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ABSTRACT 
In most cases of optical critical dimension (OCD) metrology, when applying rigorous coupled-wave analysis (RCWA) to 
optical modeling, a high order of Fourier harmonics is usually set up to guarantee the convergence of the final results. 
However, the total number of floating point operations grows dramatically as the truncation order increases. Therefore, it 
is critical to choose an appropriate order to obtain high computational efficiency without losing much accuracy in the 
meantime. In this paper, the convergence order associated with the structural and optical parameters has been estimated 
through simulation. The results indicate that the convergence order is linear with the period of the sample when fixing 
the other parameters, both for planar diffraction and conical diffraction. The illuminated wavelength also affects the 
convergence of a final result. With further investigations concentrated on the ratio of illuminated wavelength to period, it 
is discovered that the convergence order decreases with the growth of the ratio, and when the ratio is fixed, convergence 
order jumps slightly, especially in a specific range of wavelength. This characteristic could be applied to estimate the 
optimum convergence order of given samples to obtain high computational efficiency. 
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1. INTRODUCTION 
Generally, optical critical dimension (OCD) metrology consists of two parts in measuring the dimension of 
subwavelength structures, i.e., the forward modeling and the inverse problem1. Starting from Maxwell’s equations, either 
in integrated or differential form, the electric and magnetic fields can be obtained in the forward modeling problem, from 
which we can further calculate the reflectivity or ellipsometric parameters2-4. Then in the inverse problem, the measured 
optical parameters are obtained and utilized to fit the simulation parameters using regression algorithms5. The forward 
modeling is repeated until the required accuracy is obtained and the structural parameters are measured to provide the 
best fit. Because this process takes time, it is highly desirable to improve the speed of optical modeling to achieve the 
greatest efficiency in OCD metrology. 

Currently, the rigorous coupled-wave analysis (RCWA) method has been widely used in OCD metrology for the optical 
modeling of periodic structures2, 6. When implementing this technique, the permittivity of the grating region is first 
expanded into a series of Fourier harmonics, then the electromagnetic field is expressed as a Fourier expansion with a 
corresponding order of harmonics. In most cases when applying the RCWA technique for optical modeling, a high order 
of the Fourier harmonics is set up to make sure of the final convergence. However, the total number of floating point 
operations has a cubic relationship with the harmonic order7. This indicates that the technique will become rather time 
consuming if the expanded order is too high. Therefore, it is of great importance to choose an appropriate order to obtain 
high computational efficiency while maintaining sufficient accuracy. 

In this paper, we aim at discovering the relationship between the convergence order and the structural or optical 
parameters, and providing guidance for the selection of an appropriate order when applying the RCWA technique. With 
a brief introduction of the RCWA theory in Section 2, we will present several simulations performed under different 
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structural or optical conditions for binary rectangular groove gratings in Section 3. Finally, the estimations of the 
convergence order will be made for a few samples according to the observations. 

2. THEORY FOR THE RIGOROUS COUPLED-WAVE ANALYSIS 
Without losing the generality of the optical modeling, a binary rectangular groove grating is selected in our simulation, 
and its geometry is depicted in Fig. 1. Any multilayer structures with arbitrary profiles can be investigated on this basis8. 
A linearly monochromatic light is launched into the sample at a polar angle θ derived away from the z axis, and an 
azimuthal angle Φ between the plane of incidence and the grating vector along the direction normal to the walls. The 
angle ψ from the electric vector to the plane of incidence is called a polarized angle. Generally, this problem is named 
conical diffraction. When Φ approaches zero, which is called planar diffraction, the E-vector is normal (ψ=90°) and 
parallel (ψ=0°) to the plane of incidence for transverse electric (TE) and transverse magnetic (TM) polarization, 
respectively. The wavelength of the illuminated light in free space is λ0. The refractive indices of superstrate and 
substrate are n1 and n2, respectively. The periods Λ are made up of ridges and grooves, in which the refractive indices are 
nrd and ngr, respectively. The materials of the resist and substrate layers are Si3N4 and silicon, respectively. f is the 
fraction of the grating period occupied by the resist, with the depth d along the z axis. 

 
Figure 1. Geometry of the binary rectangular groove grating. 

