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Ellipsometric scatterometry has gainedwide industrial applications in semiconductormanufacturing after ten years
of development. Among the various types of ellipsometers, Mueller matrix ellipsometer (MME) can provide all 16
elements of the 4 by 4Muellermatrix, and consequently,MME-based scatterometry can acquiremuchmore useful
information about the sample and thereby can achieve better measurement sensitivity and accuracy. In this paper,
the basic principles and instrumentation ofMME are presented, and the data analysis inMME-based nanostructure
metrology is revisited from the viewpoint of computational metrology. It is pointed out that MME-based
nanometrology is essentially a computational metrology technique by modeling a complicated forward process
followed by solving a nonlinear inverse problem. Several case studies are finally provided to demonstrate the
potential of MME in nanostructure metrology.
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1. Introduction

Nanomanufacturing is referred to as the manufacturing of products
with feature dimensions at the nanometer scale. It is an essential bridge
between the newest discoveries of fundamental nanoscience and
real-world products by nanotechnology. One critical challenge to the
gital Manufacturing Equipment
echnology, 1037 Luoyu Road,
x: +86 27 8755 8045.
realization of nanomanufacturing is the development of necessary in-
strumentation and metrology at the nano-scale, especially the fast,
low-cost, and non-destructive metrology techniques that are suitable
in high-volume nanomanufacturing [1]. Although scanning electron
microscopy (SEM), atomic force microscopy (AFM), or transmission
electron microscopy (TEM) can provide high precision data, they are,
in general, time-consuming, expensive, complex to operate, and prob-
lematic in realizing in-line integrated measurement.

Ellipsometry is an optical metrology technique that utilizes polar-
ized light to characterize thickness of thin films and optical constants
of both layered and bulk materials [2]. Since the year of around 2000,
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spectroscopic ellipsometry (SE) was introduced to monitor the critical
dimension (CD) of grating structures in semiconductor manufacturing
[3–5]. Comparedwith SEM, AFM, and TEM, this technique, also referred
to as optical scatterometry or optical critical dimension metrology, has
achieved wide industrial applications after ten years of development
due to its attractive advantages, such as low cost, high throughput,
and minimal sample damage [6,7].

The application of ellipsometry for nanostructure metrology heavily
relies on two key issues [8], i.e., the collection of a precise measured
signature of a diffractive nanostructure as well as the fast and accurate
reconstruction of the structural profile from the measured signature.
The reconstruction of the structural profile from themeasured signature
is a typical inverse diffraction problem with an objective of finding a
profile whose theoretical signature can best match the measured one.
The solution of the inverse problem usually employs two kinds of
methods [9], namely the nonlinear regression method [10,11] and the
library search method [12–14]. Both of these two approaches involve
the establishment of a theoretical diffraction model that relates the
optical signatures and the structural profiles associated with these sig-
natures. Many methods have been proposed to solve this diffraction
model [15], of which the rigorous-coupled wave analysis (RCWA)
[16–18] is the most common approach in optical scatterometry. The
collection of the measured signature involves the development of a
specific ellipsometer. Among the various types of ellipsometers,Mueller
matrix ellipsometer (MME), also known as Mueller matrix polarimeter,
can provide all 16 elements of the 4 × 4Mueller matrix in eachmeasure-
ment. Comparedwith conventional ellipsometric scatterometry,which at
most obtains two ellipsometric angles, MME-based scatterometry can
acquire much more useful information about the sample, such as anisot-
ropy and depolarization. Therefore, MME is expected to be a powerful
tool for nanostructure metrology in high-volume nanomanufacturing.

Several researchers have investigated theMME-based nanostructure
metrology over the past years [19–25]. Novikova et al. implemented
MME in different azimuthal angles to characterize one-dimensional
diffraction gratings [19,20]. It was shown that theMuellermatricesmea-
sured in proper conical diffraction configurations may help decouple
some of the fitting parameters. We further proposed a measurement
configuration optimizationmethod forMME tofindanoptimal combina-
tion of the incidence and azimuthal angles, with which more accurate
measurement can be achieved [21]. Kim and Li et al. investigated the
possibility of measuring overlay and grating asymmetry with MME [22,
23]. Their research indicated that MME had good sensitivity to both the
magnitude and direction of overlay and profile asymmetry, while con-
ventional ellipsometric scatterometry had difficulty in distinguishing
the direction of the above features. In our recent work, noticeable depo-
larization effects were observed from the measured Mueller matrices of
nanoimprinted resist patterns [24,25].We found that improved accuracy
can be achieved for the line width, line height, sidewall angle, and resid-
ual layer thickness measurement after taking depolarization effects into
account.

In this paper, we will review the principles and potential of MME in
nanostructure metrology to provide a complete picture of this tech-
nique. We will first introduce the basic principles and instrumentation
of MME, with a demonstration of the development of a broadband
dual rotating-compensator Mueller matrix ellipsometer in our lab.
Then wewill revisit the data analysis in MME-based nanostructure me-
trology from the viewpoint of computational metrology [26,27], and
point out that MME-based nanometrology is essentially a computation-
al metrology technique by modeling a complicated forward process
followed by solving a corresponding nonlinear inverse problem. Finally,
we will present several case studies in MME-based nanostructure
metrology, including the measurement of e-beam patterned grating
structures, the measurement of nanoimprinted resist patterns, the
measurement of lithographic patterns with line edge roughness
(LER), and the measurement of etched trench nanostructures that
are typically encountered in the manufacturing of flash memory
storage cells, to demonstrate the capability of MME in nanostructure
metrology.

