
 

 

Correction of depolarization effect in Mueller matrix ellipsometry with 
polar decomposition method 

 
Weiqi Li 1, Chuanwei Zhang 1,2, Hao Jiang 1, Xiuguo Chen 1, Honggang Gu 1, and Shiyuan Liu 1,2,* 
1State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University 

of Science and Technology, Wuhan 430074, China 
2 Wuhan Eoptics Technology Co., Ltd., Wuhan 430075, China 

ABSTRACT 

Mueller matrix ellipsometry has been demonstrated as a powerful tool for nanostructure metrology in high-volume 
manufacturing. Many factors may induce depolarization effect in the Mueller matrix measurement, and consequently, 
may lead to accuracy loss in the nanostructure metrology. In this paper, we propose to apply a Mueller matrix 
decomposition method for the Mueller matrix measurement to separate the depolarization effect caused by the MME 
system. The method is based on the polar decomposition by decomposing the measured depolarizing Mueller matrix into 
a sequence of three matrices corresponding to a diattenuator followed by a retarder and a depolarizer. Since the 
depolarization effects will be only reflected in the depolarizer matrix, the other two matrices are used to extract the 
structure parameters of the measured sample. Experiments performed on a one-dimensional silicon grating structure 
with an in-house developed MME layout have demonstrated that the proposed method achieves a higher accuracy in the 
nanostructure metrology. 
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1. INTRODUCTION 
Ellipsometry is an optical metrology technique that utilizes polarized light to characterize thickness of thin films and 
optical constants of both layered and bulk materials [1]. Since the year of around 2000, spectroscopic ellipsometry (SE) 
was introduced to monitor the critical dimension (CD) of grating structures in semiconductor manufacturing [2-4]. 
Compared with scanning electron microscopy (SEM), atomic force microscopy (AFM), or transmission electron 
microscopy (TEM), this technique, sometimes also referred to as optical scatterometry or optical critical dimension 
metrology, has achieved wide industrial applications due to its attractive advantages, such as low cost, high throughput, 
and minimal sample damage [5,6]. Among the various types of ellipsometers, Mueller matrix ellipsometer (MME) can 
provide all 16 elements of the 4 by 4 Mueller matrix in each measurement. Compared with conventional ellipsometer, 
which at most obtains two ellipsometric angles, MME can acquire much more useful information about the sample, such 
as anisotropy and depolarization. Therefore, MME is expected to be a powerful tool for nanostructure metrology in high-
volume nanomanufacturing [7]. 

One of the critical procedures in MME is to acquire the accurate Mueller matrix spectrum of the sample. Many factors 
may induce depolarization effect in the Mueller matrix measurement, and consequently, may lead to accuracy loss in the 
nanostructure metrology. Some factors are rising from the MME system and cannot be avoided, such as the finite 
spectral bandwidth of the monochromator and detector, the finite numerical aperture (NA) of the focusing lens. Germer 
and Patrick consider the effects of finite bandwidth and NA on the theoretical simulations. Since the incidence angle and 
the azimuthal angle are varied with the whole exit pupil of the focus lens, and the wavelength will vary over the 
bandwidth range, they proposed an efficient integration methods based upon Gaussian quadrature in one dimension for 
spectral bandwidth averaging and two dimensions inside a circle for numerical aperture averaging to investigate the 
effects of finite bandwidth and NA [8]. After that, the depolarization effects caused by the finite bandwidth and NA are 
considered, and incorporated into the optical model of the measured structure [9, 10]. However, this integration method 
which needs to calculated the Mueller matrices dozens of times, is extraordinarily time consuming, since the Mueller 
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matrix calculation method, such as the rigorous couple-wave analysis (RCWA) [11-13], finite-difference time-domain 
(FDTD) method [14], or finite element method (FEM) [15, 16] are always complex and time-consuming. In this paper, we 
propose to apply a Mueller matrix decomposition method for the Mueller matrix measurement to separate the 
depolarization effect caused by the MME system. The method is based on the polar decomposition by decomposing the 
measured depolarizing Mueller matrix into a sequence of three matrices corresponding to a diattenuator followed by a 
retarder and a depolarizer [17]. The depolarization effects mainly induced by the MME system will be only reflected in the 
depolarizer matrix. Therefore, we may only use the other two matrices for the structure parameter reconstructions to 
exclude the depolarization effects from the measurement. We performed experiments on the Si gratings with an in-house 
developed dual rotating-compensator MME prototype, and expected higher measurement accuracy is achieved. 

