
 

 

Measurement configuration optimization for grating reconstruction by 
Mueller matrix polarimetry 

Xiuguo Chen
 a
, Shiyuan Liu

 *, a, b
, Chuanwei Zhang

 a
, and Hao Jiang

 c 
a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 

Wuhan 430074, China 
b State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University 

of Science and Technology, Wuhan 430074, China 
c Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington 

76019, USA 

ABSTRACT 
As a non-imaging optical measurement technique, spectroscopic Mueller matrix polarimetry (MMP) has been introduced 
for critical dimension (CD) and overlay metrology with recent great success. Due to the additional information provided 
by the Mueller matrices when the most general conical diffraction configuration is considered, MMP has demonstrated a 
great potential in semiconductor manufacturing. In order to make full use of the additional information provided by the 
Mueller matrices, it is of great importance for MMP to optimize the measurement configuration. In this paper, we 
introduce the norm of a configuration error propagating matrix as the cost function to optimize the measurement 
configuration for spectroscopic MMP with the aim of finding an optimal combination of fixed incidence and azimuthal 
angles, which provides higher measurement accuracy. The optimal measurement configuration can be achieved by 
minimizing the norm of the configuration error propagating matrix in the available ranges of incidence and azimuthal 
angles. Experiments performed on a silicon grating with a dual-rotating compensator Mueller matrix polarimeter have 
demonstrated the validity of the proposed measurement configuration optimization method. 
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1. INTRODUCTION 
The optics-based metrology tools have drawn more and more attention in semiconductor manufacturing due to their 
attractive advantages, such as low cost, non-destruction, and high throughput. Based on the conventional spectroscopic 
or angle-resolved ellipsometry, optical scatterometry, also referred to as optical critical dimension (OCD) metrology, has 
been widely used for critical dimension (CD) monitoring [1-3]. The success of optical scatterometry heavily depends on 
two key techniques. The first one involves the calculation of the optical signature from a diffractive structure (often 
grating) using accurate forward modeling approaches, such as rigorous coupled-wave analysis (RCWA) [4-6], finite 
element method (FEM) [7, 8], or finite-difference time-domain (FDTD) method [9]. Here, the general term signature 
contains the scattered light information from the diffractive structure, which can be in the form of reflectance, 
ellipsometric angles, Stokes vector elements, or Mueller matrix elements. The second one involves the reconstruction of 
the structural profile from the measured signature, which is a typical inverse diffraction problem with the objective of 
finding a profile whose calculated signature can best match the measured one. 

Recently, the Mueller matrix polarimetry (MMP) has been successfully introduced for CD and overlay metrology [10-
12]. Due to the rich information provided by the Mueller matrices when the grating lines are no longer perpendicular to 
the incidence plane but positioned at different azimuthal angles, MMP has demonstrated a great potential in 
semiconductor manufacturing. Theoretically, we can obtain all the Mueller matrices by continuously varying the 
wavelength, and the incidence and azimuthal angles to achieve high measurement precision and accuracy. However, in 
order to improve the efficiency of data acquisition and analysis, it is the common practice to choose a subset of the three 
measurement conditions from the available ranges. The combination of the selected wavelengths, and incidence and 
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azimuthal angles is defined as the measurement configuration. For example, we can fix the incidence and azimuthal 
angles in proper values while continuously vary the wavelengths in an available range. Similarly, we can also fix the 
wavelength and azimuthal angle in proper values while continuously vary the incidence angles in an available range. In 
OCD metrology, the former configuration is usually called the spectrally resolved or spectroscopic scatterometry, while 
the latter is called the (incidence) angle resolved or angular scatterometry. We can obtain a multitude of possible 
measurement configurations by making different combinations of the three measurement conditions. It is worth to point 
out that there are great discrepancies in the final measurement precision and accuracy in different configurations. 
Therefore, there is a need for MMP to choose an optimal one from the multitude of possible configurations, which 
provides the best measurement precision and accuracy. 

