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In this paper, a generalizedmethod to efficiently represent the incident-angle-dependent mask transmittance func-
tion (MTF) of a thick mask is proposed. This method expands the MTF into a series expansion, which consists of a
set of predetermined basis functions weighted by a set of predetermined expansion coefficients. The predeter-
mined basis functions are independent of the incident angles and thus may be computed offline and stored, while
the expansion coefficients depend only on the incident angles and can be rapidly calculated online. Near-field
and optical image simulations of thick masks have demonstrated the excellent accuracy and superior speed
performance. © 2014 Optical Society of America

OCIS codes: (110.5220) Photolithography; (050.1960) Diffraction theory; (110.1758) Computational
imaging.
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1. INTRODUCTION
Photomask optical proximity correction (OPC) and inverse
lithography technology (ILT) have become indispensable
for improving the performance of lithography processes
[1–3]. Generally, an OPC or ILT process involves forward
modeling known as lithography simulation and an inverse pro-
cedure, which aims to optimize the mask layout to minimize
and compensate imaging distortion caused by optical proxim-
ity effects. Since the forward model is repeated many times in
the inverse optimization algorithm, fast and accurate optical
image simulation is highly desirable as one of the most critical
components in the forward modeling simulations.

Abbe’s and Hopkins’ are two commonly used formulations
of the optical imaging process for a partially coherent system
[4–6]. Abbe’s imaging formulation treats the source as consist-
ing of a number of incoherent point sources, and the total
optical image intensity is calculated as the superposition of
all the optical image intensity distributions produced by these
point sources. Hopkins’ imaging theory formulates the imag-
ing process through a fourfold integration with a kernel
function called the transmission cross coefficient (TCC).
Traditionally, the mask transmittance function (MTF) used
in Abbe’s and Hopkins’ models has been assumed to be a
binary mask consisting of “bright” areas with one value of
transmittance and “dark” areas with another value of transmit-
tance. This is known as the Kirchhoff thin mask approxima-
tion. Such a simplified approach of the MTFmay be applicable
as long as the width and length of the features are much larger
than the illumination wavelength of the lithography system.
However, the Kirchhoff assumption has become questionable
in the most advanced lithography technology nodes as the fea-
ture size on a photomask is comparable with or even smaller
than the illumination wavelength [7,8]. A more accurate thick
mask model is needed to take into account the vector nature

of the electromagnetic (EM) field and cope with incidence
angles of illumination.

In principle, the MTF can be computed accurately using
full-wave rigorous EM solvers including the finite-difference
time-domain (FDTD) method [9,10], the rigorous coupled-
wave analysis (RCWA) algorithm [11–13], and the waveguide
(WG) method [14]. The FDTD method employs a direct tem-
poral integration of the electromagnetic fields as described by
Maxwell’s equations. The RCWA and WG algorithms are
frequency-domain methods using Fourier or waveguide-mode
expansions for the EM field. There are also several approxi-
mation approaches, such as the geometrical theory of diffrac-
tion (GTD) [15,16], in which the total field scattered by an
object is evaluated by adding a “fringe” field generated by
electric and magnetic equivalent edge currents along the
edges of the scattered to the physical optics (PO). Although
able to improve the MTF accuracy, these thick mask solutions
are generally time-consuming for image simulations because
each solution incurs a high computational cost, is good for
only one incident angle, and has to be repeated many times
for different incident angles of a spatially extended source.
Adam et al. [17] presented a hybrid Hopkins–Abbe (HHA)
method that divides a source into sectors and associates each
sector with a constant MTF. However, such a stepwise
zeroth-order approximation lacks sufficient accuracy and it
is tricky to sectorize a given practical source in a systematic
and optimal fashion.

Recently, we proposed methods of cross triple correlation
(CTC) [18] and convolution-variation separation (CVS) [19] to
efficiently calculate the optical images for process variations.
Following the same principle of the CTC and CVS methodol-
ogies, we propose in the present work a series expansion
method for efficient representation and simulation of
incident-angle-dependent MTFs. The key to the method is
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to divide a spatially extended source into nonoverlapping
radiating regions each consisting of multiple point sources,
and associate to each radiating region an approximate MTF
independent of the location of points within the same radiat-
ing region for the zeroth-order approximation. Going beyond
the zeroth-order approximation, the MTF is represented by a
series expansion which consists of a set of predetermined ba-
sis functions weighted by a set of expansion coefficients. The
predetermined basis functions are independent of the incident
angles and thus may be computed offline and stored, while the
expansion coefficients depend only on the incident angles and
can be rapidly calculated online.

