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ABSTRACT 
In this paper, the through-focus scanning technique using a conventional bright-field optical microscope is introduced for 
nanoscale dimensional analysis with nanometer sensitivity. This technique uses a set of through-focus image maps 
(TFIMs) obtained at different focus positions instead of one ‘best-focus’ image and considers the through-focus image as 
a unique ‘signal’ that represents the target. The boundary element method (BEM) and the rigorous coupled-wave 
analysis (RCWA) method were applied to simulate the optical responses and to obtain the TFIMs of finite aperiodic and 
infinite periodic structures, respectively. The sensitivity of the through-focus technique for the nanoscale dimensional 
changes of targets was analyzed by using the differential through-focus image maps (DTFIMs). The simulation results 
validate the use of this technique for nanoscale metrology. 
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1. INTRODUCTION 
With the development of the photolithography process and resolution enhancement technology, traditional very large 
scale integrated circuits have broken through from micron magnitude to nanometer scale, and it is expected that the 
critical dimension (CD) could advance towards 45 nm node and beyond. In order to achieve effective process control, 
fast, inexpensive, nondestructive and reliable nanometer scale feature measurements are extremely useful in 
semiconductor manufacturing. Currently, CD scanning electron microscopy (CD-SEM) and CD atomic force microscopy 
(CD-AFM) have been widely used for semiconductor metrology. Although they have the ability to analyze extremely 
small targets, CD-SEM, for example, has edge detection and modeling requirements and is faced with high costs and 
throughput concerns, and is in general not well suited for integrated metrology applications. In addition, there is recent 
research that focuses on evaluating electron beam induced line shrinkage or surface damage effects [1]. In comparison 
with CD-SEM and CD-AFM, optics based metrology tools have gained more and more attention in semiconductor 
manufacturing because of their attractive advantages, such as low cost, noncontact, non-destruction, and high throughput. 
Scatterometry is a non-imaging optical technology that has been used in semiconductor metrology with recent great 
success. However, some drawbacks of scatterometry are the requirement of a large target size and a repetitive structure, a 
similar dependence on modeling, and potentially substantial dependence on underlying layers and optical properties [1, 2]. 
Therefore, improvements in optics-based metrology tools are highly desirable to satisfy the increasing challenges with 
ever-decreasing dimensions of future technology nodes. 

In conventional optical microscopy, the ‘best-focus’ image is necessary to make a meaningful analysis. This is based on 
the belief that the most faithful representation of the target is rendered only at the best focus position. Out-of-focus 
images are in general deemed not particularly useful, especially for metrology applications, to represent the target. 
During that period in which the wavelength of the light used was much smaller than the size of the critical dimension of 
the measuring target, these assumptions are quite valid and feasible. But it is hard for optical microscopy to obtain sharp 
images of the features smaller than half the wavelength of illumination (about 200 nm for the visible region) even at the 
best focus position, due to the diffraction limit. However, the out-of-focus images do contain useful information 
regarding the target being measured. In contrast to a single best-focus image, the complete set of out-of-focus images 
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contains additional information about the target. This information may be obtained given an appropriate data acquisition 
and analysis method. In view of the additional information contained in the out-of-focus images, the through-focus 
scanning technique using a conventional bright-field optical microscope has been introduced recently, which uses a set of 
through-focus image maps (TFIMs) obtained at different focus positions instead of one ‘best-focus’ image and considers 
the through-focus image as a unique ‘signal’ that represents the target [3]. It is believed that this technique can be used to 
identify nanoscale variations of targets and to retrieve all the dimensions of an unknown target using a library-matching 
method. 

The TFIMs are formed by stacking the through-focus optical image intensity profiles such that the X-axis represents the 
actual distance on the target, the Y-axis (or Z-axis) represents the through-focus positions, and the intensity of the image 
corresponding to each coordinate (x, y) represents the optical intensity. To obtain the TFIMs and simulate the optical 
responses of through-focus scanning technique for the finite aperiodic and infinite periodic structures, we applied the 
boundary element method (BEM) and the rigorous coupled-wave analysis (RCWA) method in this paper, respectively. 
We analyzed the sensitivity of the through-focus scanning technique for the nanometer dimensional changes of targets by 
using differential through-focus image maps (DTFIMs). The results have validated the use of the through-focus scanning 
technique for nanoscale measurements. 

