross-section image is 
shown in figure 2. As can be observed, the cross-section of 
the Si grating is characterized by a symmetrical trapezoidal 
model with three structural parameters under measurement, 
including the top CD w1, the grating height h, and the bottom 
CD w2, namely the vector p  =  [w1, h, w2]T. Dimensions of the 
above three structural parameters obtained from figure 2 are 
about w1  =  350 nm, h  =  472 nm, and w2  =  383 nm, respec-
tively. The nominal period of the Si grating is 800 nm, which 
is fixed in the solution of the inverse problem. The Si grating 
is chosen for this study mainly due to its typical geometrical 
profile in optical scatterometry as well as the limited com-
putation resources in our lab. Although the investigated Si 
grating only has three structural parameters with relatively 
large dimensions under measurement, we should note from 
equation (8) that the proposed MCO method is not specific for 
the investigated sample but can be readily used for complex 
nanostructures with more and much smaller structural param
eters under measurement.

In the optimization, the incidence angle θ was varied from 
45° to 65°. Thanks to the geometrical symmetry of the inves-
tigated Si grating, we could restrict the range of azimuthal 
angles φ from 0° to 90°. The Mueller matrices of the Si 
grating were calculated by the rigorous coupled-wave anal-
ysis (RCWA) [24–26] for each p (p  ∈  Ω) and a in the spec-
tral range of 200–800 nm with an increment of 10 nm. In the 
calculation of the covariance matrix C by equation  (3), the 
variances of the Mueller matrix elements were obtained from 
a noise model given in our previous work [27], which were 
functions of the specific p and a. According to equation (8), 
we first scanned the values of the objectives u(w1), u(h), u(w2), 
|ρ(w1, h)|, |ρ(w1, w2)| and |ρ(h, w2)| for their maxima within a 

parameter domain Ω of w1  ∈  [345, 355] nm, h  ∈  [465, 475] 
nm, and w2  ∈  [378, 388] nm. Here, the parameter domain Ω 
was determined according to the structural parameter values 
measured by SEM. In the general case, the ranges of structural 
parameters, typically depending on the process tolerances, 
could be specified at  ±10% of their nominal dimensions 
as a rule of thumb [10]. The achieved maxima of the above 
objectives were then scanned within the prescribed ranges 
of incidence and azimuthal angles for the minimum of each 
objective. Here, the estimated uncertainties in the structural 
parameters all had a 95% confidence level (κ  =  2). Since there 
were six objectives in the MCO problem of the investigated Si 
grating, the Pareto front achieved by MOGA would be six-
dimensional. It was thus impossible to plot the whole Pareto 
front intuitively. Instead of showing the whole Pareto front, 
we exemplified several two-dimensional (2D) cross-sections 
of the achieved Pareto front for illustration.

Figure 3 presents some 2D cross-sections of the achieved 
Pareto front by MOGA, as indicated by the dotted lines. As 
can be noted from this figure, the presented 2D cross-sections 
of the achieved Pareto front show a large difference in compar-
ison with the Pareto front schematically shown in figure 1(a). 
In addition, there are also many dominated solutions in 
figure  3. This is because of the insufficient convergence of 
MOGA, and the algorithm was terminated due to the excess of 
the prescribed number of generations in implementation (the 
default number of generations was 100 times of the number 
of variables to be optimized in the implementation of MOGA 
by MATLAB, and here was 200 for the MCO problem of the 
investigated Si grating). Strictly speaking, the achieved Pareto 
front shown in figure 3 is not the true but a quasi or approxi-
mate Pareto front for the MCO problem of the investigated 

Figure 3.  2D cross-sections of the Pareto front achieved by MOGA for (a) u(w1) and u(h), (b) u(w1) and u(w2), (c) u(h) and u(w2),  
(d) |ρ(w1, h)| and |ρ(w1, w2)|, (e) |ρ(w1, h)| and |ρ(h, w2)|, and (f) |ρ(w1, w2)| and |ρ(h, w2)|.
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Si grating. Although we could increase the number of gen-
erations for the implementation of MOGA to approach to the 
true Pareto front, it would take more time to run the algo-
rithm. On the other hand, it is also unnecessary to achieve 
a globally optimal measurement configuration, suboptimal 
measurement configurations that could yield higher param
eter precisions and lower parameter correlations are enough 
in most cases. As will be illustrated below, the achieved quasi 
Pareto front shown in figure 3 can indeed deliver some useful 
suboptimal measurement configurations. It is worth pointing 
out that the suboptimal measurement configurations would be 
more beneficial to a complex nanostructure with more struc-
tural parameters under measurement, since a globally optimal 
measurement configuration for the complex nanostructure 
will take even more time to run the algorithm due to the more 
optimization objectives.