The remaining of this paper is organized as follows.
Section 2 presents the MTF representation method in optical
lithography and then details the formulation of the MTF-based
vectorial imaging process. Section 3 provides numerical
results to demonstrate the higher accuracy and faster perfor-
mance of the proposed method than the conventional EM
solvers. Finally, we draw conclusions in Section 4.

2. THEORY
A. Representation of MTFs
Figure 1 illustrates the geometry of a mask pattern. We use
two coordinate systems hereafter, a global coordinate
�x; y; z� and a local coordinate �e⊥; e∥� with e⊥ and e∥ denoting
the directions of the transverse electric (TE) and transverse
magnetic (TM) polarizations, respectively. Consider a mono-
chromatic plane wave propagating in the direction of k̂, where
k̂ � �α; β; γ�T is a vector of the direction cosines in the global
coordinate. The incident plane wave is modulated by a thick
mask and generates a field distribution just below the mask
called the mask near-field. When we compute the actual mask
near-field, it is convenient to use the spatial coordinate
�x; y; z� system. The mapping between the two coordinate
systems is
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where T is the 2 × 2 mapping matrix
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The third component Ez is determined by

Ez � −

1
γ
�αEx � βEy�: (4)

Consider a typical point source at �xs; ys� that emanates a
monochromatic plane wave propagating in the direction of
k̂s � �αs; βs; γs�T with wave vector ks � 2π�αs; βs; γs�T∕λ and
illuminates the thick mask, where λ is wavelength. The mask
near-field from an incident plane wave TE mode is described
by a 2 × 1 Jones vector �u11�x; ks�; u21�x;ks��T and that from a
TM mode is described by a vector �u12�x;ks�; u22�x; ks��T ,
where x � �x; y� is the spatial coordinate. For an incident
plane wave with polarization vector �Es

⊥; E
s
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a point source s, the mask near-field can be represented as
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where
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(6)

is called the mask transfer matrix (MTM) with each element
uij�x; ks� a scalar MTF. It is obvious that the scalar MTFs are
dependent on both the spatial coordinate x and the incident
angle ks.

A physical quantity being dependent on both a spatial co-
ordinate and other parameters can be represented by a sum of
multiple series expansion terms, with each term consisting of
one function dependent only upon the spatial coordinate and
another function dependent only upon the other parameters.
Such a method of separation of variables has been employed
in a variety of applications [20]. In the present context, each
MTF uij�x; ks� or simply denoted as u�x;ks� with incident an-
gle variations in Eq. (6) may be expanded into a Taylor series
about the αs and βs at α0s and β0s,

u�x;ks� �
XM
m≥0

XN
n≥0

�αs − α0s�m�βs − β0s�n

× ubasis
mn �x;k0s�e�i2π�αsx�βsy�∕λ�: (7)

Here, k0 � 2π�α0s; β0s; γ0s�T∕λ is a constant average wave vec-
tor for the radiating region, the basis MTFs fubasis

mn �x;k0s�g are
dependent only on x, while the mnth expansion coefficient
�αs − α0s�m�βs − β0s�n is dependent only on ks. The basis MTFs
can be computed directly or obtained by numerical fitting. A
set of MTFs corresponding to a set of different point sources
in the radiating region of interest can be calculated with a rig-
orous EM solver such as the RCWA. Then, these calculated
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Fig. 1. Geometry of a thick mask pattern.
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MTFs provide constraints on the unknown basis MTFs. If the
number of the calculated MTFs is equal to or larger than the
number of the unknown basis MTFs, the basis MTFs can be
solved using the least squares method. Note that it is
rather important to factor out the “carrier” phase factor
exp�i2π�αsx� βsy�∕λ�, so that the remaining “envelope” be-
comes slow-varying as the incidence angle changes.

