
REVIEW OF SCIENTIFIC INSTRUMENTS 87, 053707 (2016)

Development of a spectroscopic Mueller matrix imaging ellipsometer
for nanostructure metrology

Xiuguo Chen,1 Weichao Du,1 Kui Yuan,1 Jun Chen,1 Hao Jiang,1,a) Chuanwei Zhang,1,2

and Shiyuan Liu1,2,a)
1State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
2Wuhan Eoptics Technology Co. Ltd., Wuhan 430075, China

(Received 26 September 2015; accepted 9 May 2016; published online 31 May 2016)

In this paper, we describe the development of a spectroscopic Mueller matrix imaging ellipsometer
(MMIE), which combines the great power of Mueller matrix ellipsometry with the high spatial
resolution of optical microscopy. A dual rotating-compensator configuration is adopted to collect
the full 4 × 4 imaging Mueller matrix in a single measurement. The light wavelengths are scanned
in the range of 400–700 nm by a monochromator. The instrument has measurement accuracy and
precision better than 0.01 for all the Mueller matrix elements in both the whole image and the whole
spectral range. The instrument was then applied for the measurement of nanostructures combined
with an inverse diffraction problem solving technique. The experiment performed on a photoresist
grating sample has demonstrated the great potential of MMIE for accurate grating reconstruction from
spectral data collected by a single pixel of the camera and for efficient quantification of geometrical
profile of the grating structure over a large area with pixel resolution. It is expected that MMIE will
be a powerful tool for nanostructure metrology in future high-volume nanomanufacturing. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4952385]

I. INTRODUCTION

Ellipsometry is an optical metrology technique that
utilizes polarized light to characterize thickness of thin films
and optical constants of both layered and bulk materials.1,2

Since the year of around 2000, spectroscopic ellipsometry was
introduced to monitor critical dimension of grating structures
in semiconductor manufacturing.3,4 Compared with scanning
electron microscopy (SEM) and atomic force microscopy
(AFM), this technique, also referred to as optical scatterometry
or optical critical dimension metrology, has achieved wide
industrial applications after decades of development due to
its attractive advantages, such as low cost, high throughput,
and minimal sample damage. Among the various types
of ellipsometers, Mueller matrix ellipsometer (MME), also
known as Mueller matrix polarimeter, can provide all 16 ele-
ments of a 4 × 4 Mueller matrix. Consequently, MME-based
scatterometry can acquire much more useful information about
the sample, such as anisotropy and depolarization, and thereby
can achieve better measurement sensitivity and accuracy.5–10

Usually, scatterometric measurements are carried out on
special target gratings etched in scribe lines between chips
with the size of the illumination spot smaller than that of the
grating target. Standard spot sizes are in the range from 3
to 1 mm in diameter, and microspot sizes, depending on the
spectral range of measurements, are typically between 50 and
25 µm so far.11 Smaller microspots are highly desirable but
will greatly complicate the optical system. In addition, if the
lateral distribution of optical properties and geometrical profile
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of a sample surface is of interest, scatterometric measurements
are usually carried out point-by-point by mechanical scanning
techniques. This is normally not a practical solution as such a
scan takes quite a long time.

In this work, we address the above inherent issues
in scatterometry techniques and present the development
of a spectroscopic Mueller matrix imaging ellipsometer
(MMIE), which enables ellipsometric analysis with pixel-
sized illumination spot and quantification of geometrical
profile distribution of nanostructures without scanning the
sample stage. Imaging ellipsometry is a hybrid of ellipsometry
and optical microscopy, which combines the high thickness
sensitivity of ellipsometry with the high spatial resolution
of optical microscopy. Imaging ellipsometry techniques first
emerged in the 1980′, which were developed for quantitative
measurements and analysis of film thickness uniformity in
semiconductor integrated circuit processing.12–16 Over the
past decades, many types of imaging ellipsometers have been
developed by combining imaging techniques with different
ellipsometers, such as the null ellipsometer,12,13 the rotating
analyzer ellipsometer,14 the rotating compensator ellipsome-
ter,15 and also the Mueller matrix ellipsometer.17–19 In the
meanwhile, a few applications of imaging ellipsometry have
also appeared. These applications are typically concentrated
on two aspects to the best of our knowledge. The first aspect
is the characterization of all kinds of nanofilms formed on
surfaces and interfaces, such as the characterization of mono-
molecular layers,20 self-assembled monolayers,21 graphene,22

and thin-film photovoltaics.23 Another aspect is the application
in biomedicine for the diagnosis and monitoring of human
diseases, such as the retinal disease24 and cancers.25,26 This
work expands the application of imaging ellipsometry for the
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FIG. 1. (a) The schematic diagram of the dual rotating-compensator MMIE. L1 and L2, focusing lens; M, monochromator; F, fiber; L3, collimating lens; P and
A, polarizer and analyzer; Cr1 and Cr2, the 1st and 2nd rotating compensator; L4, imaging lens. The upper right image presents the scheme of a light beam
incidence upon a one-dimensional grating structure with the incidence angle of θ and azimuthal angle of φ; (b) test pattern taken by the MMIE at the wavelength
of 500 nm without the polarization elements.

measurement of nanostructures in combination with an inverse
diffraction problem solving technique.