In the past decades, several approaches have been proposed to optimize the measurement configuration for conventional 
ellipsometric scatterometry. Logofatu proposed a SAF (Sensitivity Analysis for Fitting) method by defining the 
sensitivity as the estimated precision of the structural parameters to optimize the measurement configuration for angle-
resolved rotating-analyzer and angle-resolved phase-modulation scatterometers [13, 14]. Littau et al. investigated several 
optimal diffraction signature scan path selection techniques to improve scatterometry precision [15]. Gross et al. 
proposed an algorithm to determine the optimal measurement data sets by minimizing the condition numbers of the 
corresponding Jacobian matrices, which are defined as the partial derivatives of the diffraction signature with respect to 
the structural parameters [16]. Vagos et al. developed an uncertainty and sensitivity analysis package that can be used to 
guide the model and azimuthal angle optimization processes [17]. A recent study on spectroscopic MMP reported that 
the Mueller matrices obtained in some measurement configurations may help decorrelate the fitting structural parameters 
and make the solution of the inverse diffraction problem more robust [18]. They further proposed to choose the 
measurement configuration with small correlations and small estimated precision of the structural parameters [19]. 
However, it can be also observed from the previous works [13, 14, 19] that the extracted structural parameter values vary 
greatly in different measurement configurations. Typical minimization of the parameter correlations and estimated 
precision may achieve an optimal configuration with higher measurement precision but cannot make sure the final 
measurement accuracy. 

In this paper, we propose a measurement configuration optimization method for spectroscopic MMP with the aim of 
finding an optimal combination of fixed incidence and azimuthal angles, which provides higher measurement accuracy. 
The biases in the incidence and azimuthal angles, also named the configuration error, which typically arise from the 
mechanical positioning errors as well as the finite numerical apertures of the focusing lens in the measurement system 
[20, 21], will induce systematic errors in the extracted structural parameters and thus influence the final measurement 
accuracy. We first derive a generalized first order error propagating formula to reveal the mechanism of the error 
propagation in grating reconstruction. Based on the generalized error propagating formula, a systematic error 
propagating formula is further derived, which relates the systematic error propagated into the extracted structural 
parameter with those error sources such as the configuration error and the intrinsic systematic error in the measured 
Mueller matrices. According to the systematic error propagating formula, we introduce the norm of the configuration 
error propagating matrix, which reveals the maximum gain factor in the propagation of the configuration error, to assess 
the influence of the biases in the incidence and azimuthal angles on the measurement accuracy. The configurations with 
small matrix norms imply minor influence of the configuration error on final measurement accuracy. Then we attempt to 
optimize the measurement configuration by minimizing the norm of the configuration error propagating matrix in the 
available ranges of incidence and azimuthal angles. 

The reminder of this paper is organized as follows. Section 2 first introduces the measurement setup for the grating 
sample, including the configuration of a dual-rotating compensator Mueller matrix polarimeter as well as the geometric 
structure of the silicon grating sample. The inverse problem in grating reconstruction by MMP is also briefly revisited. 
Then the proposed measurement configuration optimization method is illustrated in detail. Section 3 provides the 
optimization results and the comparison with experimental results. Finally, we draw some conclusions in Section 4. 

2. METHODS 

2.1 Measurement setup for the grating sample 

The experimental setup used in this paper is a dual-rotating compensator Mueller matrix polarimeter (RC2 ellipsometer, 
J. A. Woollam Co.) with in-house forward modeling software based on RCWA [4-6]. As schematically shown in Fig. 
1(a), the system configuration of the RC2 ellipsometer in order of light propagation is PCr1SCr2A, where P and A stand 
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for the fixed polarizer and analyzer, Cr1 and Cr2 refer to the 1st and 2nd frequency-coupled rotating compensators, and S 
stands for the sample. With the light source used in the RC2 ellipsometer, the wavelengths available are in the 
193~1690nm range, covering the spectral range of 200~800nm with a step of 5nm used in this paper. In this dual-
rotating compensator configuration, we can obtain the full Mueller matrix elements of the sample, see Refs. [22, 23] for 
details on the data reduction. 