2. Fundamentals

2.1. Basic principles and instrumentation of MME

The measurement of Mueller matrix involves a series of K (K ≥ 16)
flux measurements made by illuminating the sample with different
polarization states and analyzing the exiting beam with different ana-
lyzers. The k-thmeasuredflux gk is related to the sampleMuellermatrix
M by [28]

gk ¼ AT
kMSk ¼ Sk⊗Akð ÞTm; 1≤ k≤ K; ð1Þ

where the symbol⊗ denotes the Kronecker product, the superscript “T”
denotes the transpose. Sk is the k-th incident polarization state produced
by the polarization state generator (PSG), and Ak is the k-th exiting polar-
ization state produced by the polarization state analyzer (PSA). m is a
16 × 1 Mueller vector obtained by reading the sample Mueller matrix
elements in the lexicographic order, i.e., m = [M11, M12, M13, M14, M21,
M22,…,M44]T. Eq. (1) can be written in a matrix form as

G ¼ Dm; ð2Þ

whereG is aK×1columnvectorwith the k-th element being gk, andD is a
K × 16 matrix with the k-th row vector being (Sk ⊗ Ak)T. According to
Eq. (2), the sample Mueller matrix can be measured by

m ¼ DþG; ð3Þ

where D+ = (DTD)−1DT is the Moore–Penrose pseudo-inverse of matrix
D. Eq. (3) is the basic and general principle of sample Mueller matrix
measurement for any type of Mueller matrix ellipsometers, such as the
Mueller matrix ellipsometer based on the coupled ferroelectric liquid
crystal cell [29,30], the dual rotating-compensator [31,32], or the four
photoelastic modulators [33]. The dual rotating-compensator configura-
tion was adopted in the development of the Mueller matrix ellipsometer
in our lab.

Specifically, as schematically shown in Fig. 1, the basic system layout
of the dual rotating-compensator Mueller matrix ellipsometer in order
of light propagation is PCr1(ω1)SCr2(ω2)A, where P and A stand for the
polarizer and analyzer, Cr1 and Cr2 refer to the 1st and 2nd rotating
compensators, and S stands for the sample. The fast axis angles C1 and
C2 of the 1st and 2nd compensators rotate synchronously at ω1 = 5ω
and ω2 = 3ω, where ω is the fundamental mechanical frequency. The
Stokes vector Sout of the exiting light beam can be expressed as the
following Mueller matrix product [25,32]

Sout ¼ MAR Að Þ½ � R −C2ð ÞMC2 δ2ð ÞR C2ð Þ½ �M R −C1ð ÞMC1 δ1ð ÞR C1ð Þ½ � R −Pð ÞMPR Pð Þ½ �Sin;
ð4Þ

where Mi (i = P, A, C1, C2) is the Mueller matrix associated with each
optical element. R(α) is the Mueller rotation transformation matrix for
rotation by the angle α [α = P, A, C1, and C2] that describes the corre-
sponding orientation angle of each optical element. δ1 and δ2 are the
wavelength-dependent phase retardances of the 1st and 2nd rotating
compensators. By multiplying the matrices in Eq. (4), we can obtain
the following expression for the irradiance at the detector (proportional
to the first element of Sout) [32]

I tð Þ ¼ I00M11 a0 þ
X16
n¼1

a2n cos 2nωt−ϕ2nð Þ þ b2n sin 2nωt−ϕ2nð Þ½ �
( )

¼ I0 1þ
X16
n¼1

α2n cos 2nωt−ϕ2nð Þ þ β2n sin 2nωt−ϕ2nð Þ½ �
( )

;

ð5Þ



Fig. 1. Principle and prototype of the dual rotating-compensator Mueller matrix ellipsometer.
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where I00 is the spectral response function and ϕ2n is the angular phase
shift. I0 = I00M11a0, α2n = a2n/a0, and β2n = b2n/a0 are the d.c. and
d.c.-normalized a.c. harmonic coefficients, respectively. The sample
Mueller matrix elementsMij (i, j= 1, 2, 3, 4) are linear combinations
of α2n and β2n. By performing Fourier analysis [34], the sample
Mueller matrix elements can be extracted from these harmonic coeffi-
cients. Based on the above measurement principle, we developed a
Mueller matrix ellipsometer prototype, as depicted in Fig. 1. Currently,
the spectral range is from 200 to 1000 nm. The beam diameter can be
changed from the nominal value of ~3 mm to a value of ~200 μm
equipped with the focusing lens. The two arms of the ellipsometer
and the sample stage can be rotated to change the incidence and
azimuthal angles in experiments.

2.2. Data analysis revisited from the viewpoint of computational metrology

In the MME-based nanostructure metrology, the optical signature,
i.e., the Mueller matrix spectra, of the nanostructure is measured and
then an optical model corresponding to the nanostructure is constructed.
The next step is the parameter extraction, which involves an inverse dif-
fraction problem solving. In this step, the calculated signature from the
constructed optical model is adjusted iteratively to find a signature that
can best match the measured one. The structural parameters associated
with the calculated best-fit signaturewill be treated as thefinalmeasure-
ment results.

The MME-based nanostructure metrology is essentially a model-
based technique and heavily depends on two key techniques, i.e., the
forward optical modeling and the inverse parameter extraction, which
are both computationally intensive. Recently, we termed such kind of
x(i + 1) = x

Measurement 

configuration

a = [a1, a2, , aK]T

Forward model

f(x, a)

(Guess of)

Measurands

x = [x1, x2, , xP]T

0a a a y

Fig. 2. Fundamental principles and basic e
model-based metrology as computational metrology [26,27], with an
emphasis on solving the vast and complicated scientific computations,
especially numerical computations. In general terms computational
metrology can be defined as the measurement where a complicated
measurement process is modeled as a forward problem, and the
measured data are collected by a specific instrument under a certain
measurement configuration, and then the measurands are precisely and
accurately extracted from the measured data by solving the correspond-
ing inverse problem. The fundamental principles of computational
metrology are summarized as shown in Fig. 2, whose basic elements
include the measurands, measurement configuration, forward model,
measured data, and solution of measurands. The rest of this section will
review the data analysis in MME-based nanostructure metrology from
the viewpoint of computational metrology.