The remainder of this paper is organized as follows.
Section II introduces the design, operation principle, and
calibration of an in-house developed spectroscopic MMIE.
Section III introduces the data analysis for nanostructure
reconstruction from the MMIE-measured spectra. Section IV
provides the corresponding experimental results to demon-
strate the performance of the developed instrument as well
as its great potential in nanostructure metrology. Finally, we
draw some conclusions and show the outlook of the present
technique in Section V.

II. INSTRUMENTATION

A. Operation principle

A dual rotating-compensator configuration is adopted
to measure the sample imaging Mueller matrix. As shown
in Fig. 1(a), an expanded parallel beam generated by a
collimating lens illuminates a sample and the reflected light
intensity is measured by a polarization blind camera. The basic
system layout of the dual rotating-compensator MMIE in order

of light propagation is PCr1(ω1)SCr2(ω2)A, where P and A
stand for the fixed polarizer and analyzer, Cr1 and Cr2 refer to
the 1st and 2nd rotating compensators, and S stands for the
sample. The 1st and 2nd compensators rotate synchronously at
ω1 = 5ω andω2 = 3ω, whereω is the fundamental mechanical
frequency. The emerging Stokes vector Sout at every pixel of
the camera can be expressed as the following Mueller matrix
product10,27

Sout = [MAR(A)][R(−C2)MC2(δ2)R(C2)]MS

× [R(−C1)MC1(δ1)R(C1)][R(−P)MPR(P)]Sin, (1)

where Mi (i = P, A, C1, C2, S) is the Mueller matrix
associated with each optical element and the sample. R(α) is
the Mueller rotation transformation matrix for rotation by an
angle α, which can be the transmission-axis orientations of the
polarizer and analyzer, P and A, and the fast-axis orientations
of the 1st and 2nd rotating compensators, C1 and C2. Here,
C1 = ω1t + CS1 and C2 = ω2t + CS2, and CS1 and CS2 represent
the initial fast-axis positions of the two compensators. δ1 and
δ2 are the phase retardances of the 1st and 2nd compensators.
By multiplying the matrices in Eq. (1), we obtain the following
expression for the irradiance at every pixel of the camera
(proportional to the first element of Sout)

I(t) = I00M11




a0 +

16
n=1

[a2n cos(2nωt − φ2n) + b2n sin(2nωt − φ2n)]



= I0




1 +
16
n=1

[α2n cos(2nωt − φ2n) + β2n sin(2nωt − φ2n)]


, (2)

where I00 is the spectral response function and φ2n is the
angular phase shift. I0 = I00M11a0, α2n = a2n/a0, and β2n
= b2n/a0 are the d.c. and normalized a.c. harmonic coeffi-
cients, respectively. The sample Mueller matrix elements Mi j

(i, j = 1, 2, 3, 4) are linear combinations of α2n and β2n.
Further details about the relation between Mi j and α2n and
β2n can be found in Ref. 27.

The irradiance measured at every pixel of the camera
in a dual rotating-compensator system obeys the following
experimental expression

I(t) = I ′0


1 +

16
n=1

�
α′2n cos 2nωt + β′2n sin 2nωt

�
, (3)

where
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I ′0 = I0, (4a)

[α2n, β2n]T = ℜ(φ2n)[α′2n, β′2n]T, (4b)

the superscript “T” represents the matrix transpose and
ℜ(φ2n) is a 2 × 2 rotation transformation matrix. To

detect the waveform given in Eq. (3), one can perform
K times the number of integrals of the irradiance
over the fundamental optical period of π/ω, which
leads to raw flux data {gk, k = 1, 2, . . . , K} of the
form

gk =

 kπ/Kω

(k−1)π/Kω

I ′0


1 +

16
n=1

�
α′2n cos 2nωt + β′2n sin 2nωt

�
dt

=
πI ′0
Kω
+

16
n=1

I ′0
nω

(
sin

nπ
K

) 
α′2n cos

(2k − 1)nπ
K

+ β′2n sin
(2k − 1)nπ

K


. (5)

Since the harmonic coefficients {(α′2n, β′2n), n = 9, 12,
14, 15} all vanish, there are only 25 unknowns in Eq. (5),
including 24 nonzero harmonic coefficients along with I ′0.
Since the highest-order nonzero harmonic coefficient is at
32ωt, according to the Nyquist sampling theorem, at least
K ≥ 33 integrations over the fundamental optical cycle (π/ω)
are required to extract the harmonic coefficients {(I ′0,α

′
2n, β′2n),

n = 1,2, . . . , 8, 10, 11, 13, 16} by Eq. (5). According to Eq. (4),
we can further obtain the harmonic coefficients {I0, α2n, β2n},
from which we can finally obtain the sample Mueller matrix
elements Mi j (i, j = 1,2, 3, 4) associated with every pixel of the
camera. All the Mueller matrices associated with every pixel
of the camera compose the sample imaging Mueller matrix.