The investigated sample is a one-dimensional silicon grating, whose scanning electron microscope (SEM) cross-section 
image is shown in Fig. 1(b). The etched Si grating is chosen for this study due to its long term dimensional stability, 
higher refractive index contrast and relevance to the semiconductor industry. Optical properties of silicon are taken from 
Ref. [24]. As depicted in Fig. 1(b), cross section of the Si grating is characterized by a symmetrical trapezoidal model 
with top critical dimension TCD, sidewall angle SWA, line height Hgt, and period pitch. Dimensions of the structural 
parameters obtained from Fig. 1(b) are TCD = 350nm, Hgt = 472nm, and SWA = 88°. In the following experiments, 
structural parameters of the Si grating that need to be extracted include TCD, Hgt and SWA, while the grating period is 
fixed at its nominal dimension, i.e. pitch = 800nm. 

 
(a) 

 
(b) 

Figure 1. (a) Basic scheme of the dual-rotating compensator Mueller matrix polarimeter; (b) SEM cross-section 
image of the investigated silicon grating. 

2.2 The inverse problem in grating reconstruction 

Without loss of generality, we denote the structural parameters under measurement as an M-dimensional vector x = [x1, 
x2, …, xM]T, where the superscript “T” represents the transpose, and x1, x2, …, xM can be the linewidth, sidewall angle, 
thickness of a grating sample. The vector a = [θ, φ]T denotes the combination of fixed incidence angle θ and azimuthal 
angle φ, and the given values of a in the parameter extraction is denoted as a*. The 2χ  function is applied to estimate 
the fitting errors between the measured and calculated Mueller matrix elements meas

,ij km  and calc
, ( , )x aij km ∗ , which is 

defined as 

 
2meas calc

, ,2

1 , ,

( , )
,

( )
x aN

ij k ij k

k i j ij k

m m
m

λ

χ
σ

∗

=

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑∑  (1) 

where k denotes the spectral point from the total number Nλ. Indices i, j show all the Mueller matrix elements except m11. 
,( )ij kmσ  is the standard deviation associated with ,ij km . The optimal estimation of the structural parameters under 

measurement can be achieved by solving 

 
2meas calc
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1 , ,

( , )
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x a
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N
ij k ij k
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∗
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For clarity, the measured Mueller matrix element meas
,ij km in Eqs. (1) and (2) is marked as yl with three indices i, j and k 

lumped into a single index l. The calculated Mueller matrix element calc
, ( , )x aij km ∗  is correspondingly marked as 

( , )x alf
∗ . Therefore, Eq. (1) can be simply rewritten as 
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where lw  is the weighting factor and is given by 21 ( )l lw yσ=  and 15N Nλ= . Equation (3) can be further written as 
a matrix expression 

 
T2 ( , ) ( , ) ,y f x a W y f x aχ ∗ ∗⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦  (4) 

where W is an N × N diagonal matrix with diagonal elements lw . 

2.3 Measurement configuration optimization 

We assume that the function f(x, a) is sufficiently smooth and can be Taylor series expanded about ˆ( , )x a∗  

 ˆ ˆ( , ) ( , ) ( ) ( ),x af x a f x a J x x J a a∗ ∗≈ + ⋅ − + ⋅ −  (5) 

where Jx and Ja are the N × M and N × 2 Jacobian matrices, respectively, whose elements are given by 

 [ ]
ˆ ,

( , )
,x

x x a a

x a
J i

ij
j

f
x ∗= =

∂
=

∂
 (6a) 

 [ ]
ˆ ,

( , )
.a

x x a a

x a
J i

ij
j

f
a ∗= =

∂
=

∂
 (6b) 

According to Eq. (5), we will have 

 0 0 ˆ( , ) ( , ) ,x af x a f x a J x J a∗≈ + Δ + Δ  (7) 

where 0 ˆx x xΔ = −  and 0a a a∗Δ = − . x0 and a0 are the true values of x and a, respectively. The measurement vector y 
will be the sum of the true signal 0 0( , )f x a  and a deterministic offset vector yμΔ  and a random vector yεΔ , i.e., 

 0 0( , ) ,y yy f x a μ εΔ Δ= + +  (8) 

where the vectors yμΔ  and yεΔ  represent the intrinsic systematic and random errors in vector y induced by the 
measurement system. 