2. METHOD 
2.1 Polar decomposition 

Polar decomposition consists of decomposing an arbitrary Mueller matrix M into the product of three elementary 
matrices representing a retarder MR, a diattenuator MD, and a depolarizer MΔ. Because of the noncommutativity of the 
matrix product, the decomposition leads to the existence of six possible products [18]: 
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According to the order of the diattenuator and the depolarizer matrices in the products, these six products can be divided 
into two families, namely the forward family and the reverse family [19]. In particular, the forward family physically 
corresponds to the depolarizer being in front of the diattenuator expressed as: 

 R DΔ=M M M M , (2a) 

 '
D RΔ=M M M M , (2b) 

 '
R DΔ=M M M M , (2c) 

while the reverse family corresponds to the depolarizer being behind the diattenuator described by: 

 D R Δ=M M M M , (3a) 

 "
R D Δ=M M M M , (3b) 

 "
D RΔ=M M M M . (3c) 

The members within each family can be equivalent to one another under the following orthogonal transformations 
generated by the retarder matrix MR: 
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Morio and Goudail demonstrated that the forward family always leads to physical elementary Mueller matrices, whereas 
the other family does not [18]. Thus the forward polar decomposition is used in this paper, and the decomposition (2a) is 
considered as the normal forms of forward family due to the transformation properties.  
According to work reported by Lu and Chipman [17], an m11 normalized Mueller matrix M can be rewritten as: 
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where D
uur

 and P
ur

 are the diattenuation and polarizance vectors of M, and m is a 3 by 3 matrix obtained by striking out 
the first row and the first column of M. In the polar decompositions (2a), the diattenuator MD is a symmetric matrix and 
given by: 
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where I is the 3 by 3 identity matrix,  D is the length of the diattenuation vector D
uur

, and uD
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 denotes the unit vector 
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while the depolarizer MΔ is defined as: 
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2.2 Correction method 

When a sample has the depolarization effect, totally polarized light used as a probe in ellipsometry is transformed into 
partially polarized light after the interactions with the sample, and the associated Mueller matrix will become a 
depolarizing one. The depolarization effect can be described by the depolarization index DI that is defined by [20]: 

 
( ) 1/2

2
11

2
11

, 0 1
3

T
Tr m

DI DI
m

⎡ ⎤−⎢ ⎥= ≤ ≤⎢ ⎥
⎢ ⎥⎣ ⎦

MM
, (9) 

where m11 is the (1, 1)th element of the Mueller matrix M, MT is the transposed matrix of M, and Tr( )⋅  represents the 
trace. DI = 0 and DI = 1 correspond to a totally depolarizing and non-depolarizing Mueller matrix, respectively. Many 
factors will induce depolarization effects and these factors can be classified overall into two categories, namely, the 
extrinsic and intrinsic causes [9]. The intrinsic causes include those that are closely related with the measured sample 
such as thickness nonuniformity, large surface or edge roughness, and thick transparent substrates. The extrinsic causes 
which are always accompanied with the MME system, such as the finite bandwidth of the monochromator and detector, 
and the finite numerical apertures of the focusing lens, will induce depolarization effects in the measurement process.  