Without loss of generality, we denote the measurands as a
P-dimensional vector x = [x1, x2, …, xP]T, where x1, x2, …, xP can be
the line width, line height, and sidewall angle of the grating sample
under measurement. The measurement configuration is defined as the
combination of selected wavelengths λ, incidence angles θ, and
azimuthal angles ϕ, and is represented by a = [λ, θ, ϕ]T. The optical
signature of the grating sample can be calculated by rigorous coupled-
wave analysis (RCWA) [16–18]. In RCWA, both the permittivity func-
tion and electromagnetic field components are expanded into Fourier
series. Afterwards, the tangential filed components are matched at
boundaries between different layers, and thereby the boundary-value
problem is reduced to an algebraic eigenvalue problem. Consequently,
the overall reflection coefficients can be calculated by solving the eigen-
value problem. According to the reflection coefficients, the 2 × 2 Jones
matrix J(x, a) associated with the zeroth-order diffracted light of the
22 ( , )y f x a

(i) + ∆x

Measured data

y = [y1, y2, , yN]T

2
ˆ argmin ( , )

x
x y f x a

Solution of 

measurands

0 y yy
0

ˆ x xx x

lements of computational metrology.
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sample, which connects the incoming Jones vector with the diffracted
one, can be formulated by

Erp
Ers

� �
¼ J x; að Þ Eip

Eis

� �
¼ rpp rps

rsp rss

� �
Eip
Eis

� �
; ð6Þ

where Es,p refers to the electric field component perpendicular and
parallel to the plane of incidence, respectively. If the sample is non-
depolarizing, the 4 × 4 Mueller matrix M(x, a) can be calculated from
the Jones matrix J(x, a) by [2]

M x; að Þ ¼
M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

2664
3775 ¼ A J x; að Þ⊗ J� x; að Þ� �

A−1
; ð7aÞ

where J⁎(x, a) is the complex conjugate of J(x, a), and the matrix A is
given by

A ¼
1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

2664
3775: ð7bÞ

In practice, the Mueller matrix M(x, a) is usually normalized to the
(1, 1)th element M11, with the normalized Mueller matrix elements
mij = Mij/M11.

When the sample has a depolarization effect, totally polarized
light used as a probe in ellipsometry is transformed into partially
polarized light. In this case, the Mueller matrix is a depolarizing
one. The depolarization effect of a depolarizing Mueller matrix can
be characterized by the depolarization index DI defined by [35]

DI ¼
Tr MMT
� �

−M2
11

3M2
11

24 351=2

; 0≤DI≤ 1; ð8Þ

where Tr(⋅) represents thematrix trace.DI=0andDI=1 correspond to
the totally depolarizing and non-depolarizing Mueller matrices, respec-
tively. Many factors may induce depolarization effects in optical
scatterometry [24,25], such as finite spectral bandwidth of the mono-
chromator, finite numerical aperture (NA) of focusing lens in the mea-
surement system, thickness nonuniformity in a thin film formed on a
substrate, incoherent superposition of the light from two or more mate-
rials, and large surface or edge roughness of a sample. In the analysis a
depolarizing sample, Eqs. (7a) and (7b) cannot be applied to directly
derive the Mueller matrix from the corresponding Jones matrix any
more. The optical modeling principle is based on the optical equivalence
of the polarization states [36], which states that a depolarizing system is
optically equivalent to a system composed of a parallel combination of
several non-depolarizing systems.We further deduce that a depolarizing
Mueller matrix can be written as the sum of various non-depolarizing
Mueller matrices, i.e., [25]

MD ¼
Z

ρ uð ÞMND uð Þdu; ð9Þ

where MD and MND represent the depolarizing and non-depolarizing
Mueller matrices, respectively, and the latter can be calculated by
Eqs. (7a) and (7b). The variables u denotes the factors that induce depo-
larization, and ρ(u) is a weighting function, which can be specifically the
spectral bandwidth function, numerical aperture, or thickness distribu-
tion function.
A weighted least-squares regression analysis (Levenberg–Marquardt
algorithm) [10,11] or library search [12–14] is then performed, during
which the measurands are varied until the calculated and measured
data match as much close as possible. The solution of measurands x̂ can
be achieved by minimizing a weighted mean-square error function χr

2

defined by

χ2
r ¼ 1

15Nλ−P
χ2 ¼ 1

15Nλ−P

XNλ

k¼1

X4
i; j¼1

mmeas
i j;k −mcalc

i j;k x; að Þ
σ mij;k

� �
24 352

; ð10Þ

where k indicates the k-th spectral point from the total number Nλ,
indices i and j show all the Mueller matrix elements except m11, and P
is the total number of measurands. mij,k

meas denotes the measured
Mueller matrix elements, and mij,k

calc(x, a) denotes the calculated
Mueller matrix elements associated with the measurands x and the
measurement configuration a. Since the wavelengths λ are varied in a
spectral range, here the vector a is only the combination of fixed inci-
dence and azimuthal angles, i.e., a = [θ, ϕ]T. σ(mij,k) is the estimated
standard deviation associated with mij,k.

In practice, the MME-based nanostructure metrology process invari-
ably has errors. These errors, which can be generally categorized into ran-
dom and systematic errors, have great influences on the final precision
and accuracy of the solution of measurands. An objective of the computa-
tional metrology is to quantitatively determine the values of measurands
[26,27]. It is therefore necessary to theoretically analyze the error prop-
agation and estimation in MME-based nanostructure metrology. For
clarity, the measured Mueller matrix elements mij,k

meas in Eq. (10) are
marked as yn with the three indices i, j and k lumped into a single one
n. The calculatedMuellermatrix elementsmij,k

calc(x, a) are correspondingly
marked as fn(x, a). Ignoring the constant coefficient in the front of
Eq. (10), we have