Inserting Eqs. (7) and (8) into Eq. (4), we will find, near the optimal estimation that 

 
T2 T

min ˆ ˆ( , ) ( , ) [ ] [ ].x a y y x a y yy f x a W y f x a J x J a μ ε W J x J a μ εχ ∗ ∗
Δ Δ Δ Δ⎡ ⎤ ⎡ ⎤= − − ≈ Δ + Δ + + Δ + Δ + +⎣ ⎦ ⎣ ⎦  (9) 

By taking the derivatives of both sides of Eq. (9) with respect to each element of x, we can derive 

 0.x a y yJ x J a μ εΔ ΔΔ + Δ + + ≈% % % %  (10) 

where 1 2
x xJ W J=% , 1 2

a aJ W J=% , 1 2
y yμ W μΔ Δ=% , and 1 2

y yε W εΔ Δ=% . We call Eq. (10) the generalized first-order 
error propagating formula, which relates the error xΔ  in x̂  with those error sources such as the configuration error 

aΔ  in the given a∗  and the intrinsic systematic and random errors yμΔ  and yεΔ  in the measurement vector y. 
Assuming the random vector yεΔ  has zero mean, we can derive the following equation by taking the mean values of 
both sides of Eq. (10), i.e., 

 ,x x a x yμ x J J a J μ+ +
Δ Δ= Δ ≈ Δ +% % % %  (11) 
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where T 1 T( )x x x xJ J J J+ −=% % % %  is the Moore-Penrose pseudo-inverse of the matrix xJ% . We call Eq. (11) the systematic error 
propagating formula, which describes how the configuration error aΔ  in vector a and the systematic error yμΔ  in 
vector y lead to the systematic error xμΔ  in x̂ . According to Eq. (11), we can derive the relation that 

 ,x x a x yμ J J a J μ+ +
Δ Δ≤ ⋅ Δ + ⋅% % % %  (12) 

where the notation ⋅  represents the lp (p = 1, 2, ∞) norm [25]. x aJ J+% %  and xJ+%  represent the maximum gain factors 

in the propagation of aΔ  and yμΔ . 

If we assume that the measurement system is well calibrated and the systematic error yμΔ  in y is a small quantity, thus 
the systematic error xμΔ  in x̂  can be deemed to be mainly induced by the configuration error aΔ . The configuration 
error aΔ  typically arises from the mechanical positioning errors and the finite numerical apertures of the focusing lens 
in the measurement system [20, 21], which is approximately unvaried with the measurement configurations. However, 
the matrix x aJ J+% % , which we call the configuration error propagating matrix, is a function of the measurement 

configuration. Similarly, x aJ J+% %  is also varied with the measurement configurations. Hence, we obtain different 

systematic errors xΔ  in x̂  in different measurement configurations. According to Eq. (11), we can estimate the 
systematic error xΔ  if we have known the configuration error aΔ  as well as the systematic error yμΔ  in y. Thus, we 
can adjust the optimal estimation x̂  by 0ˆ ˆ xx x μΔ= + , which will be closer to the actual parameter values x0, and 
therefore improve the accuracy of parameter estimation. However, the configuration error aΔ  and the systematic error 

yμΔ  in y are sometimes difficult to obtain, which will make this adjustment unfeasible. In this case, we can optimize the 
measurement configuration by  

 ( ) ( )opt opt ,
, min max .x ax

J J
θ ϕ

θ ϕ +

∈Θ ∈Φ ∈Ω
⎡ ⎤= ⎣ ⎦

% %  (13) 

Equation (13) needs some interpretations. Considering the local properties of the matrices xJ%  and aJ%  as described in 

Eq. (6), which is defined at x̂  and a*, we first scan the values of x aJ J+% %  in the given parameter domain Ω for the 

maximum. Then we scan all of the maximal values of x aJ J+% %  in the ranges of incidence and azimuthal angles (Θ and 
Φ) for the minimum. The combination of incidence and azimuthal angles corresponding to this minimum will be the final 
optimal measurement configuration. The former scan ensures that the measurement configuration is stable for the 
changes of structural parameters. The latter scan ensures the optimization of the overall measurement accuracy. 