As shown in Eq. (7), the basis MTFs have been separated
from the variable coefficients representing incident angles
and need to be calculated only once. Using the precalculated
basis MTFs, the MTFs under continuously changing incident
angles can be calculated rapidly and accurately by summing
up the series in Eq. (7). The basis MTFs remain constant and
reusable so long as the mask layout and topography do not
change. For the purpose of numerical calculation, all the
equations need to be discretized into matrix and vector ex-
pressions, and the series in Eq. (7) should also be truncated
to a finite series, which lead to approximation errors.
Fortunately, due to the rapid convergence of the series, the
truncation orders, denoted by M and N in Eq. (7), can usually
be quite small.

B. Vectorial Lithography Modeling Based on MTFs
This section describes a vectorial imaging model of the optical
lithography systems with the thick mask effect considered.
Recognizing the fact that the oblique incidence effects can
be naturally modeled using Abbe’s imaging model, we discre-
tize the spatially extended illumination source into point
sources on a Cartesian grid. Each point source generates
an oblique incident plane wave on the thick mask and produ-
ces a MTF, which in turn forms an image on the wafer after the
projection lens. The total wafer image is a superposition of all
the images produced by individual point sources. Figure 2
shows a typical vectorial imaging system, where the variables
at the source side will have a subscript s, the mask side var-
iables does not use subscript, and the image side variables use
subscript ′.

Two kinds of diffractions need to be considered in projec-
tion optics modeling. One is the diffraction from a flat screen
to a spherical surface, and the other is its reversal, namely, the
diffraction from a spherical surface to a flat surface near the

focus. The former describes diffraction from the mask near-
field to the entrance pupil of the projection lens in far-field,
and the latter describes the focusing effect from the exit pupil
to the wafer plane near the focus of the projection lens [21].

Once the mask near-field is known, the mask diffraction
vector in �x; y; z� coordinate can be calculated by conducting
the Fourier transform of the 2 × 1 mask near-field vector

Emask�α; β;ks� � Emask�f;ks� � F fEmask�x; ks�g; (8)

where F is the Fourier transform, f represents the spatial fre-
quency coordinate, and f � �f ; g� � �α∕λ; β∕λ�. The diffraction
to the entrance pupil, according to Fourier optics [22], can be
described using the Huygens–Fresnel principle as

Eent�α; β; ks� �
γ

jλ

e−ikr

r
Emask�α; β;ks�: (9)

The field in wafer plane expressed in terms of the field at
the exit pupil can be represented by a 2 × 1 vector matrix

Ewafer�α0; β0; ks� �
n0r0

jλγ0
eik

0r0Eext�α0; β0;ks�; (10)

where k � 2πn∕λ, k0 � 2πn0∕λ, n0 is the reflection indices at
the wafer side, �α; β; γ�T and �α0; β0; γ0�T are the direction cosine
of light propagation in the mask side and the wafer side,
respectively, and r and r0 are the radius of entrance pupil
and exit pupil, respectively.

For a projection lens with transverse magnification R, ac-
cording to the Abbe sine condition, the magnification scaling
between the entrance and exit pupils is given as

α

n0α0
� β

n0β0
� R: (11)

For an ideal lens, the conservation of energy requires that

jEent�α; β;ks�j2r2dΩ � n0jEext�α0; β0;ks�j2r02dΩ0; (12)

where the differential areas on each pupil are
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Fig. 2. Schematic of the vectorial imaging process in lithography systems.
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dΩ � dαdβ

γ
;

dΩ0 � dα0dβ0

γ0
: (13)

Substituting Eqs. (9)–(11), and (13) into Eq. (12) and ignoring
the constant phase term, Eq. (12) translates to

jEwafer�α0; β0;ks�j � B�γ; γ0�jEmask�α; β;ks�j; (14)

where

B�γ; γ0� � n0

R

�������
n0γ
γ0

s
: (15)

In practice, any projection lens has wavefront aberration
and polarization aberration, and the image plane may not
be exactly in focus. All these effects can be represented by
a scalar function or a 2 × 2 vector matrix [23]. Equation (14)
can be modified as