χ2 ¼
XN
n¼1

wn yn− f n x; að Þ½ �2 ¼ y−f x; að Þ½ �TW y−f x; að Þ½ �; ð11Þ

where W is an N × N diagonal matrix with diagonal elements
wn = 1/σ2(yn) and N = 15Nλ. The inverse problem in MME-based
nanostructure metrology is then formulated as [13]

x̂ ¼ argmin
x∈Ω

y−f x; að Þ½ �TW y−f x; að Þ½ �
n o

: ð12Þ

Weassume that the function f(x, a) is sufficiently smooth and can be
expanded in a Taylor serieswhich, truncated to thefirst-order, leads to a
linear model at (x̂, a)

f x0
; a0

� 	 ¼ f x̂; að Þ þ Jx � x0−x̂
� 	þ Ja � a0−a

� 	
; ð13Þ

where Jx and Ja are theN× P andN×2 Jacobianmatriceswith respect to
x and a, respectively, whose elements are given by

Jx½ �i j ¼
∂ f i x0

; a0
� 	
∂xj







x0¼x̂; a0¼a

; ð14aÞ

Ja½ �i j ¼
∂ f i x0

; a0
� 	
∂aj







x0¼x̂; a0¼a

: ð14bÞ

Substitution of x′ = x0 and a′ = a0 into Eq. (13) gives

f x0; a0ð Þ ¼ f x̂; að Þ þ JxΔx þ JaΔa; ð15Þ

where x0 and a0 are the true values of x and a, respectively. Δx and Δa
represent the error propagated into x̂ and the configuration error in
parameter extraction, respectively, and are given by Δx = x0 − x̂ and
Δa= a0 − a. Themeasured data ywill be the sum of the true signature
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y0 [ = f(x0, a0)] of the sample, a deterministic offset vector μΔy, and a
random noise vector εΔy, i.e.,

y ¼ f x0; a0ð Þ þ μΔy þ εΔy: ð16Þ

Inserting Eqs. (15) and (16) into Eq. (12), we have

χ2
min ¼ y−f x̂; að Þ½ �TW y−f x̂; að Þ½ �

¼ JxΔx þ JaΔaþ μΔy þ εΔy
h iT

W JxΔx þ JaΔaþ μΔy þ εΔy
h i

:
ð17Þ

By taking the derivative of both sides of Eq. (17) with respect to x,
we derive [21,37]

eJxΔx þeJaΔaþ eμΔy þ eεΔy ¼ 0; ð18Þ

where eJx ¼ W1=2 Jx , eJa ¼ W1=2 Ja , eμΔy ¼ W1=2μΔy , and eεΔy ¼ W1=2εΔy .
Eq. (18) relates the error Δx in x̂ with the error sources such as the
configuration error Δa as well as the systematic and random errors
μΔy and εΔy in y. Assuming the random noise vector εΔy has a zero

mean and εΔyn � N 0; σ2 ynð Þ
� �

, we can derive the covariance matrix

of x̂ that

C x̂ð Þ ¼ eJþx � C eεΔy� �
� eJþx� �T ¼ eJTxeJx� �−1

; ð19Þ

where eJþx ¼ eJTxeJx� �−1eJ Tx is the Moore–Penrose pseudo-inverse of matrixeJx. The standard deviation of parameter xi (i=1, 2,…, P) can be estimated
from the diagonal elements of C x̂ð Þ and is given by

σ xið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C x̂ð Þ½ �ii

q
: ð20Þ
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Fig. 3. (a) SEMmicrograph of the investigated e-beam patterned grating structure with the app
measured and calculated best-fit Mueller matrix spectra when considering the depolarization e
performed at the incidence angle of 65° and azimuthal angle of 60°. The spectral range was va
The estimated uncertainty in parameter xiwith a desired confidence
level is then given by

u xið Þ ¼ κσ xið Þ; ð21Þ

where κ is coverage factor associated with the prescribed confidence
level. By taking the mean value of both sides of Eq. (18), we can derive

μΔx ¼ Δxh i ¼ eJþxeJaΔaþeJþx eμΔy; ð22Þ

which describes how the configuration error Δa and the systematic
error μΔy in y lead to the systematic error μΔx in x̂ . According to
Eq. (22), we can estimate the systematic error μΔx in x̂ if we know the
configuration error Δa and the systematic error μΔy in y. However, in
practice, the errors Δa and μΔy are usually difficult to obtain, which
makes the above estimation unfeasible. As described in Eq. (22), the
systematic error μΔx in x̂ will be mainly induced by the configuration
error Δa if we assume the measurement system is well calibrated and
the systematic error μΔy in y is small. In this case, we can optimize the
measurement configuration by [21,25]

θopt; ϕopt

� �
¼ arg min

θ∈Θ;ϕ∈Φ
max
x∈Ω

eJþxeJa��� ���� �� �
; ð23Þ

to find an optimal combination of fixed incidence and azimuthal angles,
with which more accurate measurement can be achieved. The notation
‖ ⋅ ‖ in Eq. (23) represents the ℓp (p = 1, 2, ∞) matrix norm.

3. Application to nanostructure metrology

Four kinds of nanostructures were measured using the in-house
developed Mueller matrix ellipsometer, including e-beam patterned
grating structures, nanoimprinted resist patterns, lithographic patterns
with LER (line edge roughness), and etched trench nanostructures.
The last sample is from the practical manufacturing process lines of
00200 400 600 800200 400 600 800

Wavelength [nm]

200 400 600 800

lied geometric model overlaid; (b) fitting result and (c) depolarization index spectra of the
ffects induced by finite spectral bandwidth and NA of the ellipsometer. Data analysis was
ried from 200 to 800 nmwith increments of 5 nm.



Table 1
Comparison of measurands of the investigated e-beam patterned grating structure ex-
tracted fromMME and SEM measurements.