3. RESULTS 
The procedure of measurement configuration optimization is time-consuming, and it is necessary to reduce the search 
domain to minimize the calculation time. Since a regular grating has rotation symmetry C2z [26], its Mueller matrices 
remain unchanged after 180° rotation in the azimuthal angle. In addition, the grating also has reflection symmetry 
relative to the plane that perpendicular to the direction of grating period. In other words, replacing φ with −φ changes 
nothing. Therefore, we can restrict the range of azimuthal angles to 0~90°. The incidence angle is varied from 60° to 65° 
in the experiment. When applying RCWA to calculate the Mueller matrices, the number of retained orders in the 
truncated Fourier series is 12, and the Si grating as shown in Fig. 1(b) is sliced into 15 layers along the vertical direction. 

In addition, the systematic error propagating formula as described in Eq. (11) is the foundation for the proposed 
measurement configuration optimization method. Thus, it is necessary to validate Eq. (11) first before optimizing the 
configuration. In order to validate this formula, we first calculate the spectral Mueller matrices for a given group of 
structural parameters x and in a specific measurement configuration a* + Δa. The calculated Mueller matrices are then 
treated as the “measured” Mueller matrices in the process of parameter extraction. When extracting the structural 
parameters from the “measured” Mueller matrices, the measurement configuration is fixed at a*. It is certain that there 
will be a bias δx in the extracted parameters x̂ , i.e. ˆx x xΔ = − , which will be the systematic errors induced by the 
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configuration error δa. The “measured” systematic errors are then compared with those estimated by Eq. (11). The 
Levenberg-Marquardt (LM) algorithm [27] is applied to extract the structural parameters from the “measured” Mueller 
matrices, which typically converges rapidly to the global minimum if suitable initial values are provided. 

Figure 2 depicts the comparison between the “measured” systematic errors in the extracted structural parameters TCD, 
Hgt and SWA with those estimated according to Eq. (11). The given parameter values in Fig. 2 are TCD = 350nm, Hgt = 
472nm, and SWA = 88°, which are the results measured by SEM. The incidence angle is fixed at 65°, and the azimuthal 
angles are varied from 0° to 90° with a step size of 15°. In Fig. 2 (a) and (b), the biases in the incidence and azimuthal 
angles are 1.0° and 1.5°, respectively. In Fig. 2(b), we further add systematic errors yμΔ  into the generated “measured” 
Mueller matrices, which arise from the inaccurate calibration of the angles of the transmission axes of the fixed polarizer 
and analyzer P and A, inaccurate calibration of the angles of the fast axes CS1 and CS2 and phase retardances δ1 and δ2 of 
the two compensators. The given offsets in P, A, CS1, CS2, δ1 and δ2 in Fig. 2(b) are ΔP = 0.5°, ΔA = 0.5°, ΔCS1 = 0.5°, 
ΔCS2 = 0.5°, Δδ1 = 1.0°, and Δδ2 = 1.0°, which is the typical level of a well calibrated dual-rotating compensator MMP. 
As can be observed from Fig. 2, the estimated systematic errors show a good agreement with those “measured” ones, 
which demonstrates the validity of the derived systematic error propagating formula given by Eq. (11). In addition, we 
can also observe from Fig. 2(b) that the configuration error aΔ  has greater influence on the systematic errors of the 
extracted structural parameters than the systematic error yμΔ  in the measured Mueller matrix elements. Therefore, we 
can focus on the configuration error aΔ  in the following experiments and use the norm of the configuration error 
propagating matrix x aJ J+% %  as the cost function to further optimize the measurement configuration for MMP. 
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Figure 2. Comparison between the “measured” systematic errors in the extracted structural parameters TCD, 
Hgt and SWA with those estimated systematic errors by Eq. (11). The systematic errors in the extracted 
structural parameters are induced (a) only by the configuration error aΔ  and (b) by the configuration error 

aΔ  (marked with upward triangles) as well as the intrinsic systematic error yμΔ  in the “measured” Mueller 
matrices (marked with downward triangles). 