Ewafer�α0; β0;ks� � B�γ; γ0�P�α0; β0�A�α0; β0�V�α0; β0; γ0�
× ΘJ�α0; β0�ΘEmask�α; β;ks�; (16)

where Θ denotes vectorial multiplication and P�α0; β0� is a low-
pass filter function of projection lens

P�α0; β0� �
�
1;

������������������
α02 � β02

p
≤ NA

0; otherwise
; (17)

where A�α0; β0� is the wavefront aberration term, J�α0; β0� is the
polarization aberration term, and V�α0; β0; γ0� characterizes the
rotating factor in a high numerical aperture (NA) projection
lens when polarization light passes through the pupil [24,25]
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The parameter Vp⊥q or Vp∥q (with p, q � x or y) represents
the vectorial field transformation from a p component pro-
jected onto the TE or TM polarization and then projected onto
a q component at the image point. Consequently, the x, y, z
components of the wafer field distribution in the spatial
domain can be formulated as

Ewafer
p �x0;ks� � Hp�x0; x� ⊗ Emask

p �x;ks�; p � x; y; z;

(19)

Hp�x0; x� � F−1�B�γ; γ0�P�α0; β0�A�α0; β0�
× Vp�α0; β0; γ0�ΘJp�α0; β0��; (20)

where Emask
p �x; ks� are the x, y, z components of the mask

near-field Emask�x; ks� for each source radiating region.

Hp�x0; x� is called the pupil function of the projection lens,
F−1 denotes the inverse Fourier transform, and ⊗ denotes
convolution. Then the optical image contributed by the point
source s in the lth radiating region can be formulated as

Il�x0; ks� �
X

p�x;y;z

�Hp ⊗ Emask
p ��Hp ⊗ Emask

p ��; (21)

where � denotes transposed conjugate.
According to Abbe’s method, the subtotal optical image

Il�x0� for the lth radiating region can be calculated as

Il�x0� �
X
s

Il�x0;ks� �
X
s

X
p�x;y;z

�Hp ⊗ Emask
p ��Hp ⊗ Emask

p ��:

(22)

Substituting Eqs. (5)–(7) into Eq. (22), Il�x0� may be rewrit-
ten as

Il�x0� �
XM
m≥0

XN
n≥0

Cl;mnIl;mn�x0�; (23)
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X
s

�αs − α0 s�m�βs − β0 s�ne�i2π�αsx�βsy�∕λ�; (24)

Il;mn�x0� �
Xm
m0≥0

�
m

m0

�Xn
n0≥0

�
n

n0

� X
p�x;y;z

�Hp ⊗ Emask
p;�m−m0��n−n0��x;k0s���Hp ⊗ Emask

p;m0n0 �x; k0s���:
(25)

Here, Emask
p;mn�x;k0s� � Tubasis

mn �x; k0s��Es
⊥; E

s
∥�T is called the

mnth basis mask near-field for the x, y, z polarization states
of the lth radiating region, Il;mn�x0� is the mnth basis image of
the lth radiating region that is independent of incident angles
and thus may be computed offline and stored in advance,
while the expansion coefficients Cl;mn depend only on the
incident angles and can be rapidly calculated online.

Finally, we can obtain the total optical image I�x0� contrib-
uted by the entire source that contains all the nonoverlapping
radiating regions as

I�x0� �
X
l

Il�x0�: (26)

The above derivation of light field transformations is good
for a perfectly polarized illumination source or plane wave. In
practice, an illumination source may be partially polarized or
completely unpolarized. Without loss of generality, any polari-
zation state of each source pixel, represented by a 2 × 2
density matrix, can be always diagonalized, namely, the
polarization state can always be represented as an incoherent
sum of two mutually orthogonal, perfectly polarized light
fields. Consequently, the physical effects of any source pixel
can be simulated as an incoherent combination of at most two
perfectly polarized light fields.