From Eqs. (2)-(5), we know that the relation between the
sample Mueller matrix elements Mi j and the measured fluxes
gk is essentially a linear transformation, which can be simply
formulated as

G = D ·m, (6)

where G is a K × 1 flux vector with the k-th element being
gk, m is a 16 × 1 Mueller vector obtained by reading the
sample Mueller matrix elements in a lexicographic order,
i.e., m = [M11,M12,M13,M14,M21,M22, ...,M44]T, and D is a
K × 16 instrument matrix. According to Eq. (6), the sample
Mueller matrix can also be obtained by

m = D+ ·G, (7)

where D+ = (DTD)−1DT is the Moore-Penrose pseudo-inverse
of the matrix D. In addition, we can use the condition number
of D defined by

cond(D) = ∥D∥ �
D+

�
, (8)

as a metric for optimizing MMIE to minimize the effect
of small errors in G and D on m. The notation ∥·∥ in
Eq. (8) denotes the maximum norm of a matrix.28 The system
parameters that need to be optimized include the transmission-
axis orientations P and A of the polarizer and analyzer, the
retardances δ1 and δ2 and initial fast-axis orientations CS1 and
CS2 of the two compensators.

B. Instrument description

In the developed dual rotating-compensator MMIE,
the light beam from a laser-driven light source (LDLS™

Eq-99XFC, Energetiq Technology, Inc., USA) goes succes-
sively through an achromatic lens pair (MAP105050-A,
Thorlabs, Inc., USA) and a monochromator (Omni-λ320i,
Zolix Instruments Co., Ltd, China) to select the wavelength
of measurements. The light beam from the monochromator
passes through another achromatic lens pair (MAP107575-A,
Thorlabs, Inc., USA) and then focuses on one side of a fiber
(FRS-400-0.22-1.5-BB-SW, B&W Tek, Inc., USA). The fiber,
in a slit-to-round configuration, changes the rectangular light
beam exiting from the monochromator into a circular one to
reduce the intensity loss. The exiting light beam from the
round side of the fiber becomes an expanded parallel beam
after passing through a collimating lens (AC254-100-A-ML,
Thorlabs, Inc., USA). The parallel light beam passes succes-
sively through the polarizer, the 1st rotating compensator,
and is reflected from the sample surface, and then through
the 2nd rotating compensator, the analyzer, an imaging lens,
and finally goes into a camera. The polarizer (analyzer) is
a α-BBO Glan-Taylor polarizer with an extinction ratio of
less than 5 × 10−6 (PGT6312, Union Optic, Inc., China). The
compensator (the 1st and 2nd rotating compensators) is an
optimally designed achromatic Quartz biplate that consists of
two zero-order quarter Quartz waveplates and is mounted in
a hollow-shaft servo-motor (HO-63-A-E-000, Applimotion,
Inc., USA). The imaging lens comprises double achromatic
lenses (AC254-200-A-ML, Thorlabs, Inc., USA) and has a
focal length and an image magnification of 200 mm and
1:1, respectively. The camera is an industrial camera with
a CMOS global shutter sensor (Manta G-235B/C, Applied
Vision Technology, Inc., Germany). It has 1936 × 1216 pixels
with each pixel size of 5.86 × 5.86 µm2. To obtain a clear
image of the entire sample surface, the camera was mounted
with a slight tilt with respect to the optical axis. All the
achromatic lenses from Thorlabs, Inc., have anti-reflective
coatings for the 400–700 nm wavelength range.

In the optimization of the Quartz biplate, the associated
phase retardance is represented as a function of three
parameters, i.e., the two central wavelengths of the constituent
zero-order quarter waveplates as well as the angle between
fast axes of the two waveplates.29 These three parameters
together with other system parameters are then optimized
by minimizing the condition number of D given in Eq. (8)
over the spectral of 400–700 nm. The 1st and 2nd compen-
sators rotate synchronously at ω1 = 5π rad/s (2.5 Hz) and
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ω2= 3π rad/s (1.5 Hz), respectively, which are controlled by a
programmable multi-axis controller (Delta Tau Data Systems
Inc., USA). To detect the waveform given in Eq. (3), we set
the integration time as ∼20 ms and perform K = 50 times the
number of integrals of the irradiance over the fundamental
optical period (π/ω). We can thereby know that the camera
acquires images at ∼50 fps (frames per second). In addition,
the measured flux data gk (see Eq. (5)) are averaged over
10 fundamental optical periods to improve the signal-to-noise
ratio. Thus, the imaging Mueller matrix measurement at a
single wavelength will take ∼10 s, and the measurement
for imaging Mueller matrices in the whole spectral range of
400–700 nm with increments of 10 nm will take ∼5 min.