The l2 norm of the configuration error propagating matrix x aJ J+% %  was calculated in a parametric domain, centered on 
the results measured by SEM as shown in Fig. 1(b), with TCD varied from 345nm to 355nm, Hgt from 465nm to 475nm, 
and SWA from 87° to 88°. The incidence and azimuthal angles are varied from 60° to 65° and from 0° to 90°, 
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respectively, both with a step size of 5°. In the given parametric domain, the maximal norms x aJ J+% %  calculated with 
different measurement configurations are presented in Fig. 3. As can be observed from Fig. 3, the norm of the 
configuration error propagating matrix x aJ J+% %  calculated with the incidence angle θ = 65° and azimuthal angle φ = 70° 
is smaller than those calculated with other configurations. It is expected that the extracted structural parameters of θ = 
65° and φ = 70° will have smaller systematic errors and thus will be more accurate than other measurement 
configurations. 
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Figure 3. The l2 norms of the configuration error propagating matrix x aJ J+% %  calculated in different 
measurement configurations. 

In order to validate the above predicted optimal measurement configuration, the Si grating sample as shown in Fig. 1(b) 
was measured by the RC2 ellipsometer in incidence angles θ = 60° and θ = 65° and in azimuthal angles varied from 0° to 
90° with a step size of 5°. The structural parameters of the Si grating sample extracted by the LM algorithm are 
compared with the results measured by SEM, and the differences between them were treated as the systematic errors in 
the extracted structural parameters. The l2 norms of the systematic errors xμΔ  in the extracted structural parameters 
were then calculated for the corresponding measurement configurations, as shown in Fig. 4. An examination of Fig. 4 
shows that the experimental results are not in rigorous agreement with the theoretical predictions given in Fig. 3, which 
maybe because the relation given by Eq. (12) is not a rigorous equality but an inequality. However, we do have 
qualitative agreements between the theoretical predictions and the experimental results. Importantly, the optimal 
measurement configuration associated with the minimal norm of the systematic errors xμΔ  in the extracted structural 
parameters given in Fig. 4 is in accordance with the theoretical prediction of the optimal measurement configuration 
given in Fig. 3. Figure 5 illustrates the fitting result of the measured and calculated Mueller matrices of the Si grating 
sample with the optimal measurement configuration θ = 65° and φ = 70°. The extracted structural parameters associated 
with Fig. 5 are TCD = 355.1nm, Hgt = 467.7nm, and SWA = 87.9°. As can be observed from Fig. 5, the Mueller matrices 
calculated with the optimal measurement configuration show a good agreement with the measured Mueller matrices. 
Therefore, we can conclude that the norm of the configuration error propagating matrix x aJ J+% %  can be applied as the 
cost function to optimize the measurement configuration for MMP to achieve higher measurement accuracy. 
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Figure 4. The l2 norms of the systematic errors xμΔ  in the structural parameters of the Si grating sample 
extracted in different measurement configurations. 
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Figure 5. Fitting result of the measured and calculated Mueller matrices of the Si grating sample. The incidence 
and azimuthal angles are θ = 65° and φ = 70°, respectively. 
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4. CONCLUSIONS 
The biases in the incidence and azimuthal angles, also named the configuration error in this paper, will induce systematic 
errors in the extracted structural parameters and thus influence the final measurement accuracy. We have derived a 
generalized first order error propagating formula, which reveals the general mechanism of error propagation in grating 
reconstruction. Based on the generalized error propagating formula, we then derived a systematic error propagating 
formula, which relates the systematic error propagated into the extracted structural parameter with those error sources 
such as the configuration error and the intrinsic systematic error in the measured Mueller matrices. According to the 
systematic error propagating formula, we introduced the norm of the configuration error propagating matrix to assess the 
influence of the biases in the incidence and azimuthal angles on the measurement accuracy. The optimal measurement 
configuration with higher measurement accuracy has been achieved by minimizing the norm of the configuration error 
propagating matrix in the available ranges of incidence and azimuthal angles. Experiments performed on a silicon grating 
with a dual-rotating compensator Mueller matrix polarimeter have demonstrated the validity of the proposed 
measurement configuration optimization method. 
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