2. MODELING METHODS 
During the last decades, progress in optical modeling including both scalar-based models and vector-based models has 
occurred. The vector-based optical modeling methods, one of which is the RCWA method, have drawn more and more 
attention owning to their high accuracy. RCWA obtains the exact solution of Maxwell’s equations for electromagnetic 
diffraction. It arrives at the solution without any approximation and without iterative techniques. It has been widely used 
for the design of diffractive optical elements (DOEs), and the results have demonstrated that it is currently the most 
effective method that can be used for the modeling of periodic structures. Therefore, we apply RCWA to simulate the 
optical response of the through-focus technique for the infinite periodic structures in this paper. However, one great 
drawback of RCWA is that it has been primarily limited to infinitely periodic structures. As to finite aperiodic targets, it 
seems to be helpless. To calculate the optical fields of finite aperiodic structures, we apply the boundary element method 
in this paper. The boundary element method, also known as boundary integral method, is one of the boundary-type 
methods based on the integral equation method. It is capable of reducing the matrix dimension significantly in 
comparison with other domain-type methods, such as finite element method (FEM), finite difference method (FDM), and 
finite-difference time-domain (FDTD). Furthermore, the Sommerfield’s radiation condition can be satisfied implicitly 
within the BEM’s formulation; hence the absorbing boundary conditions (ABCs) are not required for BEM and it is not 
subject to errors caused by nonphysical backreflections, which is another advantage of BEM over FEM, FDM and FDTD 

[4]. 

2.1  BEM for finite aperiodic structures 

The geometry of the BEM algorithm for the isolated line diffraction problem is shown in Figure 1(a). Parameters LH, 
LW, and SWA denote the height, width and side wall angle of the isolated line structure, respectively. To calculate the 
field reflected from the isolated line target, the space is divided into four homogeneous subregions S1 to S4 that are 
separated by three boundaries Γ1, Γ2 and Γ3, as depicted in Figure 1(b). The refractive index in subregion Si is denoted by 
ni, i = 1, 2, 3, 4. Because n1 and n2 correspond to the refractive index of free space, the values of n1 and n2 are taken as 
unity. Subregions S3 and S4 correspond to the resist layer and the substrate layer, respectively. A plane wave with unit 
amplitude is normally incident at boundary Γ1, which is a dummy boundary that has no effect on the optical field and is 
only used for modeling conveniently. 

Without any loss of generality, we assume that the field values do not change along Z-axis, i.e. 0=∂∂ z . Then we can 
get the following two-dimensional Helmholtz equation from Maxwell’s equation [5]: 
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where 000 εμω=k . For the transverse electric (TE) mode, ε===Φ qpEz ,1, ; and for the transverse magnetic 
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(TM) mode, 1,, ===Φ qpH z ε . EZ and HZ are the z-components of the electric and magnetic fields, respectively. ε0 
and μ0 are the permittivity and permeability of the free space, respectively; ε denotes the relative permittivity. 
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Figure 1. (a) Geometry of BEM algorithm for the isolated line diffraction problem; (b) schematic diagram of the calculated 
regions with three boundaries Γ1, Γ2 and Γ3. 

By applying Green’s theorem to equation (1) and taking into account the Sommerfeld radiation condition and the 
boundary conditions, we can obtain the regional integral equations as follows [6]: 
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where tΦ , incΦ  are the total and incident field, respectively; 1=ip  for the TE mode and 2
ii np =  for the TM mode 