It is worth pointing out that the present technique in
this work for nanostructure metrology is essentially identical
to typical optical scatterometry techniques, in which only
the zeroth order diffracted light of a periodic nanostructure
is collected by the camera, as depicted in Fig. 1(a). When
high order diffracted light beams enter into the camera,
clear structure images will be observed. In this case, the
structural features can be directly obtained from the acquired
images by proper image recognition algorithms,30 as do
in conventional image-based metrology techniques, without
solving the inverse diffraction problem. It is thereby beyond
the scope of this work. In the developed MMIE, the numerical
aperture (NA) of the imaging lens is ∼0.062. Moreover, due
to the limitation of the clear aperture (∼9.5 mm) of the
compensator in the instrument, the effective NA of the imaging
lens will be much smaller (∼0.024), which ensures that only
the zeroth order diffracted light is collected for nanostructures
below the wavelength scale.

A test chart comprising a series of horizontal and vertical
lines (1951 USAF resolution test target, Thorlabs, Inc., USA)
was used to estimate the lateral resolution of the developed
MMIE. A set of six elements (horizontal and vertical line
pairs) are in one group, and six groups (from Group 2 to
Group 7) compose the resolution chart. The spacing between
the lines in each element is equal to the width of the line itself.
When the target is imaged, the resolution of an imaging system
can be estimated by viewing the clarity of the horizontal
and vertical lines. Figure 1(b) shows the image of Groups
4 to 7 taken by the MMIE at the wavelength of 500 nm.
In the measurement, the polarizer, the analyzer, and the two
rotating compensators were removed from the instrument
so that they did not affect the test result. As shown in
Fig. 1(b), the largest set of distinguishable horizontal and
vertical lines corresponds to Element 3 of Group 5 on the
resolution target, which indicates that the maximum resolution
is 40.3 line pairs per millimeter (equates to ∼24.8 µm per line
pairs).

C. Instrument calibration

The objective of the calibration is determination of the
actual transmission-axis orientations P and A of the polarizer
and analyzer, the initial fast-axis orientations CS1 and CS2 of
the two compensators as well as their wavelength-dependent
phase retardances δ1 and δ2. We use a regression method to
obtain the calibration values of P, A, CS1, CS2, δ1 and δ2. To

implement the regression calibration, normalized harmonic
coefficients are first measured according to Eqs. (4) and (5),
which are denoted as α

exp
2n and β

exp
2n . Data calculated for a

calibration sample from Eqs. (1) and (2), denoted as αcalc
2n (P,

A, CS1, CS2, δ1, δ2) and βcalc
2n (P, A, CS1, CS2, δ1, δ2), are then

fitted to the experimental data wavelength-by-wavelength by
adjusting the parameters P, A, CS1, CS2, δ1 and δ2 to minimize
a χ2 error function defined by

χ2 =

16
n=1






α
exp
2n − αcalc

2n (P, A, CS1, CS2, δ1, δ2)
σ(α2n)



2

+



β
exp
2n − βcalc

2n (P, A, CS1, CS2, δ1, δ2)
σ(β2n)



2

, (9)

where σ(α2n) and σ(β2n) are the standard deviations of
the experimental harmonic coefficients measured at the
corresponding spectral point. Minimizing χ2 is done by an
iterative non-linear regression analysis, such as the Levenberg-
Marquardt algorithm.31 From the regression method, the
system parameters P, A, CS1, CS2, δ1 and δ2 in the whole
measured spectral range can be determined. We can then
further parameterize the calibration parameters, especially the
phase retardances δ1 and δ2, using proper dielectric function
models. According to the parameterized model, we may
perform a similar χ2 fitting procedure illustrated above for
the whole spectral range again to determine the calibration
parameters more accurately. In addition, to reduce the effect
of nonuniformity of light intensity, the regression calibration
is first performed for every pixel of the camera separately, and
then the achieved calibration parameters are averaged over all
the pixels.

