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ABSTRACT

Dual-rotating compensator Mueller matrix ellipsometer (DRC-MME) has been designed and applied as a powerful tool
for the characterization of thin films and nanostructures. The compensators are indispensable optical components and
their performances affect the precision and accuracy of DRC-MME significantly. Biplates made of birefringent crystals
are commonly used compensators in the DRC-MME, and their optical axes invariably have tilt errors due to imperfect
fabrication and improper installation in practice. The axis tilt error between the rotation axis and the light beam will lead
to a continuous vibration in the retardance of the rotating biplate, which further results in significant measurement errors
in the Mueller matrix. In this paper, we propose a simple but valid formula for the retardance calculation under arbitrary
tilt angle and azimuth angle to analyze the axis tilt errors in biplates. We further study the relations between the
measurement errors in the Mueller matrix and the biplate axis tilt through simulations and experiments. We find that the
axis tilt errors mainly affect the cross-talk from linear polarization to circular polarization and vice versa. In addition, the
measurement errors in Mueller matrix increase acceleratively with the axis tilt errors in biplates, and the optimal
retardance for reducing these errors is about 80°. This work can be expected to provide some guidences for the selection,
installation and commissioning of the biplate compensator in DRC-MME design.
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1. INTRODUCTION

The dual-rotating compensator Mueller matrix ellipsometer (DRC-MME) has been designed and applied as a powerful
tool for nanostructure metrology in high-volume nanomanufacturing !'*. The compensators also called optical retarders
are indispensable optical components and their performances affect the precision and accuracy of the DRC-MME
significantly. Biplates made of birefringent crystals such as magnesium fluoride (MgF,) and quartz are the most
commonly used compensators in the DRC-MME 7). A single-waveplate is a slice of birefringent crystal usually cut
with the optic axis lying on the plane of the plate. And a biplate is composed of two single-waveplates made of the same
material whose optic axes are strictly aligned perpendicular to each other *). The optical properties of the biplate, such as
the retardance and the axis azimuth, are sensitive to the optic axis orientation and thickness of the crsystal, the
wavelength and view angle of the incident light, and the temperature and humidity of the surroundings ). In practice, the
biplate invariably has variety of errors due to imperfect manufacturing and improper installation. These errors
indubitably have great influences on the final measurement results of the DRC-MME. Therefore, studying the relations
between the measurement results and these errors is of great importance to improve the measurement precision and
accuracy of the DRC-MME.

Many researchers have devoted their efforts to explore the influence mechanism of these errors arising from the
manufacturing and installing processes of biplates. P. D. Hale and G. W. Day studied the effects of changes in incident
angle, wavelength and temperature on the retardance of birefringent waveplates . E. A. West ez al and B. Boulbry e al
studied polarization errors associated with birefringent biplates, and these errors include thickness errors, optic axes
misalignment errors, field-of-view errors and optic axis tilt errors """ K. Ebert ef al and P. Marsik et al showed that the
rotating-compensator ellipsometers would suffer from various artifacts due to the interference effect and misalignment
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errors of bipalte compensators '>"*!. H. Dong ef al and H. Dai et al presented measurement errors induced by retardance
deviation and misalignment errors of the rotating waveplates in Stokes polarimeters !'*'*. In our previous work, the
misalignment errors in rotating waveplates of the DRC-MME are studied and calibrated !'”. Most of the published
literatures concentrate on the static errors of the biplates, such as retardance errors, misalignment errors, and field-of-
view errors, which usually can be corrected or compensated through a system calibration procedure. However, if the
rotation axis of the biplate is not parallel to the light beam due to improper installation and commissioning procedure,
dynamic artifacts, such as beam wander and retardance vibration (81 will be introduced, since the biplates are
continuously rotating in the DRC-MME. These dynamic errors are more complicate and usually hardly to be calibrated.