The significance of Eqs. (23)–(26) is that the fixed mask-
pupil convolutions are fully separated from the variable
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coefficients representing the incident angles and can be pre-
computed, so that the optical image under a large range of
incident angle variations can be quickly calculated. If Ns is
the number of the discrete sampling points for a radiating
region, a rigorous EM solver such as the RCWA needs to gen-
erate Ns sets of MTFs. Each MTF may be convolved with a
pupil function and the convolution result may be squared
to yield an image. Let TMTF denote the computational
complexity (computing time) for simulating one MTF by
the rigorous EM solver, T image be the computational complex-
ity for obtaining an image from the MTF, δT be the extra com-
plexity for summing up the images from the Ns source
sampling points, and T rigorous be the total computational com-
plexity for simulating the subtotal optical image for the radiat-
ing region. It is usually the case that δT ≪ T image and
δT ≪ TMTF, and thus the following formula holds true for
all rigorous EM solvers

T rigorous � �TMTF � T image� × Ns: (27)

In contrast, the proposed method only needs to obtain a set of
basis MTFs, and then the subtotal optical image for the radiat-
ing region is calculated from these basis MTFs. Let Nb denote
the number of the basis MTFs used in Eqs. (22)–(26), and Nc

denote the number of calculations by the rigorous EM solver
such as the RCWA to directly compute or numerically fit these
basis MTFs. Apparently, Nb ≤ Nc, and thus the complexity
Toffline for offline computing the Nb basis MTFs is

Toffline � TMTF × Nc; (28)

and the complexity Tonline for online simulating the subtotal
optical image for the radiating region is

Tonline � T image × Nb × Ns: (29)

Here, the extra complexity for summing up the series
of Eq. (23) is neglected as it is much smaller than T image.
Consequently, the total complexity for the proposed method
including the offline and online calculations would be

Tproposed � Toffline � Tonline � TMTF × Nc � T image × Nb × Ns:

(30)

It is usually the case that T image ≪ TMTF and Nc ≈ Nb ≪ Ns,
leading to Tproposed ≪ T rigorous and indicating the apparently
superior scalability of the proposed method. In this case,
the proposed method is particularly desirable as the online
image simulation is much faster than the offline MTFs calcu-
lation, i.e., Tonline ≪ Toffline ≪ T rigorous.

3. NUMERICAL RESULTS
We performed numerical simulations by taking a CD � 45 nm
periodic contact-hole attenuated phase shift mask (AttPSM)
with 1∶1 duty ratio for an example, but the proposed method
is also suitable for nonperiodic thick masks. The phase
absorber material of the thick mask in this simulation is
assumed to be 68 nm MoSiON with the optical constants
(n � 2.343, k � 0.586) to provide a 180° phase shift and
6% transmission [26]. The illumination source for the litho-
graphic imaging system is set as a dipole configuration with

σout∕σin∕φ0 � 0.8∕0.6∕30°, the wavelength is λ � 193 nm, and
the NA is set as 1.35. All the simulations are performed on a
3.46 GHz HPZ800 workstation installed with MATLAB on
Windows 7 (64-bit). Considering the mask magnification fac-
tor R of the projection lens, the incident angle is defined as

θ � arcsin
σNA
R

; (31)

where σ is the distance of the point source from the center of
illumination source. The azimuth angle is defined as the angle
between the f axis and the vector from the center of source to
the point source, as shown in Fig. 3.

We divide the entire dipole source into four nonoverlapping
radiating regions. By symmetry considerations in our exam-
ple, we only need to calculate the basis MTFs of one region
such as region 1, and the basis MTFs for other three regions
are obtained immediately without additional computation. We
discretize region 1 into Ns � 10 × 10 � 100 point sources so
that the simulation results by using a rigorous EM approach
are sufficiently accurate and can act as a reference to evaluate
the performance of the proposed method. The direction co-
sines α0s and β0s of the constant average wave vector in
Eq. (7) for radiating region 1 are 0.239 and 0.131 rad,
respectively, and their corresponding incident and azimuthal
angles are θ � 13.7° and φ � 7.5°, respectively.

In the present work, the truncation orders of Eq. (7) are set
as M � 2 and N � 2, thus the basis MTFs for each radiating
region have 9 terms. However, since the values of two cubic
terms and one quartic term of the basis MTFs are quite small
and can be neglected, 6 basis MTFs up to the quadratic term
are enough to simulate the optical image. We select 8 point
sources from radiating region 1 and calculate their MTFs
by our in-house-developed RCWA solver with truncation
orders of the Rayleigh expansion for the RCWA solver as 8
[11–13]. This indicates that we set Nb � 6 and Nc � 8 in
Eqs. (28)–(30). Then we obtain the 6 basis MTFs by solving
a set of 8 equations with the least squares method. In the sim-
ulations, the diffraction orders calculated by the RCWA solver
are in the local coordinate �e⊥; e∥�. We use a set of T matrices

0

out

in

Point source

Region 2

Region 3

Region 1

Region 4

f

g

Fig. 3. Diagram of a dipole source configuration.
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that depend on each individual diffraction order to map from
the local coordinate �e⊥; e∥� to the global coordinate �x; y; z�.