For the convenience of illustration, table  1 presents the 
Pareto optimal set and the Pareto front achieved by MOGA for 
the MCO problem of the investigated Si grating. Note that the 
shown 20 groups of data in table 1 are not artificially selected 
from the many different possible measurement configurations 
but are all of the solutions output by MOGA after its termina-
tion. The number of the solutions achieved by MOGA depends 
on the complexity of the optimization problem as well as 
the termination conditions assigned to MOGA, such as the 
number of generations, the limit of the average relative change 
in the best fitness function value, and the prescribed running 
time. The default setting for the termination conditions was 
adopted in the implementation of MOGA by MATLAB. Due 
to the insufficient convergence of MOGA, there are still many 
dominated solutions in the achieved Pareto optimal set. First, 
we try to distinguish these dominated solutions. As can be 
observed from table  1, the structural parameters w1 and w2 
have relatively stronger parameter correlation. As a rule of 

thumb, we remove the groups of data with |ρ(w1, w2)| larger 
than 0.7, which were shown with a gray background in table 1, 
since strong parameter correlation is apt to make the solution 
of the inverse problem in optical scatterometry fall into local 
optima. The remaining groups of data (Nos. 2, 5, 8, 11, 13, 18 
and 19) now all have small parameter correlation coefficients 
and also small parameter uncertainties, and the corresponding 
Pareto optimal solutions can be treated as the suboptimal 
measurement configurations. In addition, it can also be noted 
from table 1 that the measurement configuration of θ  =  62.5° 
and φ  =  82.5° in Group No. 2 shows a better performance 
than other remaining groups of data in terms of parameter 
uncertainties and also parameter correlation coefficients and 
can be chosen as the final optimal measurement configuration.

To verify the measurement configurations achieved by 
MOGA, Monte Carlo simulations were performed for the 
investigated Si grating. In the simulations, the incidence angle 
θ was varied from 45° to 65° with an increment of 2° and 
the azimuthal angle φ was varied from 0° to 90° also with an 
increment of 2°. The Mueller matrices of the Si grating were 
first calculated by RCWA for p  =  [350, 472, 383]T nm and 
each a in the spectral range of 200–800 nm with an increment 
of 10 nm. Random noise generated by the same noise model 
[27] as in the optimization was then added to the calculated 
Mueller matrices. Next, we extracted the structural param
eters of the Si grating from the simulated Mueller matrix 
spectra by solving the inverse problem described by equa-
tion  (2). Repeated simulations were performed at the same 
measurement configuration to estimate the uncertainties in the 
extracted parameters by

uMC(pi) = κ

√√√√ 1
NMC − 1

NMC∑
k=1

(p̂i,k − p̄i)
2,� (9)

Table 1.  The Pareto optimal set and Pareto front achieved by MOGA.

No.

Pareto optimal set Pareto front

θ (deg) φ (deg) u(w1) (nm) u(h) (nm) u(w2) (nm) |ρ(w1, h)| |ρ(w1, w2)| |ρ(h, w2)|