Measurands MME SEM

x1 (nm) 55.4 ± 0.52 56.2
x2 (nm) 74.8 ± 0.24 72.9
x3 (deg) 87.6 ± 0.29 86.1
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flash memory storage cells, which was made on a 12 inch Si wafer that
consists of thousands of dies and each die has a size of less than
280 μm × 1200 μm. In experiments, the spectral range was varied
from 200 to 800 nm with increments of 5 nm. The incidence angle
was fixed at 65° for the first three samples and was fixed at 55° for
the last sample due to the small size of the dies in comparison with
the spot size of instrument. The azimuthal angle was fixed at 60° for
the first sample, which was achieved by performing measurement
configuration optimization according to Eq. (23). As for the last three
samples, the azimuthal angle was fixed at 0° to decrease RCWA calcula-
tion time, since the RCWA calculation in a conical diffraction configura-
tion (ϕ≠ 0°) is muchmore time-consuming than in a planar diffraction
configuration (ϕ=0°), especiallywhen depolarization effects are incor-
porated into the optical model. Although the final extracted fitting pa-
rameters from the MME measurements might not be the optimal for
the last three samples in comparisonwith those achieved at the optimal
measurement configuration, reasonable agreement between the results
measured by MME and SEM/TEMmeasurements can still be observed.
The corresponding fitting errorsχr between themeasured and calculated
best-fit Mueller matrix spectra after considering depolarization effects
were also presented for the four samples. As can been seen, the fits for
all the four samples do not haveχr close to 1, which is possibly attributed
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Fig. 4. (a) SEMmicrograph of the investigated nanoimprinted resist pattern with the applied ge
sured and calculated best-fit Mueller matrix spectra when considering the depolarization effec
layer thickness nonuniformity. Data analysiswas performed at the incidence angle of 65° and az
5 nm.
to the following reasons. First, the adopted optical models are imperfect.
There might be some influential structural features and unknown depo-
larization effects that were not incorporated into the model. Second, the
estimated standard deviations of the experimental Mueller matrix ele-
ments may not reflect all of the errors in the measurement, since it has
been found in our previous work [25] that the estimates of the errors in
the fitting parameters usually underestimated the true errors. For this
reason, the actual estimated uncertainties appended to the MME-
extracted parameters were not directly obtained according to Eq. (21)
but from a corrected form of Eq. (21), i.e., u(xi) = κ × χr × σ(xi) [25].
We will present the measurement details about the four samples in the
remainder of this section.

3.1. Measurement of e-beam patterned grating structures

With the ever-downscaling in very-large scale integrated circuits,
critical dimension (CD) monitoring is becoming more and more
challenging. According to the International Technology Roadmap for
Semiconductors (ITRS), the requirements for uncertainty in CD mea-
surement for forth-coming process nodes are less than 2 nm [38]. The
ITRS also indicates that conventional ellipsometric scatterometry is
quickly reaching its limit and requires improvements for future process
nodes. In this section, we try to apply MME to characterize e-beam
patterned grating structures with small CDs. Fig. 3(a) depicts the SEM
micrograph of the investigated e-beam patterned grating structure,
which has a pitch of 180 nm and a duty cycle of 1:2, i.e., with a nominal
CD of 60 nm. As shown in Fig. 3(a), we apply a symmetrical trapezoidal
model with three structural parameters x1, x2 and x3 to characterize the
grating line profile, where x1, x2 and x3 represent the grating width,
grating height and sidewall angle, respectively. During the regression
analysis, we fixed the grating pitch and just let the parameters x1–x3
vary. The optical constants of the Si substrate in the rest of this section
were all fixed at values taken from [39]. The optical properties of the
800200 400 600 800200 400 600 800
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ta

t

ometric model overlaid; (b) fitting result and (c) depolarization index spectra of themea-
ts induced by finite spectral bandwidth and NA of the ellipsometer, as well as the residual
imuthal angle of 0°. The spectral range was varied from 200 to 800 nmwith increments of



Table 3
Comparison of measurands of the investigated lithographic pattern with LER extracted
from MME and SEMmeasurements.

Measurands MME SEM

x1 (nm) 205.6 ± 1.75 198.5
x2 (nm) 310.5 ± 0.32 308.3
x3 (deg) 89.8 ± 0.10 89.3
x4 (nm) 116.4 ± 0.17 115.4
x5 (nm) 5.5 ± 0.61 4.8

Table 2
Comparison of measurands of the investigated nanoimprinted resist pattern extracted
from MME and SEM measurements.

Measurands MME SEM

x1 (nm) 352.8 ± 0.68 352.2
x2 (nm) 471.9 ± 0.47 472.1
x3 (deg) 87.2 ± 0.11 87.5
x4 (nm) 61.9 ± 0.27 57.8
x5 (nm) 67.9 ± 2.46 –

σt (nm) 3.3 ± 0.31 –
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hydrogen silsesquioxane (HSQ) resist were modeled using a Cauchy
model modified with an Urbach tail in the extinction coefficient [34]

n λð Þ ¼ Aþ B=λ2 þ C=λ4
; ð24aÞ

k λð Þ ¼ α exp β 1=λ−1=λ0ð Þ½ �; ð24bÞ

whose parameters were determined from a HSQ resist film de-
posited on the Si substrate and taken as A = 1.44, B = 3.78e−
3 μm2, C = 6.93e−5 μm4, α = 2.05e−4, β = 1.48 μm, λ0 = 0.40 μm.
The wavelength λ in Eqs. (24a) and (24b) is in unit of micrometer.

