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Abstract: We propose a method to calibrate the depolarization parameters of the imperfect 

compensators in dual-rotating compensator Mueller matrix polarimeters, and deduce a set of 

correction equations for the Mueller matrix calculation. 
OCIS codes: (120.2130) Ellipsometry and polarimetry ; (120.3940) Metrology. 

1. Introduction 

Recently, the Mueller matrix polarimeter (MMP) based on the coupled ferroelectric liquid crystal cell 
[1,2]

 and/or 

dual-rotating compensators 
[3,4]

 has been developed and applied as a powerful tool for the characterization of 

optically anisotropic samples 
[5]

. Since it is inexpensive and straightforward to align and calibrate, the MMP based 

on dual-rotating compensator layout still remains popular up to now 
[6]

. By assuming that all the optical elements 

are perfect, the principles and the calibration method of the dual rotating-compensator MMP has been described 
[4]

. 

However, this assumption is not true in practical application, as the finite bandwidth and the imperfect collimation 

would induce an apparent depolarization into the Mueller matrix of the compensator, and also the defective 

compensator itself is with some depolarization factors. These actual imperfect compensators, which have different 

Mueller matrix from the ideal ones, would lead to inaccurate calibration results and also accuracy loss in the final 

Mueller matrix measurement. 

In this paper, we propose a method to calibrate the depolarization parameters of the compensators. The 

calibration method is a regression calibration method based on the Levenberg-Marquardt (LM) algorithm
 [7]

. By 

using the iterative regression algorithm, the Mueller matrix dataset calculated from the response of the optical 

system are fitted to the exact expressions that model the response of the optical system. We also deduce a set of 

correction equations for the Mueller matrix calculation from the measured spectrum by taking into account the 

depolarization parameters of the compensators. To confirm the validity of the proposed correction method, we 

performed experiments on the air medium and a nominally 100nm thick SiO2 thermal oxide film on a Si substrate 

with a home-made MMP, and expect to achieve higher measurement accuracy in the metrology. 

2. Method 

The assumed ideal compensator is represented by the Mueller matrix as 
[5]

: 
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where δ denotes the retardance of the compensator. However, in the actual dual rotating-compensator system, the 

finite bandwidth and imperfect collimation would induce an apparent depolarization into the Mueller matrix of the 

compensator, and also the defective compensator itself is with some depolarization factors. In this case, the actual 

Mueller matrix of the compensator is shown as: 
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where b and c represent the depolarization parameters of the compensator. 

In this case, the calibration system parameters of the dual rotating-compensator MMP involves the azimuthal 

angles of polarizer P, analyzer A, and the compensators Cs1 and Cs2, the retardance of the 1st and 2nd compensator 

δ1 and δ2 as well as the depolarization parameters of the 1st and 2nd compensator b1, c1 and b2, c2. When performing 

the regression calibration method, the Mueller matrix dataset would be used as the fitting data to extract the above 
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system parameters. In actual practice, the measured Mueller matrix m
ijM  (i, j = 1, 2, 3, 4) can be calculated by the 

equations deduced in reference 
[4]

 with some correction factors described in Table 1. Thus, the measured Mueller 

matrix dataset m
ijM  can be represented as: 

  2,2,1,1,2,1,2,1,, cbcbCsCsAPfM m
ij  , (3) 

while the predicted Mueller matrix dataset p
ijM  of the sample can be known as unit matrix for air and also can be 

calculated by the optical film transfer-matrix method for films 
[8]

. Since the above system parameters are related to 

wavelength, the LM algorithm is employed here by minimizing the σ function versus wavelength to extract the 

system parameters. Here, the σ function represents the fitting error between the measured and predicted Mueller 

matrix elements by each wavelength defined as: 

     
24

1,






ji

k
p

ijk
m
ij MM  , (4)

 

where λk denotes the kth spectral point.  k
m
ijM   is the measured data of the Mueller matrix elements with the kth 

wavelength, and  k
p

ijM   is the corresponding predicted value. After performing the proposed calibration method, 

the depolarization parameters of the compensators can be used to correct the Mueller matrix calculation by the 

correction equations shown in Table 1. 

Table 1. The corrected Mueller matrix elements Mij. Here mij is the corresponding Mueller matrix element 

calculated by the equations in reference 
[4]

. 

111 M  )1( 11212 cmM   )1( 11313 cmM   )1( 11414 bmM   

)1( 22121 cmM   )]1()1[( 212222 ccmM   )]1()1[( 212323 ccmM   )]1()1[( 212424 cbmM   

)1( 23131 cmM   )]1()1[( 213232 ccmM   )]1()1[( 213333 ccmM   )]1()1[( 213434 cbmM   

)1( 24141 bmM   )]1()1[( 214242 bcmM   )]1()1[( 213434 bcmM   )]1()1[( 214444 bbmM   

3. Results 

All our experiments in this paper were performed on a home-made dual-rotating compensator MMP as shown in 

figure 1, where the light source is a deuterium (D2) and quartz tungsten halogen (QTH) combined source, the 

polarizer and the analyzer are the αBBO Rochon prisms, the compensators are the home-designed achromatic 

waveplates and the detector is a spectrograph which covering the spectrum from ultra-violet(UV) to Infra-red (IR). 
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Fig. 1. Home-made dual rotating-compensator MMP. 

To obtain the depolarization parameters of the compensators, we performed a measurement on the air medium 

by the MMP in the straight-through mode. The depolarization parameters of the 1st and 2nd compensator extracted 

from the proposed calibration procedure are shown in figure 2. To simplify the calculation, we assumed that the 

depolarization parameters of the two compensators are the same, b1=b2 and c1=c2. To verify the validity of the 

proposed correction method, another measurement on the air medium was performed and the obtained 

depolarization parameters were used as the correction terms to calculate the Mueller matrix of the air. A comparison 

of the Mueller matrix elements calculated from the same measured spectrum by the MMP with and without 

correction is shown in figure 3. It is clear that the measurement with the proposed correction method can achieve a 

much higher accuracy than the same measurement without any consideration of the imperfect compensators. 
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Therefore, we can conclude that the correction method proposed in this paper dramatically decreases the 

measurement error due to the effect of imperfect compensators and thus gives access to a higher accuracy in the 

actual Mueller matrix measurement. 
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Fig. 2. Depolarization parameters of the compensators in the dual rotating-compensator MMP. 
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Fig. 3. Comparison between the Mueller matrix calculated from the same measured data by the MMP with and without the correction. 
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