In this paper, we attempt to study and reduce the measurement errors induced by the axis tilt errors of biplates to
improve the measurement accuracy of the DRC-MME. We propose a simple but valid formula to calculate the retardance
of the rotating biplate compensator under arbitrary tilt angle and azimuthal angle based on the theory of wave
propagation. Using the proposed formula, we analyze different kinds of axis tilt errors in the rotating biplate and discuss
their effects on the measurement of the DRC-MME. We further study the relations between the measurement errors of
the DRC-MME and the biplate axis tilt errors through simulations and experiments. A home-made DRC-MME prototype
using MgF, biplates as the rotating compensators has been set up to perform the experiments. Simulated and
experimental results on the measurement of the air Mueller matrix under different axis tilt errors in the biplate
compensators are presented and discussed. This work can be expected to guide the selection and installation of the
biplate compensators and the commissioning of the optical path of the DRC-MME to minimize or eliminate the
measurement errors induced by the axis tilt errors of biplates.

2. AXIS TILT ERRORS IN BIPLATE
2.1 Retardance calculation of biplate

Biplates made of birefringent crystals are the most commonly used compensators in ellipsometry. The phase retardance
of a biplate introduced by the birefringence and the optical path length in the crystal is given by

5=2—7[An-d, €]
A

where An = n. — n, is the birefringence of the crystal, n. and n, are the extraordinary and the ordinary refractive indices, d
= d| — d, is the effective thickness of the biplate, d; and d, are the thicknesses of the first and the second component
plates of the biplate, and A is the vacuum wavelength.
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Figure 1. Schematic of the wave propagation in a biplate.

A bipalte is usually designed and used for normal incidence, but its retardance is sensitive to the incident angle of the
light since both the optical path length and the extraordinary refractive index vary with the direction of light propagation.
Strict calculation of the retardance for arbitrary incident angle can be achieved by using the ray-tracing formulas or
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Maxwell’s equations and boundary conditions !**!). However, these methods can be very complex. Here, we propose a
simple formula to calculate the retardance of the biplate based the theory of wave propagation.

Figure 1 schematically shows the wave propagation in the biplate in a cartesian coordinate system assuming that the
optic axes of the first plates and the second plates lie parallel to x-axis and y-axis, respectively. The light SO enters the
biplate with an incident angle ¢ and an azimuth angle 8 respect to x-axis, and S'O is the projection of SO on x-y plane.
0A; (OB)) and B,B; (A,Aj3) are the wave normals for e-ray (o-ray) in the first and the second plates, and . (%) and ¥,
(72) are their refraction angles, respectively. According to snell's Law, we can obtain

sme=n Smy =nSmy =n,smy,=nsmy,, 2)

where n.; and ng, are the effective refractive indices of the extraordinary rays in the first and the second plates with
respect to incident angle & and azimuth angle 6 of the incident light, and can be calculated as )

1 1.
n, =n|l+|— ——5 [sin’ccos’ 6 |, (3a)
ne nO
1 1), .,
n,=n|l+|———|sin"esin" G |. (3b)
ne n()
According to the theory of wave propagation, the phase retardance between the two rays exiting out from the biplate is
given by
2 )
& = 2 (0A |n,, +|AA,|+|A,A|n, +|AA,|~|OB|n, —[B,B,|~[B,Bi|n.,

27 n n n n @
_ =" d] el _ o _d2 e2 _ o +|A3A4 ,

A cosy, COSy,, Cosy,, COSY,,

where |A3A4| is the optical path difference in the air, and can be calculated using the geometric relationships

|A3A4| = |A3B3| sing = QOBI| siny,, — |OA1| siny,, + |B2B3| siny,, — |A2A3| sin yoz)sing

) (5)
= [dl (tany, —tany, ) - d,(tany,, - tany,, )]smg.
Substituting Eq. (2)-(3) and Eq. (5) into Eq. (4), we obtain
27 n’cos’@+n sin’@ . ,
5(e,0)="=d,| |n> -~ —° sin? & —+/n,” —sin’ &
A n
0o
(6)
27 n’sin?@+n’cos’l . :
—7d2 n’—= — sin? & —/n,” —sin’ & |.
n