When performing the polar decomposition on the sample Mueller matrix, the depolarization effects will be only reflected 
in the depolarizer matrix. In case the depolarization effects are introduced by the MME system, we may simply use the 
other two matrices to extract the structure of the measured sample. A least-squares regression analysis (Levenberg-
Marquardt algorithm) is performed, in which the model parameters are varied until calculated and experimental data 
match as much close as possible [21]. This is done by minimizing a mean square error function 2χ  defined by: 
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where λ denotes the spectral point from the total number N and P denotes the total number of the fitting parameters. 

,( )m
ij Dm λ  and ,( )m

ij Rm λ  are the element of the diattenuator and retarder matrix decomposed from the measured Mueller 

matrix with the λth wavelength, respectively, and ,( )c
ij Dm λ  and ,( )c

ij Rm λ   are the corresponding diattenuator and 
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retarder matrix elements obtained from the calculation Mueller matrix. Indices i and j show all the matrix elements 
except m11. As a theoretical reference, the Mueller matrix of the silicon grating can be calculated by the RCWA.

Figure 1. Principle and prototype of the dual rotating-compensator Mueller matrix ellipsometer. 

3. EXPERIMENTS
3.1 Experiment setup

As schematically shown in Fig. 1, the basic system layout of the DRC MME in order of light propagation is 
PCr1(ω1)SCr2(ω2)A, where P and A stand for the polarizer and analyzer, Cr1 and Cr2 refer to the 1st and 2nd rotating
compensators, and S stands for the sample. The fast axis angle C1 and C2 of the 1st and 2nd compensators rotate
synchronously at ω1 = 5ω and ω2 = 3ω, where ω is the fundamental mechanical frequency. The emerging Stokes vector
Sout of the exiting light beam can be expressed as the following Mueller matrix product [22]:

[ ] [ ]
2 1out 2 2 2 1 1 1 in( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A C S C PA C C C C P Pδ δ⎡ ⎤ ⎡ ⎤= − × × − −⎣ ⎦ ⎣ ⎦S M R R Μ R M R M R R M R S , (11) 

where Mi (i = P, A, C1, C2) is the Mueller matrix associated with each optical element. R(α) is the Mueller rotation 
transformation matrix for rotation by the angle α (α = P, A, C1, C2) that describes the corresponding orientation angle of
each optical element. δ1 and δ2 are the wavelength-dependent phase retardances of the 1st and 2nd rotating compensators.
By multiplying the matrices in Eq. (11), we can obtain the following expression for the irradiance at the detector 
(proportional to the first element of Sout) [7, 22]:
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where I0, α2n and β2n are the d.c. and d.c-nomalized a.c. harmonic coefficients, respectively. The sample Mueller matrix 
elements Mij (i, j = 1, 2, 3, 4) are linear combinations of α2n and β2n. By performing Fourier analysis [21], the Mueller
matrix elements of the sample can be extracted from these harmonic coefficients. Based on the above measurement 
principle, we developed a DRC MME prototype. The spectral range is from 200 to 1000 nm. The beam diameter can be 
changed from the nominal value of ~3 mm to a value of ~200 μm equipped with the focusing lens. The two arms of the 
ellipsometer and the sample stage can be rotated to change the incidence and azimuthal angles in experiments.

Figure 2. SEM cross-section image of the investigated Si grating. 

Proc. of SPIE Vol. 9526  952619-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/02/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

The investigated sample is a one-dimensional Si grating, whose scanning electron microscope (SEM) cross-section 
image is shown in Fig. 2. The etched Si grating is chosen for this study due to its long-term dimensional stability, higher 
refractive index contrast, and relevance to the semiconductor industry. Optical properties of Si are taken from Ref. [23]. 
As depicted in Fig. 2, a cross-section of the Si grating is characterized by a symmetrical trapezoidal model with top 
critical dimension TCD, grating height Hgt, side wall angle SWA, and period pitch. Dimensions of the structural 
parameters obtained from Fig. 2 are TCD = 353nm, Hgt = 472nm, and SWA = 80°. In the following experiments, 
structural parameters of the Si grating that need to be extracted include TCD, Hgt, and SWA, while the grating period is 
fixed at its nominal dimension, i.e., pitch = 800 nm. 