Fig. 3(b) shows the ellipsometer-measured Mueller matrix spectra
of the investigated e-beam patterned grating structure, and the corre-
sponding depolarization index spectrum calculated using Eq. (8) is pre-
sented in Fig. 3(c). As can be observed from Fig. 3(c), the depolarization
indices are close to 1 over most of the spectrum and show a significant
dip to about ~0.8 near 200 nm. Considering that the ellipsometer-
measured data for each recordedwavelength always contains contribu-
tions from a span ofwavelengths and incident directions,we investigate
the depolarization effects induced by the finite spectral bandwidth and
NA of the ellipsometer. In the experiments, the instrumental spectral
bandwidth and NA were pre-determined through measurements on a
nominally 1000 nmSiO2 thick thermal film on the Si substrate to isolate
the effects of bandwidth and NA from sample-specific artifacts. The
measurement yielded the spectral bandwidth σλ = 1.0 nm and
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Fig. 5. (a) SEMmicrograph of the investigated lithographic pattern with the applied geometric
calculated best-fitMuellermatrix spectrawhen considering the depolarization effects induced b
incidence angle of 65° and azimuthal angle of 0°. The spectral range was varied from 200 to 80
NA = 0.065 [25]. A rectangular bandwidth function was chosen in
the measurement of bandwidth. During the further regression analysis,
we fixed the bandwidth and NA and let the parameters x1 and x2 vary.
Fig. 3(b) depicts the fitting result of the measured and calculated
best-fit Mueller matrix spectra when considering the depolarization ef-
fects induced by finite spectral bandwidth and NA, and Fig. 3(c) shows
the depolarization index spectra associated with the measured and
calculated best-fit Mueller matrix spectra. An excellent match can be
observed from Fig. (3), which yields a fitting error of χr = 10.62.
Table 1 presents the comparison of fitting parameters extracted from
MMEand SEMmeasurements. The uncertainties appended to thefitting
parameter values all have a 95% confidence level in the rest of this
section. As observed from Table 1, the fitting parameter values extracted
fromMMEmeasurements exhibit good agreement with the results mea-
sured by SEM.

3.2. Measurement of nanoimprinted resist patterns

Nanoimprint lithography (NIL), in which features on a prepatterned
mold are transferred directly into a polymermaterial, represents a prom-
ising technique with the potential for high resolution and throughput as
well as low cost. In order to control NIL processes to achieve good fidelity,
accurate measurement of structural parameters of nanoimprinted pat-
terns is highly desirable. These parameters include not only the pattern
height and width but also the residual layer thickness. Fig. 4(a) depicts
the SEM micrograph of the investigated nanoimprinted resist pattern,
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Fig. 6. (a) TEMmicrograph of investigated etched trench nanostructure with the applied geometric model overlaid; (b) fitting result and (c) depolarization index spectra of themeasured
and calculated best-fitMuellermatrix spectrawhen considering the depolarization effects induced byfinite spectral bandwidth andNAof the ellipsometer. Data analysiswas performed at
the incidence angle of 55° and azimuthal angle of 0°. The spectral range was varied from 200 to 800 nmwith increments of 5 nm.
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which was imprinted using a Si imprinting mold. The Si imprinting mold
has gratings with a pitch of 800 nm, a top line width of 350 nm, a line
height of 472 nm, and a sidewall angle of 88° [21]. As shown in
Fig. 4(a), we apply a symmetrical trapezoidal model with a total of five
structural parameters x1–x5 to characterize the grating line profile,
where x1, x2, x3, x4, and x5 represent top line width, line height, sidewall
angle, residual layer thickness, and radius of the bottom round corner,
respectively. During the regression analysis, we fixed the grating pitch
at 800 nm and just let the parameters x1–x5 vary. The optical properties
of the STU220 resist were modeled using a two-term Forouhi–Bloomer
model [40], whose parameters were determined from a STU220
resist film deposited on the Si substrate and taken as A1 = 4.447e−3,
A2 = 3.051e−2, B1 = 8.8611 eV, B2 = 12.0043 eV, C1 = 19.6703 eV2,
C2 = 36.3258 eV2, n(∞) = 1.4842, and Eg = 3.3724 eV.

Fig. 4(b) shows the ellipsometer-measured Mueller matrix spectra
of the investigated nanoimprinted resist pattern, and the corresponding
depolarization index spectrum is presented in Fig. 4(c). As can be
observed from Fig. 4(c), the depolarization indices are close to 1 over
most of the spectrum except for the range from ~300 to 460 nm and
show significant dips to ~0.84 near 320 nm. Clearly, the investigated
nanoimprinted grating structure exhibits noticeable depolarization
effects that should be included in the interpretation of the ellipsometer-
measured data. As did in Section 3.1, wefirst incorporated the depolariza-
tion effects induced by the instrumentalfinite spectral bandwidth andNA
Table 4
Comparison of measurands of the investigated etched trench nanostructure extracted
from MME and TEM measurements.

Measurands MME TEM

x1 (nm) 74.1 ± 0.40 75.0
x2 (nm) 133.9 ± 0.59 135.6
x3 (nm) 89.9 ± 0.31 86.9
x4 (nm) 14.0 ± 0.70 9.9
x5 (nm) 134.0 ± 0.53 134.3
x6 (nm) 125.6 ± 0.30 129.6
into the optical model. The depolarization index spectrum DI1 corre-
sponding to the achieved best-fit calculatedMuellermatrix spectra is pre-
sented in Fig. 4(c). As shown in Fig. 4(c), the measured and calculated
depolarization indices show good agreement with the spectral range
from ~460 to 800 nm, but exhibit poor performance within the spectral
range from ~300 to 460 nm. We then further took the depolarization
effect induced by residual layer thickness nonuniformity into account.
During the further regression analysis, we let the parameters x1–x5 as
well as the standard deviation σt of the residual layer thickness vary.
The depolarization index spectrum DI2 shown in Fig. 4(c) corresponds
to the calculated best-fitMuellermatrix spectrawhen further considering
the depolarization effect induced by residual layer thickness nonunifor-
mity. As shown in Fig. 4(c), thematch between themeasured and calcu-
lated depolarization index spectra is significantly improved, especially
in the spectral range from ~300 to 460 nm. Fig. 4(b) depicts the fitting
result between the measured and calculated best-fit Mueller matrix
spectra when taking the depolarization effects induced by instrumental
finite spectral bandwidth and NA as well as residual layer thickness
nonuniformity into account, which yields a fitting error of χr = 5.31.
Table 2 presents the corresponding MME-extracted parameter values
and SEM measurement results. As observed from Table 2, the MME-
extracted parameter values are in excellent agreement with the results
measured by SEM. In addition, the MME-extracted parameter values of
the nanoimprinted resist pattern are also in good agreementwith the Si
imprinting mold. It therefore indicates an excellent fidelity of the
nanoimprint pattern transfer process.