III. DATA ANALYSIS

The reconstruction of the nanostructure profile from
MMIE-measured spectra is a typical inverse diffraction
problem with the objective of finding a profile whose
theoretical spectra can best match the measured spectra.
Theoretical Mueller matrices of a periodic nanostructure
can be calculated by the rigorous coupled-wave analysis
(RCWA).32–34 In RCWA, both the permittivity function and
electromagnetic fields are expanded into Fourier series.
Afterwards, the tangential filed components are matched
at boundaries between different layers, and thereby the
boundary-value problem is reduced to an algebraic eigenvalue
problem. The overall reflection coefficients can be calculated
by solving this eigenvalue problem. According to the reflection
coefficients, the 2 × 2 Jones matrix J associated with the
zeroth order diffracted light of the sample, which connects
the incoming Jones vector with the diffracted one, can be
formulated by



Erp

Ers


= J



Eip

Eis


=



rpp rps

rsp rss





Eip

Eis


, (10)

where Es,p refers to the electric field component perpendicular
and parallel to the plane of incidence, respectively. In the
absence of depolarization, the 4 × 4 Mueller matrix M can be
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calculated from the Jones matrix J by1

M = A(J ⊗ J∗)A−1, (11a)

where the symbol ⊗ denotes the Kronecker product, J∗ is the
complex conjugate of J, and the matrix A is given by

A =



1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0



. (11b)

In practice, the Mueller matrix M is usually normalized to
the (1, 1)th element M11, with the normalized Mueller matrix
elements being mi j = Mi j/M11.

A weighted least-squares regression analysis (Levenberg-
Marquardt algorithm) is then performed for any pixel of the
MMIE camera, during which the structural parameters under
measurement are varied until the calculated and measured
data match as close as possible. This is done by minimizing a
weighted mean square error function χ2

r defined by

χ2
r =

1
15N − P

N
k=1

4
j=1



mexp
i j,k
− mcalc

i j,k
(x)

σ(mi j,k)


2

, (12)

where k indicates the kth spectral point from the total number
N , indices i and j show all the Mueller matrix elements
except m11 (normalized to m11), x is a P-dimensional vector
consists of the structural parameters under measurement, mexp

i j,k
denotes the Mueller matrix elements measured by the current
pixel of the camera with the standard deviation of σ(mi j,k),
and mcalc

i j,k
(x) denotes the calculated Mueller matrix elements

associated with the vector x. The fitting procedure delivers
95% confidence limits of 1.96 × χr ×

√
Cii for the structural

parameters, where Cii is the ith diagonal element of the
structural parameter covariance.35 The regression analysis is
mostly applied for the analysis of data collected by a single
pixel or a number of pixels, while might be unsuitable for
data analysis of a large area (usually contain millions of
pixels that need to be processed) due to the intensive RCWA
calculation. In this case, the library search method can be
applied,36 where a Mueller matrix spectra library is generated
prior to the measurement and then the library is searched to
find the best match with the measured spectra. Although the
offline generation of the spectra library is time-consuming,
the search itself during the online measurement can be done
quickly with a global solution guaranteed.

IV. MEASUREMENT

A. Sample description

As shown in Fig. 2(a), the investigated sample is an
8 inch Si wafer that contains 25 identical dies, and the
magnified image of one die is presented in Fig. 2(b) for
demonstration. The rectangle-marked region on this magnified
image, also termed as the metrological box in the remainder
of the paper, has a size of about 3 × 2.5 mm2 and consists
of a photoresist array on a bottom anti-reflective coating
(BARC) layer deposited on a Si substrate. The photoresist

FIG. 2. (a) The photograph of the Si wafer; (b) the magnified image of one
die that corresponds to the rectangle-marked region on the image of the Si
wafer, and the rectangle-marked region on the magnified image corresponds
to the metrological box where the photoresist grating structure is; (c) the
cross-sectional SEM micrograph and geometric model of the photoresist
grating structure.

grating structure was fabricated using a 193 nm wavelength
lithography tool, with a well-designed BARC layer to avoid
standing waves in the photoresist. Figure 2(c) shows the
cross-sectional SEM (Nova NanoSEM450, FEI Co., USA)
micrograph of the photoresist grating structure as well as the
adopted geometrical model to characterize its line shape. As
shown in Fig. 2(c), the geometrical profile of the photoresist
grating is characterized by top critical dimension x1, sidewall
angle x2, and grating height x3. The thickness of the BARC
layer is represented by x4. The period of the photoresist
grating is 400 nm. The nominal dimensions of structural
parameters of the grating sample are: x1 = 200 nm, x2 = 90◦,
x3 = 311 nm, and x4 = 115 nm, respectively. In the data
analysis, the optical constants of the Si substrate were fixed
at values taken from the literature.37 The optical properties
of the BARC layer were modeled using a two-term Forouhi-
Bloomer model,38 whose parameters were predetermined from
a BARC film deposited on the Si substrate using a ME-
L spectroscopic ellipsometer (Wuhan EOptics Technology
Co., China). The ME-L ellipsometer is a high-precision
MME, which can provide full 4 × 4 Mueller matrices in
the spectral range of 200–1000 nm.10 The parameters of the
two-term Forouhi-Bloomer model were taken as A1 = 6.029
× 10−3, A2 = 2.060 × 10−2, B1 = 14.1953 eV, B2 = 14.1964
eV, C1 = 50.5239 eV2, C2 = 50.5379 eV2, n(∞) = 1.4361,
and Eg = 4.7741 eV, respectively. The optical properties of
the photoresist were modeled using a Tauc-Lorentz model,39