1 55.3 22.9 0.0630 0.0424 0.0678 0.0531 0.8900 0.1907
2 62.5 82.5 0.0225 0.0506 0.0276 0.3630 0.5872 0.2284
3 52.5 83.2 0.0346 0.0344 0.0360 0.1993 0.7977 0.0311
4 50.9 79.8 0.0402 0.0407 0.0396 0.2169 0.8279 0.0094
5 64.1 77.5 0.0296 0.0611 0.0270 0.4348 0.5894 0.2150
6 47.0 67.8 0.1202 0.0894 0.1085 0.1562 0.8180 0.0289
7 56.5 32.0 0.0648 0.0444 0.0683 0.1163 0.8993 0.1472
8 64.9 82.5 0.0246 0.0619 0.0283 0.4416 0.4924 0.2788
9 56.3 31.1 0.0634 0.0437 0.0680 0.0706 0.8974 0.1611
10 52.1 29.5 0.0711 0.0497 0.0758 0.1809 0.8752 0.0875
11 64.9 80.2 0.0286 0.0655 0.0303 0.4314 0.5386 0.2544
12 47.0 67.0 0.1286 0.0876 0.1143 0.1536 0.8390 0.0558
13 64.9 77.5 0.0293 0.0636 0.0270 0.4531 0.5769 0.2406
14 55.8 80.4 0.0298 0.0435 0.0304 0.2592 0.7351 0.0688
15 47.4 70.8 0.1105 0.0793 0.1015 0.1643 0.8122 0.0413
16 51.9 83.1 0.0390 0.0399 0.0428 0.2142 0.7929 0.0217
17 55.3 79.5 0.0310 0.0420 0.0305 0.2358 0.7518 0.0595
18 60.2 77.0 0.0305 0.0507 0.0293 0.3142 0.6727 0.1415
19 64.1 77.6 0.0340 0.0679 0.0325 0.4025 0.6278 0.1785
20 56.5 32.1 0.0649 0.0445 0.0683 0.1188 0.8994 0.1460
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where NMC represents the repeated times, p̂i,k represents the 
ith structural parameter extracted in the kth repeated simula-
tion, p̄i =

∑NMC
k=1 p̂i,k/NMC represents the mean of the ith struc-

tural parameter after NMC times of repeated simulations, and 
κ holds the same meaning as in equation (6) and also takes 
the same value as in the optimization. Note that here we use 
uMC(·) to denote the uncertainties in the extracted structural 
parameters estimated by Monte Carlo simulations to make a 
distinction with the approach given in equations  (3)–(6). It 
was found that the estimated uncertainties in the extracted 
structural parameters uMC(·) tended to convergence when 
NMC  =  120 for most of the measurement configurations. For 
some other measurement configurations where the estimated 
uncertainties were not fully convergent, much larger values 
of NMC were adopted to make sure the convergence. As an 
example, figures 4(a) and (b) present the variation of the esti-
mated uncertainties in the extracted structural parameters 
uMC(·) with respect to the repeated times NMC at two randomly 
selected measurement configurations of θ  =  53°, φ  =  18° and 
θ  =  63°, φ  =  88°, respectively.

Figure 5 presents the Monte Carlo simulated variation of 
uncertainties in the extracted structural parameters at dif-
ferent measurement configurations. As can be observed, the 
measurement configurations with larger incidence angles have 
much smaller parameter uncertainties. According to table 1, 
we know that all the measurement configurations achieved 
by MOGA locate in a region with θ  ⩾  47.0° and φ  ⩾  22.9°, 
which is in good accordance with the corresponding regions 
shown in figure 5 that have smaller parameter uncertainties. 
As for the selected suboptimal measurement configurations 
from table 1, which were marked with red circles and squares 
in figure 5, we can observe that they are all located near the 

regions in figure 5 that have the smallest parameter uncertain-
ties, especially for parameters w1 and w2. Although the meas-
urement configuration in Group No. 2 was chosen as the final 
optimal measurement configuration, we should note from 
figure 5 that the measurement configurations in other groups 
(Nos. 5, 8, 11, 13, 18 and 19) actually could also be adopted in 
the experiment. The result shown in figure 5 therefore clearly 
demonstrates the feasibility of MOGA in handling the MCO 
problem in optical scatterometry.