(i = 1, 2, 3, 4); in̂  denotes the normal unit vector of boundary Γi; Gi is the two-dimensional Green’s function and )2(
0H  

is the zero-order Hankel function of the second kind; vectors ri and 
m

rΓ′  are the position vectors of the points in 
subregion Si and at boundary Γm, respectively. By matching the tangential electric and magnetic field components at 
boundary Γi, we can obtain the following equations: 
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In this case, the boundary integral equations may be divided by using a number of nodes at the boundaries Γ1 – Γ3, and 
the field values at these nodes can be determined by using the BEM with quadratic elements. From these discrete values, 
field values 

iΓΦ  and their derivatives 
iΓΨ  of any points 

i
rΓ  at the boundary Γi can be calculated by quadratic 

interpolation. After the boundary values are known, the total field values t
iΦ  of any point ri in the subregion Si can be 

determined by equations (2) - (5). 
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The computer memory capacity increases rapidly with the increase in the number of boundaries and sampling points. 
The BEM algorithm is difficult to implement if many boundaries are involved. To avoid running out of memory when 
computing, we apply the method proposed by D. Shyu et al. [7] in this paper. By reducing the dimension of the whole 
boundary matrix, the needed memory capacity for the inverse calculations is decided only by the total number of 
sampling points and does not depend on the numbers of boundaries. 

2.2  RCWA for infinite periodic structures 

Without any loss of generality, the RCWA algorithm for the binary rectangular-groove grating diffraction problem 
depicted in Figure 2 under the condition of TE polarization (the incident electric field is normal to the plane of incident) 
is analyzed. The algorithm presented here closely follows the formulation presented by M. G. Moharam, et al. [8, 9], 
wherein the tangential fields are expressed as a Fourier expansion in terms of space harmonics and then electromagnetic 
boundary conditions are applied at each boundary in the structure. 

In the formulation presented here, a linearly polarized light is obliquely incident at an arbitrary angle of incidence θ upon 
the grating structure. The grating is bounded by two different media with refractive indices n1 and n2. The height, width 
and pitch (period) of the grating line are LH, LW and Λ, respectively. The coordinate system definition is shown in 
Figure 2. The Z direction is normal to the boundary, and the grating vector is in the X direction. 
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Λ
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θ
0

-1

+1

0
-1
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LW

region 2

incident wave reflected waves

transmitted waves

grating
region
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Figure 2. Geometry of RCWA algorithm for the binary rectangular-groove grating diffraction problem. 

In the grating region (0 < z < LH), the periodic relative permittivity is expandable in a Fourier series of the form: 

( )∑−+=
p

p jpKxx exp)()( 121 εεεεε                                (9) 

where Λ= π2K , εp is the pth Fourier component of the relative permittivity in the grating region: 
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Λ −

Λ
= 0 exp)(1 dxjpKxxh εε                                  (10) 

The incident normalized electric field that is normal to the plane of incidence is given by: 

( )[ ]θθ cossinexp 10 zxnjkEinc +−=                                (11) 

where 00 2 λπ=k  and λ0 is the wavelength of the light in the free space. 

According to the Rayleigh expansion, the normalized solution in region 1 (z < 0) and region 2 (z > LH) are given by: 
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where Ri is the normalized electric-field amplitude of the ith reflected wave in region 1; Ti is the normalized electric-field 
amplitude of the ith transmitted wave in region 2; kxi is the x-component of the ith diffracted wave and is determined 
from the Floquet condition: 

iKkk xi −= θsin1                                        (14) 

k1,zi and k2,zi are the z-component of the ith reflected wave and ith transmitted wave, respectively, and are given by: 

2,1,222
, =−= lkkk xilzil                                     (15) 

where the sign of k1,zi is determined by: 

0)Im()Re( ,zi, ≥− zill kk                                     (16) 

The magnetic fields in regions 1 and 2 can be obtained from Maxwell’s equation: 
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where μ is the permeability of the region and ω is the angular optical frequency. 

In the grating region, the tangential electric (y-component) and magnetic (x-component) fields are expressed in Fourier 
expansions as: 
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where ε0 and μ0 are the permittivity and permeability of the free space; ( )zS yi  and ( )zU xi  are normalized amplitudes 

of the ith space harmonic fields such that ( )zS yi  and ( )zU xi  satisfy Maxwell’s equation in the grating region: 
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Substituting (18), (19) into (20), (21) and eliminating Hgz, we obtain the coupled-wave equations as follows: 
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We can further get the second-order coupled-wave equations from (22) and (23) in a matrix form as: 
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where zkz 0=′ , and 

EKA −= 2
x                                          (25) 

where Kx is a diagonal matrix with the diagonal element being equal to 0kkxi ; E is the matrix formed by the 
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permittivity harmonic components, with the i, p element )( piipE −= ε ; and I is an identity matrix. A, Kx and E are n n 
matrices, where n is the number of space harmonics retained in the field expansion. 