whose parameters were predetermined from a photoresist
film deposited on the Si substrate using the same MME
and taken as ε∞ = 1.4268, Eg = 3.4597 eV, A = 21.1496 eV,
C = 0.9877 eV, and E0 = 9.9492 eV, respectively.

B. Results and discussion

Prior to the measurement, the developed MMIE was first
calibrated in a reflection setup using a 25 nm SiO2/Si standard
sample and in a transmission setup without placing the sample
(namely taking air as the sample). Repeated measurements
were then performed for air, whose theoretical Mueller matrix
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FIG. 3. (a) Mean bias and (b) standard deviation of the imaging Mueller matrix of air measured over a square area of about 4×4 mm2 at the wavelength of
550 nm, (c) Mean bias and (d) standard deviation of the spectral Mueller matrix of air collected by a single pixel of the camera. The mean bias and standard
deviation are estimated by 30 repeated measurements.

is a 4 × 4 identity matrix at any wavelength, to evaluate the
performance of the developed instrument. Figures 3(a) and
3(b) present the mean bias and standard deviation of the
imaging Mueller matrix of air measured over a square area of
about 4 × 4 mm2 at the wavelength of 550 nm for illustration.
The bias of the Mueller matrix is defined as the difference
between the measured and theoretical Mueller matrices. As
can be observed from Figs. 3(a) and 3(b), the absolute mean
bias and standard deviation of the measured imaging Mueller
matrix are less than 0.01 and 0.005, respectively, in the whole
image area. Figures 3(c) and 3(d) present the mean bias
and standard deviation of the spectral Mueller matrix of air
collected by a randomly selected pixel of the MMIE camera.
As can be observed, the absolute mean bias and standard
deviation of the measured spectral Mueller matrix are less
than 0.01 and 0.015, respectively, in the whole spectral range
of 400–700 nm.

To further verify the absolute accuracy of the MMIE
measurement, we also compared it with the above-mentioned
MME (ME-L ellipsometer). For this experiment, five SiO2/Si
standard samples with nominal oxide layer thicknesses of

2 nm, 10 nm, 25 nm, 340 nm, and 1000 nm, respectively,
were measured by both the MMIE and MME at the incidence
angle of 60◦ and in the spectral range of 400–700 nm. The
measurement for each sample was taken at the centre of the
sample. The beam spot size of the MME is about 3 mm.
For comparison, the MMIE-measured data were properly
averaged over 3 mm measurement site. The results are
presented in Table I and show excellent agreement between
the measurements.

TABLE I. Comparison of oxide layer thicknesses of SiO2/Si standard sam-
ples extracted from MMIE and MME measurements at the incidence angle
of 60◦ and in the spectral range of 400–700 nm.

Film sample no. MMIE (thickness, nm) MME (thickness, nm)

1 1.9 1.8
2 10.9 10.9
3 22.3 22.1
4 341.0 341.7
5 1026.8 1028.3
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FIG. 4. Reconstructed map of parallel grooves with different widths in a
SiO2 layer on a Si substrate. The number at each groove with a unit of
micrometer represents the width of the groove.

To further test the lateral resolution of the developed
MMIE, a sample was prepared with 8 parallel grooves of
different widths etched in a SiO2 layer on a Si substrate.
The nominal widths of the 8 parallel grooves are 10 µm,
20 µm, 40 µm, 60 µm, 80 µm, 100 µm, 150 µm and
200 µm, respectively. We measured their actual widths using a
profilometer (KLA Tencor P16+) and found that the maximum
absolute error between the actual and nominal widths of these
grooves is less than 1 µm. All the grooves have the same depth
of about 80 nm. The interval between any two adjacent grooves
is about 200 µm. Figure 4 shows the reconstructed map of the
grooves. As can be observed from Fig. 4, the grooves with
widths of 10 µm and 20 µm cannot be distinguished, which
indicates that the lateral resolution is worse than 20 µm. In the
meanwhile, the grooves with widths of 40 µm and 60 µm
can be visualized with at least one pixel and two pixels,
respectively, which means that the lateral resolution is better
than 30 µm. The test result is thus in accordance with that
achieved by a test chart presented at the end of the Section II B.