3.3. Measurement of lithographic patterns with line edge roughness

With the gate dimensions of transistors shrinking to the decanano-
meter regime, the impact of line roughness on performances of micro-
electronic devices has become a more and more non-ignorable issue in
semiconductor manufacturing. In-line line roughness monitoring is of
great importance, and it is extremely desirable if themetrology technique
is fast, inexpensive, nondestructive and reliable. In this section, we try to
apply MME to characterize lithographic patterns with LER. Fig. 5(a)



184 S. Liu et al. / Thin Solid Films 584 (2015) 176–185
depicts the SEMmicrograph of the investigated lithographic pattern over-
laid with the applied geometric model, which has a pitch of 400 nm. As
shown in Fig. 5(a), the photoresist grating is characterized by top critical
dimension x1, grating height x2, and sidewall angle x3. The thickness of the
bottom anti-reflective coating (BARC) is represented by x4. The rough
edges of grating lines were approximated as effective medium boundary
layers with thickness x5. This approximation simplifies the rough grating
to a one-dimensional (1D) periodic structure. We can then perform
simulations using a 1D RCWA solution. During the regression analysis,
we fixed the grating pitch and just let the parameters x1–x5 vary. The
optical properties of the BARC layer were modeled using a two-term
Forouhi–Bloomer model [40], whose parameters were determined from
a BARC film deposited on the Si substrate and taken as A1 = 6.029e−3,
A2 = 2.060e−2, B1 = 14.1953 eV, B2 = 14.1964 eV, C1 = 50.5239 eV2,
C2 = 50.5379 eV2, n(∞) = 1.4361, and Eg = 4.7741 eV. The optical prop-
erties of the photoresist were modeled using a Tauc–Lorentz model [41],
whose parameters were also determined from a photoresist film de-
posited on the Si substrate and taken as ε∞ =1.4268, Eg = 3.4597 eV,
A=21.1496 eV, C=0.9877 eV, and E0=9.9492 eV. Fig. 5(b) shows the
fitting result of the ellipsometer-measured and calculated best-fit
Mueller matrix spectra when considering the depolarization effects
induced by finite spectral bandwidth and NA, and Fig. 5(c) shows
the depolarization index spectra associated with the measured and
calculated best-fit Mueller matrix spectra. The fit shown in
Fig. 5(b) yields a fitting error of χr = 13.74. Table 3 presents the
comparison of fitting parameters extracted fromMME and SEMmea-
surements. As can be observed from Table 3, the MME-extracted
parameters exhibit good agreement with the results measured by SEM,
which therefore demonstrates the potential of MME in line roughness
metrology.
3.4. Measurement of etched trench nanostructures

Flashmemory is an electronic non-volatile computer storagemedium
that can be electrically erased reprogrammed. Due to themuch lower cost
than byte-programmable EEPROM (electrically erasable programmable
read-only memory), flash memory has become the dominant memory
type wherever a system requires a significant amount of non-volatile,
solid state storage. The key of flash memory is its storage cells, which
are usually comprised of some nanostructures. Accurate characterization
of geometrical profiles of these nanostructures is of great importance.
Fig. 6(a) depicts the TEM micrograph of the investigated etched trench
nanostructure overlaid with the applied geometric model, which is
usually encountered in the manufacturing of flash memory storage cells.
The pitch of the etched trench nanostructure is 154 nm. As shown in
Fig. 6(a), the etched trench nanostructure has three grating layers. The
Si3N4 grating layer is characterized by top critical dimension x1, grating
height x2, and bottom critical dimension x3. The SiO2 grating layer has
the same sidewall angle with that of the Si3N4 grating layer and is charac-
terized by top critical dimension x3 and grating height x4. The Si grating
layer has a different sidewall angle to that of the former two grating layers
and is characterized by grating height x5 and bottomcritical dimension x6.
During the regression analysis, we fixed the grating pitch and just let the
parameters x1–x6 vary. The optical constants of Si3N4 and SiO2 were fixed
at values taken from [42]. Fig. 6(b) shows the fitting result of the
ellipsometer-measured and calculated best-fit Mueller matrix spectra
when considering the depolarization effects induced by finite spectral
bandwidth and NA, and Fig. 6(c) shows the depolarization index spectra
associatedwith themeasured and calculated best-fitMuellermatrix spec-
tra. The fit shown in Fig. 6(b) yields a fitting error of χr = 18.46. Table 4
presents the comparison of fitting parameters extracted from MME and
TEMmeasurements. As can be observed, Fig. 6(c) exhibits a good match
between the measured and calculated Mueller matrix spectra, and
Table 4 shows the excellent agreement between the MME-extracted
and TEM-measured results.
4. Conclusions

In summary, we have presented the basic principles and instrumen-
tation ofMME,with a demonstration of the development of a broadband
dual rotating-compensator Mueller matrix ellipsometer in our lab. Ac-
cording to the fundamental concept of computational metrology, we
point out that the MME-based nanostructure metrology is essentially a
computational metrology technique bymodeling a complicated forward
process followed by solving a corresponding inverse problem. We have
applied MME to measure several typical nanostructures, including the
e-beampatterned grating structures, nanoimprinted resist patterns, lith-
ographic patterns with LER, and etched trench nanostructures that are
usually encountered in flash memory process lines. These case studies
have demonstrated the capability of MME in nanostructure metrology.
It is expected that MME will provide a powerful tool for nanostructure
metrology in future high-volume manufacturing.
Acknowledgments

This workwas funded by the National Natural Science Foundation of
China (grant nos. 51475191 and 51405172), the National Instrument
Development Specific Project of China (grant no. 2011YQ160002), the
China Postdoctoral Science Foundation (grant no. 2014M560607), and
the Program for Changjiang Scholars and Innovative Research Team in
University of China (grant no. IRT13017). The authors would like to
thank Dr. Yasin Ekinci and Dr. Li Wang at Paul Scherrer Institute
(5232 Villigen PSI, Switzerland), Dr. Fan Wang and Dr. Hailiang Lu at
Shanghai Micro Electronics Equipment Co., Ltd. (Shanghai, China), and
Dr. Zhimou Xu and Mr. Zhichao Ma at Huazhong University of Science
and Technology (Wuhan, China) for preparing the samples and taking
the SEM images.
References

[1] M.T. Postek, K.W. Lyons, Instrumentation, metrology, and standards: key elements
for the future of nanomanufacturing, Proc. SPIE 6648 (2007) 664802.