For TE polarization, the incident normalized electric field can be expressed as 

 ( )[ ]zxnjkE yinc θθ cossinexp 10, +−= , (1) 

where k0=2π/λ0. The Rayleigh expansions of the electric field of the reflected and transmitted region are 

 ( )[ ]∑ −−+=
i

zixiiyincy zkxkjREE I,,I, exp , (2a) 

 ( )[ ]{ }∑ −+−=
i

zixiiy dzkxkjTE ,III,I exp , (2b) 

respectively, where kxi can be determined from the Floquet condition and is given by 

 ( )[ ]Λ−= /sin 010 λθ inkkxi , (3) 

and where km,zi is calculated from the obtained k0 and kxi 
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It is always necessary to have in mind the physical meaning that the ith wave is propagating when k0nm>kxi, and 
evanescent when kx>k0nm. Ri and Ti are the normalized electric-field amplitudes of the ith reflected and transmitted wave, 
respectively. 

The magnetic field in the reflected and transmitted region can be obtained from Maxwell’s equations 

 ΕH ×∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ωμ
j , (5) 

where μ is the permeability of the region and ω is the angular optical frequency. 

In the grating region (0<z<d), equation (5) can be simplified in a scalar form as 
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where 0∈  is the permittivity of free space, and ε is the permittivity of the grating region and can be expanded in a Fourier 
form. The electric field along the y-axis and magnetic field along the x-axis may also be expressed with a Fourier 
expansion in terms of the space-harmonics field as 
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where Syi(z) and Uxi(z) are the normalized amplitudes of the ith space-harmonic fields. Substituting equation (7) into 
equation (6), and eliminating Hz, we are able to obtain the coupled-wave equations as follows 
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or, in a matrix form 
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where z´=k0z, and A=Kx
2-E. By eliminating Ux, equation (9) can be reduced to 

 ( )[ ] [ ][ ]EAS =′∂∂ 22 / zy , (10) 

then the eigenvalue decomposition is able to be carried out more efficiently. 

By setting up boundary value conditions of the tangential electric and magnetic field components, the coupled-wave 
equations can be solved. With the normalized electric-field amplitudes of the reflected wave, reflectivity in each 
diffraction order can be calculated. 

Formulations of rigorous coupled-wave analysis under TM polarization and conical diffraction could be derived in a 
similar way. Note that during the expansion of permittivity in the coupled-wave equations, the inverse rule should be 
applied in place of Laurent’s rule to achieve a faster convergent result, according to Li’s viewpoint9. Those formulation 
details are omitted here. 
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3. SIMULATIONS AND ANALYSIS 
Before introducing the simulation results, it is important to point out that all the structural and optical parameters will 
affect the convergence to a greater or less degree. We attempted to achieve repeatability and validity of the properties 
handled here, however, conceivable simulations could hardly be exhausted since the combinations of the parameters are 
extremely numerous. Multiple simulations have been carried out using different optical and structural parameters, 
especially the ones in common use, with only a small number of them listed here. Given the generality of the 
characteristics we observe, both the planar diffraction (TE and TM polarization) and conical diffraction have been taken 
into account. Consequently, it is considered that the characteristics listed below may be applicable in many cases, at least 
in a specific range. 

3.1 Simulation under varied grating period 

By varying the period Λ while fixing other structural parameters (including f and d) and optical parameters (including λ, 
θ, Φ and ψ), we are able to obtain some meaningful results as shown in Fig. 2. The graph shows that the convergence 
orders have an approximately linear correlation with the periods. They are fit by linear functions and clearly 
demonstrated that the convergence orders calculated under different periods are distributed around the linear regression 
lines. Furthermore, the linear correlations under conical diffraction are not as accurate as those under TM polarization, 
which is also observed in most of our simulations not listed here. 
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Figure 2. The convergence orders calculated in varied period Λ, while other parameters are fixed in f=0.5, d=0.2μm, 

λ=0.5μm. (a) TE polarization (θ=10°), (b) TM polarization (θ=10°), and (c) conical diffraction (θ=10°, φ=30°, 
ψ=45°). The reflectivities calculated with the truncation order of 200 are considered as references, and 
convergence orders are picked up on an error bound of 0.2%. This indicates that the error corresponding to the 
reference is no more than 0.2% if any order higher than the convergence order is selected. 

Considering the general linearity found above, we performed other simulations with different structural and optical 
parameters, such as f, d, and θ. For each variable, three values are selected for the test. Influences for conical diffraction 
are shown in Fig. 3. The results indicate that the linearity exists in vast structures and optical configurations, rather than 
merely limit to a specific system. 
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Figure 3. Simulations under (a) varied duty cycle of ridge f, (b) varied depth d, and (c) varied incidence angle θ. 
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3.2 Simulation under varied illuminated wavelength 

In OCD metrology, such as reflectometry and scatterometry, illuminated wavelength can be adjusted in most cases. 
Therefore, simulations have been carried out by setting up different illuminated wavelengths, with the results shown in 
Fig. 4. The dash lines are for simulation data and the solid lines for regression. It is noted that the linearity is again nearly 
independent of the wavelength, and that the illuminated wavelength is intimately related to on the convergence order, 
when we fix all the structural parameters. With a fixed structure, the convergence order decreases with the growth of 
wavelength. It is also observed that the slopes of the linear regression lines are dependent on the wavelengths to a great 
extent, while the intercepts have little correlation with them. 
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Figure 4. The convergence order calculated for three different wavelengths under (a) TE polarization, (b) TM polarization, 

and (c) conical diffraction. Other parameters are the same as those listed in Figure 2. The dash and solid lines 
represent the simulated and the linear regression results respectively. 