The photoresist grating sample was then measured using
the MMIE. In the measurement, the incidence and azimuthal
angles were fixed at θ = 60◦ and φ = 0◦, respectively. As an
example, Fig. 5 shows the imaging Mueller matrix measured
over an area of about 3.9 × 3.3 mm2 on the sample at the
wavelength of 500 nm. At the azimuthal angle of φ = 0◦, i.e.,
with the plane of incidence perpendicular to grating lines, the
two 2 × 2 off-diagonal blocks of the Mueller matrices vanish,
as can be observed from Fig. 5, while other elements can be
expressed in terms of conventional ellipsometric anglesΨ and
∆,1,2 i.e., m12 = m21 = − cos 2Ψ, m34 = −m43 = sin 2Ψ sin ∆,
and m33 = m44 = sin 2Ψ cos ∆ (m11 = m22 = 1). Since only
the zeroth order diffracted light of the photoresist grating
is collected, we will not obtain the image of its structural
features. However, due to the difference (or contrast) between
Mueller matrices associated with different regions, we can
readily distinguish the metrological box where the photoresist
grating is from the presented imaging Mueller matrix in Fig. 5.
According to the measured imaging Mueller matrices, we can
intuitively choose the region or pixels of interest for further
ellipsometric analysis to reconstruct the geometrical profile of
the photoresist grating structure.

FIG. 5. The imaging Mueller matrix (normalized to m11, which is not
shown) of the photoresist grating sample measured over an area of about
3.9×3.3 mm2 on the sample at the wavelength of 500 nm. The central rect-
angular region shown in the Mueller matrix diagonal blocks corresponds to
the metrological box where the photoresist grating structure is. The incidence
and azimuthal angles are fixed at θ = 60◦ and φ = 0◦, respectively.

Table II presents the comparison of fitting parameters
obtained from SEM and MMIE measurements, of which the
MMIE-measured results were extracted from Mueller matrix
spectra collected by a single pixel located near the center of the
metrological box. In other word, the MMIE-measured results
are equivalent to those obtained by a MME with a beam size of
about 5.86 × 5.86 µm2, which is much smaller than microspot
sizes in current scatterometry techniques (typically between
50 and 25 µm). In the data analysis, we just let the structural
parameters x1 ∼ x4 vary while other parameters were fixed
at their nominal values. The standard deviations associated
with the Mueller matrix elements σ(mi j,k) in Eq. (12) were
achieved based on the standard deviation of 30 repeated
Mueller matrix measurements. In the solution of the inverse
diffraction problem by the Levenberg-Marquardt algorithm,
we took the nominal dimensions of the above four structural
parameters as their initial values. According to Table II, we
can observe that the MMIE-measured results exhibit good
agreement with those measured by SEM. Figure 6 shows the
fitting result of the measured and calculated best-fit Mueller

TABLE II. Comparison of fitting parameters of the photoresist grating struc-
ture extracted from MMIE and SEM measurements. The MMIE-measured
values include 95% confidence limits and the SEM-measured values include
estimate for errors in manually measuring the SEM micrographs.

Parameter Nominal value MMIEa SEM

x1 (nm) 200 203.8 ± 1.7 203.4 ± 4.9
x2 (deg) 90 89.2 ± 0.2 89.5 ± 0.3
x3 (nm) 311 309.6 ± 0.9 303.7 ± 6.8
x4 (nm) 115 117.7 ± 0.5 111.3 ± 4.1

aThe results were extracted from Mueller matrices collected by a single pixel of the
camera.
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FIG. 6. Fitting result of the calculated best-fit Mueller matrix spectra and
the measured spectra collected by a single pixel of the MMIE camera. The
wavelengths are varied from 400 to 700 nm with increments of 10 nm. The
incidence and azimuthal angles are fixed at θ = 60◦ and φ = 0◦, respectively.

matrix spectra. A good agreement can also be observed from
Fig. 6, which yields a fitting error of χ2

r = 11.76.
We calculated the depolarization index spectrum associ-

ated with the MMIE-measured data by DI

=

�
Tr(MMT) − M2

11

�
/3M2

11, 0 ≤ DI ≤ 1,40 where Tr(·)
represents the matrix trace. DI = 0 and DI = 1 correspond to
a totally depolarizing and a totally non-depolarizing Mueller
matrix, respectively. The calculated depolarization indices
indicate that |DI − 1| < 0.082 in the whole spectral range
of 400–700 nm. The depolarization effect was thus ignored
in the data analysis. We also let the incidence and azimuthal
angles vary to examine their influence on the final fitting
result. The achieved incidence and azimuthal angles as well as

the fitting error are θ = 60.13◦ ± 0.178◦, φ = −0.29◦ ± 0.215◦,
and χ2

r = 11.55, respectively. It suggests that the increase of
fitting parameters does not lead to noticeable improvement
in the final fitting result. We thereby fixed the incidence
and azimuthal angles in the data analysis. Additionally, for
the single pixel data analysis presented in Table II, we can
calculate that the illumination spot on the sample surface has
a size of about 11.72 × 5.86 µm2 when the incidence angle
θ = 60◦. According to this spot size, we further know that, the
illumination spot corresponding to a single pixel of the camera
covers at least 29 grating periods. It is thus sufficient for the
reflected fields to approach plane waves,41 as required in the
RCWA calculation.