[

Equation (6) gives a general formula for retardance calculation of a biplate under arbitrary incident angle and arbitrary
azimuthal angle. To verify the validity of the formula, we have performed experiments on an MgF, biplate (a
commercial zero-order half wavepalte at 193nm from B-halle) whose total thickness is about 1.6mm. As shown in Fig. 2,
the high agreement between the experimental results and calculated results demonstrates the correctness of the formula
as well as the fact that the retardance deviates with the azimuthal angle and the incident angle when the light is oblique
incident.
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Fig. 2. Experimental results (red circle) and calculated results (blue solid line) of the vibrations in the retardance of the MgF,
biplate. The experimental wavelength is 347nm, at which the nominal retardance is about 90°. (a) Vibration versus the
rotation azimuth 0 under a tilt error of 2°; (b) vibrations versus the tilt error £ at azimuths of 0° and 90°.

2.2 Axis tilt errors in biplate

During manufacturing and installation, the biplate invariably has variety of axis tilt errors which may further cause the
light entering the plate at oblique incidence. In a rotating-compensator system, there are usually three possible kinds of
axis tilt errors in the biplate as shown in Fig. 3. (1) The optic axis of the waveplate (F) is tilted off the plate plane due to
imperfect fabrication, such as improper cut of the crystal. (2) The normal direction of the plate plane (N) is tilted off the
rotation aixs (R) due to improper installation of the biplate. (3) The rotation axis is tilted off the beam (K) due to
improper installation or improper commissioning of the optical path.

&

&k

Fig. 3. Schematic of three possible kinds of axis tilt errors in the biplate. F, N, R and K refer to the optic axis of the biplate,
the normal axis of the plate plane, the rotation axis and the beam, and &, &, and & are the angle between F and N, the
angle between N and R, and the angle between R and K.

Obviously, the former two kinds of axis tilt errors cause the light entering the biplate at a constant incident angle, i. e.,
the angle between F and N and the angle between F and R will not change during the rotation. According to Subsection
2.1, they only introduce a stationary bias in retardance from its nominal value which usually can be calibrated and
corrected in an instrument *¥. In addition, they are usually very small that can be ignored. However, the last kind of axis
tilt error causes a varied incidence (i.c. the angle between F and K) when the biplate continuously rotates with the motor
that further results in a vibration in the retardance. Moreover, this kind of axis error is usually relatively large and is not
negligible. Therefore we focus on the tilt error between the rotation axis and the beam in this paper, i.e., &, = &, = 0.

3. MEASUREMENT ERRORS INDUCED BY AXIS TITL IN DRC-MME

3.1 Basic principles and instrumentation of DRC-MME

As schematically shown in Fig. 4, the basic system layout of the DRC-MME in order of light propagation is
PC.i(@,)SCp(a»)A, where P and A stand for the polarizer and analyzer, C,; and C,, refer to the 1st and 2nd rotating
compensators, and S stands for the sample. The fast axis angles C; and C, of the Ist and 2nd compensators rotate
synchronously at @, = 5@ and @, = 3®, where o is the fundamental mechanical frequency. The Stokes vector S, of the
exiting light beam can be expressed as the following Mueller matrix product ! * %!
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S = [M,R(ADR(-C,)M,(6,)R(C,) M[R(-C)M, (3)R(C)[R(-P)M, ]S, , %)

where M; (i = P, A, C1, C2) is the Mueller matrix associated with each optical element. R(«) is the Mueller rotation
transformation matrix for rotation by the angle ¢ [a = P, A, C,, and (,] that describes the corresponding orientation
angle of each optical element. 6 and &, are the wavelength-dependent phase retardances of the 1st and 2nd rotating
compensators. By multiplying the matrices in Eq. (7), we can obtain the following expression for the irradiance at the
detector (proportional to the first element of Sy)

I(t)y=1,M, wa,+ i [azH cos(2na)t — ¢2n)+ b,, sin(2n ot—¢, )]}
o ®)
=1, {I + Zf‘,[az,l cos(2n wt—@,, ) + L., sin(2n wt—@,, )]}

where I is the spectral response function and ¢,, is the angular phase shift. [y = oM 100, o, = azi/ay, Pon = banlag are
the d.c. and d.c.-normalized a.c. harmonic coefficients, respectively. The sample Mueller matrix elements M;; (i, j = 1, 2,
3, 4) are linear combinations of @, and f,. By performing Fourier analysis **), the sample Mueller matrix elements can
be extracted from these harmonic coefficients.