Once the basis MTFs in Eq. (7) are obtained offline, the
MTFs and the mask near-field for an incident wave with
any different incident angle can be calculated quickly.
From Eqs. (5) and (6), the near-field x, y components
�Emask

x �x; ks�; Emask
y �x; ks��T for a point source s with TE

polarization are evaluated by T �u11�x; ks�Es
⊥; u21�x; ks�Es

⊥�T .
According to Eq. (7), the near-field can be expressed as

Emask
p �x;ks� �

XM;N

m;n≥0
�αs − α0s�m�βs − β0s�n

× Emask
p;mn�x; k0s�e�i2π�αsx�βsy�∕λ�: (32)

Figures 4 and 5 depict simulation results for a source point
with TE polarization in irradiating region 1 with αs �
0.274 rad and βs � 0.253 rad, or θ � 15.7° and φ � 14.5°. It
is obvious that Emask

p;mn�x; k0s� and Emask
p �x; ks� are complex

values due to the fact that the MTF function has different
“carrier” phase factors for different incident angles. Figures 6
and 7 show simulation results for a source point with TM
polarization in irradiating region 1 with αs � 0.235 rad and
βs � 0.112 rad, or θ � 13.5° and φ � 6.4°. The near-fields
for the point source s with TM polarization are evaluated
by T �u12�x;ks�Es

∥; u22�x;ks�Es
∥�T . From Figs. 4–7, it is clear that

the x and y components of the mask near-field are decom-
posed into different terms, with each term associated directly
to its corresponding basis MTFs. The sum of these terms gives
an approximation result of the total mask near-field, and this
is the fundamental principle behind the proposed method. If

we define the error as a normalized difference between the
result obtained by the proposed method and that by the
rigorous EM solver, we can observe from Figs. 4–7 that it suf-
fices to achieve the error of the order of 10−3 by truncating the
series in Eq. (7) up to the quadratic term.

To further demonstrate the accuracy of the proposed
method, the optical image of the CD � 45 nm thick mask is
calculated based on Eqs. (23)–(26). For the source as shown
in Fig. 3, as described above, only Nc � 8 times of RCWA cal-
culations are enough to calculate the Nb � 6 basis MTFs. The
refractive index at the image side is set as 1.4, the magnifica-
tion factor R of the projection lens is set as 4, and the dipole
source is set as TE polarization. For simplicity, no defocus and
lens aberration are considered. Figure 8 shows simulation re-
sults of the total optical image I�x0� and its decomposition into
different terms

Imn �
X
l

Cl;mnIl;mn�x0�; (33)

which are normalized by the largest intensity. Compared to
the result obtained by Ns � 100 times of RCWA calculations,
the normalized optical image error by the proposed method is
of the order of 10−3. The model accuracy is also characterized
by evaluating the CD errors of 32 and 45 nm through-pitch test
patterns at best focus condition. The through-pitch test pat-
terns used in this simulation are typical lithography patterns
that are basically one dimensional line-to-space patterns with
constant CDs and varying spaces. The photoresist effect is ap-
proximated by a hard threshold represented by a dashed line,
whose value is selected such that the CD is at the largest pitch.

Fig. 4. Simulation results of the near-field x component Emask
x �x;ks� and its decomposition into different terms Emask

x;mn�x;k0s� for a TE-polarization
point source with incident and azimuthal angles as θ � 15.7° and φ � 14.5°. Themnth basis mask near-field Emask

x;mn�x;k0s� is calculated by the basis
MTFs, and Emask

x �x; ks� is calculated by summing all the basis mask near-fields. The normalized error between the result obtained by the proposed
method and that by the rigorous EM solver is of the order of 10−3.
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Fig. 5. Simulation results of the near-field Emask
y �x; ks� and its decomposition into different terms Emask

y;mn�x;k0s� for a TE-polarization point source
with incident and azimuthal angles as θ � 15.7° and φ � 14.5°. The mnth basis mask near-field Emask

y;mn�x;k0s� is calculated by the basis MTFs, and
Emask
y �x; ks� is calculated by summing all the basis mask near-fields. The normalized error between the result obtained by the proposed method and

that by the rigorous EM solver is of the order of 10−3.