Besides the ellipsometric analysis performed for a single
pixel, we can also perform parallel ellipsometric analysis
for all the pixels of interest located in the metrological box
to obtain the distribution of fitting parameters over a large
area. Figure 7 presents the three-dimensional (3D) maps of
structural parameters x1 ∼ x4 as well as their uncertainties
u(x1) ∼ u(x4) (with 95% confidence limits) of the photoresist
grating structure over a whole metrological box. Figure 8
presents the 3D map of the corresponding fitting error of data
analysis for the whole metrological box. In the analysis, we
ignored 2 pixels located near the edges of the metrological
box to make sure that the illumination spot corresponding
to each analyzed pixel covers identical and enough grating
periods for reflected fields to approach plane waves. The lateral
resolution of Figs. 7 and 8 mainly depends on the pixel size
of the camera, the image magnification of the imaging lens, as
well as the incidence angle. For the developed instrument,
the lateral resolution of Figs. 7 and 8 is 11.72 µm and
5.86 µm, respectively, in the parallel (X) and perpendicular
(Y) direction with respect to the plane of incidence. It should
be noted that here the lateral resolution of Figs. 7 and 8 is
different from that of the instrument, as discussed at the end
of Section II B. In fact, according to the spatial resolution of
the present instrument, we can take each four adjacent pixels

FIG. 7. Maps of the structural parameters x1∼ x4 as well as their uncertainties u(x1)∼ u(x4) (with 95% confidence limits) of the photoresist grating structure
over the whole metrological box shown in Fig. 5. The grating period is along the X direction. Data were obtained by performing ellipsometric analysis for each
pixel of the measured imaging Mueller matrices.
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FIG. 8. Map of the fitting error χ2
r of data analysis for the whole metrologi-

cal box shown in Fig. 5. Other settings of this figure are identical to those of
Fig. 7.

as a group and then average the corresponding irradiances
for further ellipsometric analysis to obtain the distribution
of fitting parameters and meanwhile to improve the signal-
to-noise ratio. Anyway, as can be observed from Fig. 7, the
structural parameters exhibit relatively uniform variation and
reasonable agreement with their nominal values as well as
with the SEM-measured results given in Table II. Some exotic
pixels (indicated by an arrow) are observed from the parameter
maps, which show an extremely large deviation from the
nominal parameter values. These exotic pixels can also be
observed in the fitting error map given in Fig. 8 and in the
imaging Mueller matrix presented in Fig. 5, which might be
induced by unknown contaminants on the sample surface.

V. SUMMARY AND OUTLOOK

This work presents the development of a spectroscopic
MMIE for nanostructure metrology. The developed instrument
adopts a dual rotating-compensator configuration to collect
the full 4 × 4 Mueller matrix in a single measurement. A
regression method has been proposed to calibrate the system
parameters. Some typical specifications of the instrument are
summarized as follows. (1) Spectral range: 400–700 nm;
(2) measurement time at a single wavelength: ∼10 s; (3)
image magnification: 1:1; (4) pixel size: 5.86 × 5.86 µm2

(totally 1936 × 1216 pixels); (5) measurement accuracy and
precision: less than 0.01 for all the Mueller matrix elements
in both the whole image and the whole spectral range. The
developed spectroscopic MMIE was then used to measure
a photoresist grating sample in combination with an inverse
diffraction problem solving technique. We have demonstrated
its great capability in accurate nanostructure reconstruction
from spectral data collected by a single pixel of the camera
and for efficient quantification of geometrical profile of the
nanostructure over a large area with pixel resolution. It is
worth pointing out that the above-mentioned specifications

of the present instrument are no fundamental limits. Future
work will further broaden the spectral range and reducing
the measurement time by choosing proper optical elements
and increasing the intensity of light entering into the camera.
In addition, the depolarization effect was ignored in the
analysis of the photoresist grating sample due to the small
depolarization indices in the measurement. However, it should
be noted that the present technique is always applicable to
a depolarizing sample. In the presence of depolarization,
Eq. (11) cannot be applied to directly derive the Mueller matrix
from the corresponding Jones matrix any more. Theoretical
depolarizing Mueller matrices can be calculated by first
transforming them into weighted sum of series of non-
depolarizing Mueller matrices and then each non-depolarizing
Mueller matrix is calculated by Eq. (11).10 In the future, much
more nanostructures will be measured to examine the great
potential of MMIE.
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