Figure 6 present the fitting result of the measured and cal-
culated best-fit Mueller matrix spectra of the Si grating at the 
selected optimal measurement configuration of θ  =  62.5° 
and φ  =  82.5° achieved by MOGA (Group No. 2 in table 1). 
Here, the measured Mueller matrix spectra were collected by 
using a ME-L ellipsometer (Wuhan Eoptics Technology Co., 
China), which employed a dual rotating-compensator system 
layout [8] and could provide full 4  ×  4 Mueller matrices in 
the spectral range of 200~1000 nm with a high precision. As 
can be observed from figure 6, the calculated best-fit Mueller 
matrix spectra exhibit good agreement with the measured 
spectra, and the fitting result yields extracted structural param
eters being w1  =  351.4  ±  0.69 nm, h  =  474.6  ±  1.23 nm, 
and w2  =  390.8  ±  0.72 nm, respectively. Here, the appended 
uncertainties (with a 95% confidence level) to the extracted 
structural parameters were estimated according to equa-
tion  (6) with only the error sources of Type A being taken 
into account. The difference between the extracted structural 
parameters and the SEM-measured values given at the begin-
ning of this section  might be induced by the native oxide 

Figure 4.  Variation of the estimated uncertainties in the extracted 
structural parameters with respect to the repeated times in 
Monte Carlo simulations at two randomly selected measurement 
configurations of (a) θ  =  53°, φ  =  18° and (b) θ  =  63°, φ  =  88°.

Figure 5.  Monte Carlo simulated variation of the uncertainties 
in the extracted structural parameters at different measurement 
configurations, where the data points marked with red circles and 
squares correspond to the measurement configurations in table 1 
shown with a white background. The data point marked with a 
red square corresponds to the optimal measurement configuration 
(Group No. 2 in table 1).
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layers coated on the Si grating, which typically have a thick-
ness of 1–3 nm.

We can note the difference between the optimal meas-
urement configuration achieved in this paper and that in our 
previous work in [18]. This is because of the different optim
ization goals between them. In this paper, we want to probe 
the optimal measurement configuration with which a higher 
measurement precision can be achieved, while in [18] the goal 
is to achieve a higher measurement accuracy. Nevertheless, 
it should be noted that the proposed MCO method based on 
MOGA in this paper can be readily extended by adding the 
objective function in [18] to equation  (8) so as to probe a 
measurement configuration with which higher measurement 
precision and accuracy can be achieved. In addition, it took 
about twenty days for the employed workstation in our lab to 
run the MOGA to obtain the result shown in table 1. However, 
the Monte Carlo simulations took more than four months at the 
same workstation for the result shown in figure 5. The more 
calculation time of the Monte Carlo simulations is because 
that all the measurement configurations need to be traversed, 
and moreover, a large amount of repeated calculations are 
required to be performed at each measurement configura-
tion to ensure the convergence of the estimated uncertainties 
in the extracted structural parameters. In comparison, in the 
proposed MCO method based on MOGA, the measurement 
configurations are efficiently evolved towards the optimum 
or suboptimal results based on some bio-inspired operators, 
such as mutation, crossover and selection. In addition, since 
MOGA is well-suited for parallel implementation, the parallel 
computation strategy can be adopted to further improve the 
computational efficiency of MOGA.

4.  Conclusions

In this paper, the MCO problem in optical scatterometry was 
first formulated as a multi-objective optimization problem and 

the MOGA was introduced to probe the optimal measurement 
configuration with which a higher measurement precision 
could be achieved. The MMS was exemplified to show the 
implementation of MOGA for optimizing the combination of 
incidence and azimuthal angles in measuring an Si grating. 
The comparison with the Monte Carlo simulation results 
clearly demonstrated the feasibility of MOGA in handling the 
MCO problem. Although the investigated Si grating only had 
a simple geometrical profile with three structural parameters 
under measurement, it should be noted that the proposed MCO 
method based on MOGA could be readily used for nanostruc-
tures with more complex geometrical profiles and more struc-
tural parameters under measurement in advanced technology 
nodes of semiconductor manufacturing. Moreover, the pro-
posed MCO method could also easily be extended by adding 
the deigned objectives to achieve the desired optimization 
goal. Therefore, the proposed MCO method is expected to 
provide a more general and practical means to solve the MCO 
problem in state-of-the-art optical scatterometry. It should 
also be pointed out that the main purpose of MCO in optical 
scatterometry is to provide a low-cost approach to achieve a 
higher measurement precision/accuracy for a given measuring 
instrument. However, if the measuring instrument inherently 
does not have enough sensitivity to a sample under test, it is 
difficult and even impossible to apply MCO to realize the 
measurement of the sample.
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