3.3 Simulation under varied ratio of illuminated wavelength to grating period 

We carried out further study and focused on the approximate invariance of the intercepts of different regression lines. 
The ratio of the illuminated wavelength to the grating period is fixed in the following simulation. The ratio is set to 0.03, 
0.1, 0.3,1, and 3 sequentially, with results depicted in different colors in Fig. 5. It is interesting to note that the lower the 
ratio is, the more order it needs to achieve convergence. When the ratio is set at 3, even the permittivity and electric and 
magnetic field expanded into zeroth order can achieve a satisfactory result. The convergence order in each ratio has 
occupied a limited order range compared to the whole vertical axis. In different ranges of illuminated wavelengths, it can 
be seen that in the range of 0.5~0.8μm , approximately the visible band, the jump of the convergence order under each 
ratio varies more slightly than that in the ultraviolet band, which can be observed in TE, TM polarization and conical 
diffraction. It is thus possible to estimate the order with given structural and optical parameters. 
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Figure 5. Simulations under different ratios of λ to Λ under(a) TE polarization, (b) TM polarization, and (c) conical 

diffraction. Other parameters are the same as those listed in Fig. 2. It should be noticed that the grating period is 
modulation by the fixed ratio, even though the horizontal axis is depicted as the illuminated wavelength. 
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4. APPLICATION IN ESTIMATION OF THE CONVERGENCE ORDER 
From the results shown in Section 3, especially those phenomena observed in Fig. 5, we can estimate the convergence 
order with given structural and optical parameters. Since the jump in the visible range is slighter than in other ranges, we 
are more likely to estimate an accurately convergent result for a specific structure. The structural and optical parameters 
for estimations are listed in Table 1. f is 0.5 in our simulation, and d is fixed at 0.2μm. Assuming that it follows the 
normal distribution, the 95% confidence interval is calculated through the data in the wavelength range of 0.5~0.8μm. 
With this confidence interval, an order above the interval has been selected to calculate the reflectivity. 

Table 2 shows the results of the estimations. It is noted that the selected order is much less than the reference order (200), 
especially when the ratio is high. Meanwhile, most of the achieved accuracy is satisfactory, except the 1st sample 
exceeds the expected error bound of 0.2%. These results thus demonstrate that the estimations carried out here are 
effective in most cases. 

Table 1. Simulation parameters for estimations 

Serial Number λ (μm) Λ (μm) Ratio of λ to Λ Polarization State 
1 0.5 16.7 0.03 TE Polarization 
2 0.6 6 0.1 TM Polarization  
3 0.7 2.33 0.3 TE Polarization 
4 0.8 0.8 1 TM Polarization 
5 0.5 16.7 0.03 Conical Diffraction 
6 0.6 6 0.1 Conical Diffraction 
7 0.7 2.33 0.3 Conical Diffraction 
8 0.8 0.8 1 Conical Diffraction 

Table 2. Results of estimations 

Serial Number μ σ Confidence Interval Selected order Error 
1 43.7 2.0 [42.9, 44.4] 45 0.33% 
2 14.5 1.8 [13.9, 15.2] 16 0.01% 
3 5.9 0.9 [5.5, 6.2] 7 0.18% 
4 3.3 0.8 [3.0, 3.6] 4 0.17% 
5 43.1 2.3 [42.2, 44.0] 45 0.07% 
6 15.1 1.0 [14.7,15.5] 16 0.09% 
7 6.3 1.2 [5.9,6.8] 7 0.07% 
8 3.7 0.5 [3.5, 3.9] 4 0.14% 

CONCLUSIONS 
In this paper, several sets of simulations have been carried out to find out some relationship between the convergence 
order and the structural or optical parameters for binary rectangular groove gratings. It is observed that the structural 
dimension and the illuminated wavelength have a combined effect on the convergence order, and the ratio between them 
could weaken this effect. It is also noticed that in a certain range of wavelength, the jump of convergence order is 
relatively slight. These observations may provide some guidelines for the estimation of convergence order for a specific 
sample, and most of the estimations have shown satisfactory accuracy compared to the reference. 
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