PSA PSG
D P C, S Cqh P L

Fig. 4. Left: Schematic of the DRC-MME with L, P, C,;, S, Cp, A, and D denoting the light source, the polarizer, the first
rotating-compensator, the sample, the second rotating-compensator, the analyzer, and the detector, respectively. Right: the
home-made DRC-MME prototype.

Spectrometer ' 3 source

cascaes

The retardances of the rotating compensators, original axis azimuths of the polarized elements as well as imperfections in
optical components must be determined before performing measurements. These systematic parameters can be obtained
by performing a regression calibration procedure *”' or solving functions of the Fourier coefficients ' %\ In the
calibration, the systematic parameters espectially the retardances are wavelength-dependent and can be described by
dispersion expressions or wavelength-by-wavelength data sets. But for a certain wavelength, the retardance of the
compensator is usually treated as a constant during the rotation by assuming the light entering the compensator at normal
incidence.

Based on the above measurement and calibration principles, we constructed a DRC-MME prototype, as depicted in Fig.
4. The rotating compensators are commercial MgF, biplates as described in Subsection 2.1. Although the available
spectral range can be from 200 to 1000 nm, we carry out the experiments in the range from 250 to 450 nm in which the
ratardance of the biplate leads to relative well-conditioned instrument configuration !"®). In this paper, we performed the
experiments in the straight-through measurement mode as shown in Fig. 4.

3.2 Measurement errors induced by axis tilt in DRC-MME

In the DRC-MME, the biplates rotate with the motors and continuously modulate the polarized light. The azimuths of the
1st and 2nd rotating biplates can be described as

0(t)=C =50t +C,, (9a)
0,(t)=C, =3art +C,, (9a)

where Cy; and Cy, denote the original axis azimuths of the 1st and 2nd rotating biplates, respectively.
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In practice, the biplate invariably has tilt error ¢ between its rotation axis and the beam due to improper installation or
improper commissioning of the optical path. As described in Sec. 2, the axis tilt error will further result in periodic
vibration in the retardance. The vibration in the retardance is given by

AS (1) = dl¢,,6,(1)] - 6,[0,6,(1)], (10)

where the subscript i = 1, 2 denotes the i-th biplate compensator, d[ &, 8(f)] and do[0, 4¢)] can be obtained by Eq. (6), &
and O(1) refer to the axis tilt error and azimuth of the i-th biplate.

The varied component in the retardance leads to another kind of modulation similar to a photoelastic modulator **! with

much lower frequency. In this case, the polarized light is simultaneously modulated by the azimuth and the retardance of
the biplate. The azimuth-modulation introduces only even harmonic coefficients, while the retardance-modulation
introduces both odd and even harmonic coefficients. It is hardly to deal with both of them in the data reduction of a
MME. The common practice is to treat the retardance-modulation as spurious artifact since the azimuth-modulation is
absolutely dominant in a DRC-MME. Unfortunately, this artifact is difficult even impossible to be calibrated and
corrected in an azimuth-modulation DRC-MME. Therefore, measurement errors occur when such kind of axis tilt error
exists.
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Fig. 5. Measurement errors in the normalized Mueller matrix of the air under different axis tilt errors in the biplate
compensators: (a) simulated results; (b) experimental results.