3.2 Result and discussion 

In the experiments, the spectral range is from 200 to 800nm with an increment of 5nm, the incident angle is fixed to 65 
deg and the azimuthal angle is varied from 0 to 90 deg with a step of 5 deg. When applying the RCWA to calculate the 
Mueller matrices, the number of retained orders in the truncated Fourier series is 12, and the Si grating as shown in Fig. 2 
is sliced into 15 layers along the vertical direction. 
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Figure 3. Comparison of structure parameters measured by SEM and extracted from the measured Mueller matrices with 
and without the polar decomposition approach. The ‘Fit 1’ represents the structure parameters extracted from the original 
measured Mueller matrices directly and the ‘Fit 2’ stands for the structure parameters extracted from the retarder and 
diattenuator matrices by performing the polar decomposition method. 

200 300 400 500 600 700 800

0.92

0.94

0.96

0.98

1

wavelength (nm)

D
ep

ol
ar

iz
at

io
n 

In
de

x

 

30°
35°
40°
45

200 300 400 500 600 700 800

0.6

0.8

1

wavelength (nm)

D
ep

ol
ar

iz
at

io
n 

In
de

x

 

75°
80°
85°
90°

 
Figure 4. Depolarization Index of the Mueller matrix at the azimuthal angle of (a) 30°-45° and (b) 75°-90°. 

The measured Mueller matrix spectra are first used to fit the calculated Mueller matrices, and the extracted structure 
parameters of the Si grating are shown in Fig. 3 as Fit 1. And then, the measured Mueller matrices are decomposed by 
the polar decomposition (2a). According to the proposed method, the retarder matrices and the diattenuator matrices are 
used to extract the structure parameters and results are shown in Fig.3. According to Fig. 3, we observed that the both 
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fitting results show a good agreement to the SEM results. However, the structure parameters extracted from the 
decomposed matrices are much closer to the SEM results over the azimuthal angle from 30 to 45 deg and 75 to 90 deg, 
while the two fitting results are nearly the same over the azimuthal angle from 0 to 25 deg and 50 to 70 deg. We 
calculated the depolarization indices of the measured Mueller matrices, and the DI spectra over the azimuthal angle from 
30 to 45 deg and from 75 to 90 deg are shown in Fig. 4 (a) and (b), respectively. As can be observed, obvious 
depolarization effects are introduced in the Mueller matrix spectra over these azimuthal angle ranges. This observation 
means that, the proposed decomposition method gives access to a higher accuracy in the Si grating metrology in case 
depolarization effects are introduced in the Mueller matrix measurement. Figure 5 and 6 depict examples of the retarder 
matrices and diattenuator matrices obtained by the polar decomposition of the measured and the calculated Mueller 
matrices for the investigated Si grating at the azimuthal angle of 30° and incidence angle of 65°. 
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Figure 5. Example of the diattenuator matrix spectra decomposed from the measured (gray dot) and calculated (red solid 
lines) Mueller matrices for the investigated Si grating at the azimuthal angle of 30° and incidence angle of 65°. 
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Figure 6. Example of the retarder matrix spectra decomposed from the measured (gray dot) and calculated (red solid lines) 
Mueller matrices for the investigated Si grating at the azimuthal angle of 30° and incidence angle of 65°. 

4. CONCLUSIONS 
Depolarization effects introduced in the Mueller matrix measurement may lead to accuracy loss in the nanostructure 
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metrology. We applied the polar decomposition to separate the depolarization effects. When the depolarization effects 
are mainly induced by the MME system, these effects will be only reflected in the depolarizer matrix. Therefore, the 
other two matrices, namely diattenuator matrix and retarder matrix, are used to extract the structure parameters of the 
nanostructure sample. Experiments performed on a silicon grating with an in-house developed dual rotating-compensator 
Mueller matrix ellipsometer have demonstrated the validity of the proposed method. 
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