The solution of the space harmonics of the tangential electric fields may be expressed as: 

( ) ( ) ( )[ ]{ }∑
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−+ −+−=
n

m
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1
00, expexp                       (26) 

where miw ,  and qm are the elements of the eigenvector matrix W and the positive square root of the eigenvalues of the 

matrix A; +
mc  and −

mc  are unknown constants. 

The solution of the space harmonics of the tangential magnetic fields can be derived from (26): 
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The quantity mmimi qwv ,, =  is the i, m element of the matrix V = WQ, where Q is a diagonal matrix with the elements 
qm. 

The amplitudes of the diffracted fields Ri and Ti (together with +
mc  and −

mc ) are determined by matching the tangential 
electric and magnetic fields components at the input and transmitted boundaries. At the input boundary (z = 0): 
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and at the transmitted boundary (z = LH): 
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where δi0 is the Kronecker delta function; X, Y1 and Y2 are diagonal matrices, with diagonal elements being equal to 
( )LHqk m0exp − , ( )0,1 kk zi  and ( )0,2 kk zi , respectively. 

By combining (28) with (29), +
mc , −

mc , and the amplitudes of any order diffracted fields Ri and Ti can be determined. 
After obtaining Ri and Ti, the intensity distribution of the total electromagnetic field in region 1 can be calculated. 

For a given RCWA formulation, the accuracy of the solution depends solely on the number of terms in the field space-
harmonic expansion, with conservation of energy always being satisfied [9]. In order to achieve higher accuracy, the 
number of retained order needs to be increased. However, the simulation time increases exponentially with the increase 
of the number of retained orders. The trade-off between accuracy and computational cost needs to be determined by 
simulation. According to the analysis of R. M. Silver et al. [10, 11] for the TE mode simulations, 50 orders always achieved 
convergence, and for the TM mode simulations, 100 orders achieved acceptable convergence in general. Additionally, 
the RCWA convergence rates are excellent for TE polarization; however, the slow convergence rate always occurs for 
TM polarization. To improve the convergence rate, the inverse rule proposed by L. Li [12, 13] is applied in this paper. 

3. SIMULATION AND SENSITIVITY ANALYSIS 
We simulated the optical responses of the through-focus scanning technique for the isolated line structure (as shown in 
Figure 1) and the binary rectangular-groove grating (as shown in Figure 2) by using BEM and RCWA, respectively. The 
incident wavelength and the incidence angle used in the simulation process are 530 nm and 0°. The structural parameters 
of the isolated line and the binary rectangular-groove grating are shown in Table 1. In the isolated line structure, the 
materials of the resist and substrate layers are Si3N4 and silicon, respectively. As to the binary rectangular-groove 
grating, the region 1 is air and the region 2 is silicon. Therefore, the refractive index of region 1 is 1, and the refractive 
indices of Si3N4 and silicon are 2.0498 and 4.149 – 0.0527i at the 530nm incident wavelength. 
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Table 1. The structural parameters of the measuring targets 

Target Line height (nm) Line width (nm) Side wall angle (°) Period (nm) 

Isolated line structure 200 50 90°  

Binary rectangular-groove grating 230 152  600 

In addition, because the TE mode is generally more sensitive than the TM mode to changes in the dimension of CD, we 
take TE polarization as the mode of incident light during the simulation. The normalized TFIMs for the isolated line 
structure and the binary rectangular-groove grating by using BEM and RCWA are shown in Figure 3. 
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(a)                                                  (b) 

Figure 3. (a) The normalized TFIM of the isolated line structure using BEM; (b) The normalized TFIM of the binary 
rectangular-groove grating using RCWA. The structural parameters of the isolated line and the binary rectangular-groove 
grating are shown in Table 1, and the incident wavelength is 530 nm. 