Figure 5 presents the simulated and experimental results in the straight-through mode under different axis tilt errors.
From Fig. 5, it can be observed that the axis tilt errors mainly affect the last row and the last column of the Mueller
matrix, which means the axis tilt errors mainly have influences on the cross-talk from linear polarization to circular
polarization and vice versa. The measurement errors in the Mueller matrix show positive correlations with the axis tilt

Proc. of SPIE Vol. 9526 952617-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/02/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx



errors. In addition, these errors show strong wavelength-dependent property probably because of the wavelength-
dependent configuration conditions resulted from the dispersive retardance as shown in Fig. 8. For an axis tilt error of 1°,
the measurement errors in the normalized Mueller matrix of the air can be up to 0.04. If an accuracy better than 0.005 is
needed for the Mueller matrix measurement, the axis tilt errors should be controlled below 0.2°. The measurement errors
in the Mueller matrix of the experimental results agree to those of the simulated results, and the differences may be
because of the noises and the instrument configuration errors in experiments.

To further study the measurement errors induced by the axis tilt errors, we define the distance between the measured
Mueller matrix M and the ideal Mueller matrix M as

4,4

MG, ) -M, G )]
o(M) ==& T ) (11)
0.01 ©
=——©— experiment
simulation

0.005 -

ocM)

1 1 1 1
0 0.2 0.4 0.6 0.8 1
&[]
Fig. 6. Mueller distance of the DRC-MME in straight-through measurement mode versus axis tilt errors in the biplate
compensators at the wavelength of 250nm.
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Fig. 7. Mueller distance spectra of the DRC-MME in straight-through measurement mode under different axis tilt errors in
the biplate compensators: (a) simulated results; (b) experimental results.

The Mueller distances of the simulated and the experiment results show high agreement as presented in Fig. 6 and Fig. 7.
It can be seen from Fig. 6 that the measurement errors in Mueller matrix increase acceleratively with the axis tilt errors in
biplates. Thus, if we want to obtain an accurate Mueller matrix of the sample, the axis tilt errors should be controlled as
low as 0.2°. From Fig. 7, we can obesrve that the lowest points of the simulated and the experiment results are at 390nm
and 370nm, respectively. The retardances of MgF, biplates at these lowest points are about 80° for both simulations and
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experiments as shown in Fig. 8. Therefore, the optimal retardance for reducing the measurement errors induced by the
axis tilt errors should be 80° instead of 127° which provide the best precision !'"*). However, measurements under this
condition contain much more noise as shown in Fig. 7(b). In practice, we need compromise the effects of the axis tilt
errors and the random noises to choose the biplates for a DRC-MME.

140 . _
Simulation

——o— lIst Biplate

120 —5—— 2nd Biplate

100

Retardance [°]

(o)
(=]

60 \ \ \
250 300 350 370 390 400 450

Wavelength [nm]

Fig. 8. Retardance spectra of the MgF, biplates for the simulations and experiments.

4. CONCLUSIONS

In this paper, a simple but valid formula for retardance calculation of biplates under arbitrary tilt angle and azimuthal
angle is derived and verified. Based on the formula, different axis tilt errors in the rotating biplates and their effects on
the measurement of the DRC-MME are analyzed and discussed. In a rotating-compensator system, the axis tilt error
between the rotation axis and the light beam leads to a continuous vibration in the biplate retardance and is usually
difficult to be calibrated and corrected. A home-made DRC-MME prototype using MgF, biplates as the rotating
compensators is constructed to perform the experiments. Results demonstrate that the axis tilt errors mainly affect the
cross-talk from linear polarization to circular polarization and vice versa. The measurement errors in Mueller matrix
increase acceleratively with the axis tilt errors in biplates, and the measurement errors in the normalized Mueller
matrix of the air can be up to 0.04 for an axis tilt error of 1°. The optimal retardance for reducing the influences of the
axis tilt errors should be 80° instead of 127° which provide the best precision. This work also provides some guidences
in DRC-MME design: (1) the axis tilt errors in biplates should be controlled below 0.2° if an accuracy better than 0.005
in the Mueller matrix is needed; (2) in practical selection of biplates for a DRC-MME, the effects of the axis tilt errors
and the random noises should be compromised.
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