Fig. 6. Simulation results of the near-field Emask
x �x; ks� and its decomposition into different terms Emask

x;mn�x; k0s� for a TM-polarization point source
with incident and azimuthal angles as θ � 13.5° and φ � 6.4°. The mnth basis mask near-field Emask

x;mn�x; k0s� is calculated by the basis MTFs, and
Emask
x �x; ks� is calculated by summing all the basis mask near-fields. The normalized error between the result obtained by the proposed method and

that by the rigorous EM solver is of the order of 10−3.
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As shown in Fig. 9, the CDs calculated using the proposed
method are very close to the CDs calculated by the rigorous
RCWA solver with the CD errors less than 0.5 nm, indicating
that the proposed method is sufficiently accurate for many
practical applications.

We also compare the computational complexity of the pro-
posed method with that of the rigorous EM approaches. We
take the source shown in Fig. 3 and the thick mask described
above as an example. In this simulation, region 1 of the dipole
source is discretized into Ns � 5 × 5 � 25 point sources, and

the rigorous RCWA solver needs to generate and use 25 sets of
MTFs. The cost of generating each MTF using the RCWA is
TMTF � 4.1 s, and that for yielding an optical image from each
MTF is T image � 8.7 × 10−4 s. Consequently, it totally costs
T rigorous � �4.1� 8.7 × 10−4� × 25 � 102.5 s to produce the
subtotal optical image for region 1. In contrast, it only costs
Toffline � 4.1 × 8 � 32.8 s of offline calculation time using the
proposed method to obtain Nb � 6 basis MTFs by performing
Nc � 8 times of RCWA calculations. In particular, the online
simulation time to obtain the subtotal optical image for region

Fig. 7. Simulation results of the near-field Emask
y �x; ks� and its decomposition into different terms Emask

y;mn�x; k0s� for a TM-polarization point source
with incident and azimuthal angles as θ � 13.5° and φ � 6.4°. The mnth basis mask near-field Emask

y;mn�x; k0s� is calculated by the basis MTFs, and
Emask
y �x; ks� is calculated by summing all the basis mask near-fields. The normalized error between the result obtained by the proposed method and

that by the rigorous EM solver is of the order of 10−3.

Fig. 8. Simulation results of the optical image intensity and its decomposition into different image terms Imn � P
lCl;mnIl;mn�x0� by using the

proposed method. The mnth basis image Il;mn�x0� is calculated by the basis mask near-field, and I�x0� is calculated by summing all the image
terms Imn. The normalized error between the result obtained by the proposed method and that by the rigorous EM solver is of the order of 10−3.
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1 is even shorter, with a value of Tonline � 8.7 × 10−4 × 6 ×
25 � 0.13 s, indicating that the total time Tproposed �
32.8� 0.13 � 32.93 s using the proposed method is much
shorter than that using the rigorous RCWA solver. Moreover,
if region 1 of the dipole source is discretized into Ns � 10 ×
10 � 100 point sources to achieve more accurate results, the
speed advantage is more obvious, with Tproposed � 32.8�
0.52 � 33.32 s in contrast to T rigorous � �4.1� 8.7 × 10−4� ×
100 � 410.1 s. The superior scalability of the proposed
method is thus confirmed.

4. CONCLUSION
In this paper, an incident-angle-dependent thick mask model
has been proposed and demonstrated to enable fast thick
mask simulations without serious loss of accuracy. The
proposed efficient representation of MTFs for the vectorial
lithography model is easy to implement and yields superior
performance in optical image simulations.
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Fig. 9. CDs calculated by the rigorous EM solver and by the pro-
posed method for (a) CD � 32 nm and (b) CD � 45 nm line-to-space
patterns.
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