To verify the use of the through-focus scanning technique, we analyzed the sensitivity for the nanometer dimensional 
changes of targets by using the differential through-focus image maps. The DTFIM is defined as the difference between 
two through-focus image maps. To quantify the difference, we use the moving average (MA) and moving standard 
deviation (MSD), which are defined as: 

∫= L xyx
L

y )d,DTFIM(1)(MA                                  (30) 

[ ]∫ −= L dxyyx
L

y 2)(MA),(DTFIM1)(MSD                            (31) 

where x represents the actual distance on the target, L is the range of the target along the X-axis; y represents the through-
focus position. MA and MSD show the properties of DTFIM from different aspects. MA is used to represent the average 
deviation of the original data from the ideal value, and MSD is used to represent the relative deviation of the original 
data from the average value. The equations of MA and MSD given in (30) and (31) are the continuous forms; however, 
we can also obtain the discrete forms from (30) and (31) based on the Reimann integration. 

DTFIMs of the TFIMs are distinct for different dimensional differences. They enable us to identify which parameter is 
different between two measuring targets. We applied DTFIMs to evaluate the sensitivity for the nanoscale dimensional 
changes of the isolated line structure and the binary rectangular-groove grating, and the simulation results are shown in 
Figure 4. We can easily observe the nanometer scale sensitivity of the through-focus scanning technique from Figure 4. 
A small change in the dimension of a target produces a markedly corresponding change in the TFIM and DTFIM. The 
MA and MSD of the DTFIMs for the isolated line structure and the binary rectangular-groove grating are show in Figure 
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5, respectively. As shown in Figure 5, we can also find that different parameters show different sensitivities. The line 
width shows the lowest sensitivity compared with other parameters. 
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Figure 4. DTFIMs of the isolated line structure and the binary rectangular-groove grating. The upper DTFIMs are for the 
isolated line structure, and the lower DTFIMs are for the binary rectangular-groove grating. Each DTFIM changes only one 
parameter and keeps the others the same as in Table 1. There are a one nanometer change in the line height (LH), a one 
nanometer change in the line width (LW), a one-degree change in the side wall angle (SWA) of the isolated line structure, 
and a one nanometer change in the pitch of the binary rectangular-groove grating. 
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Figure 5. (a) and (b) are the MA and MSD of the measuring targets, respectively. The upper and the lower figures of (a) 
and (b) are for the isolated line structure and the binary rectangular-groove grating, respectively. 

The sensitivity analysis demonstrates the validity of the through-focus scanning technique used for nanoscale 
measurements. To determine the actual dimensions of an unknown target, it requires a library consists of the simulated 
TFIMs for all possible combinations of the target dimensions under the given experimental conditions. The experimental 
TFIM of the unknown target can then be compared with the library. The simulated TFIM from the library that best 
matches the experimental TFIM provides the dimensions of the measuring target. 
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4. CONCLUSIONS 
In this paper, the through-focus scanning technique using a conventional bright-field optical microscope is introduced for 
nanoscale dimensional analysis with nanometer sensitivity. This technique uses a set of TFIMs obtained at different 
focus positions instead of one ‘best-focus’ image and considers the through-focus image as a unique ‘signal’ that 
represents the target. The optical responses of the through-focus scanning technique for the finite aperiodic and infinite 
periodic structures are simulated by using BEM and RCWA, respectively. We analyzed the sensitivity of the through-
focus scanning technique for the nanometer dimensional changes of targets based on DTFIMs. The results have validated 
the use of the through-focus scanning technique for nanoscale measurements. The investigation in this paper shows that 
the through-focus scanning technique provides a promising nondestructive metrology technique for nanoscale structures 
with the potential of measuring multiple parameters and replacing conventional time-consuming and expensive 
measurement methods. We expect that the through-focus scanning technique may be applicable to a wide variety of 
targets with a variety of applications, such as CD metrology, overlay metrology, defect analysis, and process control. It 
may be also applicable to many application areas, such as nanomanufacturing, semiconductor process control, and 
biotechnology. 
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