[2] R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light, North-Holland,
Netherland, 1977.

[3] X. Niu, N. Jakatdar, J. Bao, C. Spanos, Specular spectroscopic scatterometry, IEEE
Trans. Semicond. Manuf. 14 (2001) 97.

[4] H.T. Huang, W. Kong, F.L. Terry Jr., Normal-incidence spectroscopic ellipsometry for
critical dimension monitoring, Appl. Phys. Lett. 78 (2001) 3893.

[5] H.T. Huang, F.L. Terry Jr., Spectroscopic ellipsometry and reflectometry from gratings
(scatterometry) for critical dimension measurement and in situ, real-time process
monitoring, Thin Solid Films 455 (2004) 828.

[6] H.J. Patrick, T.A. Germer, Y.F. Ding, H.W. Ro, L.J. Richter, C.L. Soles, Scatterometry for
in situ measurement of pattern flow in nanoimprinted polymers, Appl. Phys. Lett. 93
(2008) 233105.

[7] M.G. Faruk, S. Zangooie, M. Angyal, D.K. Watts, M. Sendelbach, L. Economikos,
P. Herrera, R. Wilkins, Enabling scatterometry as an in-line measurement technique
for 32 nm BEOL application, IEEE Trans. Semicond. Manuf. 24 (2011) 499.

[8] A.C. Diebold, Handbook of Silicon Semiconductor Metrology, CRC Press, New York,
2001. (chap. 18).

[9] C.J. Raymond, Overview of scatterometry applications in high volume silicon
manufacturing, AIP Conf. Proc. 788 (2005) 394.

[10] C.W. Zhang, S.Y. Liu, T.L. Shi, Z.R. Tang, Improved model-based infrared reflectrometry
for measuring deep trench structures, J. Opt. Soc. Am. A 26 (2009) 2327.

[11] J.L. Zhu, S.Y. Liu, X.G. Chen, C.W. Zhang, H. Jiang, Robust solution to the inverse problem
in optical scatterometry, Opt. Express 22 (2014) 22031.

[12] X.G. Chen, S.Y. Liu, C.W. Zhang, J.L. Zhu, Improved measurement accuracy in optical
scatterometry using fitting error interpolation based library search, Measurement
46 (2013) 2638.

[13] X.G. Chen, S.Y. Liu, C.W. Zhang, H. Jiang, Improved measurement accuracy in optical
scatterometry using correction-based library search, Appl. Opt. 52 (2013) 6726.

[14] J.L. Zhu, S.Y. Liu, C.W. Zhang, X.G. Chen, Z.Q. Dong, Identification and reconstruction
of diffraction structures in optical scatterometry using support vector machine
method, J. Micro/Nanolith. MEMS MOEMS 12 (2013) 012004.

[15] P.L. Jiang, H. Chu, J. Hench, D. Wack, Forward solve algorithms for optical critical
dimension metrology, Proc. SPIE 6922 (2008) 69221O.

[16] M.G. Moharam, E.B. Grann, D.A. Pommet, T.K. Gaylord, Formulation for stable and
efficient implementation of the rigorous coupled-wave analysis of binary gratings,
J. Opt. Soc. Am. A 12 (1995) 1068.

[17] L. Li, New formulation of the Fouriermodalmethod for crossed surface-relief gratings, J.
Opt. Soc. Am. A 14 (1997) 2758.

http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0005
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0005
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0010
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0010
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0015
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0015
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0020
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0020
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0025
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0025
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0025
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0030
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0030
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0030
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0035
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0035
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0035
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0040
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0040
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0045
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0045
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0050
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0050
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0055
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0055
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0060
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0060
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0060
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0065
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0065
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0070
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0070
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0070
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0075
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0075
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0080
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0080
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0080
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0085
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0085


185S. Liu et al. / Thin Solid Films 584 (2015) 176–185
[18] S.Y. Liu, Y. Ma, X.G. Chen, C.W. Zhang, Estimation of the convergence order of rigorous
coupled-wave analysis for binary gratings in optical critical dimension metrology, Opt.
Eng. 51 (2012) 081504.

[19] T.Novikova, A. DeMartino, S.B.Hatit, B. Drévillon, ApplicationofMueller polarimetry in
conical diffraction for critical dimension measurements in microelectronics, Appl. Opt.
45 (2006) 3688.

[20] T. Novikova, A. De Martino, P. Bulkin, Q. Nguyen, B. Drévillon, V. Popov, A.
Chumakov, Metrology of replicated diffractive optics with Mueller polarimetry in
conical diffraction, Opt. Express 15 (2007) 2033.

[21] X.G. Chen, S.Y. Liu, C.W. Zhang, H. Jiang, Measurement configuration optimization
for accurate grating reconstruction by Mueller matrix polarimetry, J. Micro/
Nanolith. MEMS MOEMS 12 (2013) 033013.

[22] Y.N. Kim, J.S. Paek, S. Rabello, S. Lee, J. Hu, Z. Liu, Y. Hao, W. McGahan, Device
based in-chip critical dimension and overlay metrology, Opt. Express 17 (2009)
21336.

[23] J. Li, J.J. Hwu,Y. Liu, S. Rabello, Z. Liu, J. Hu,Muellermatrixmeasurement of asymmetric
gratings, J. Micro/Nanolith. MEMS MOEMS 9 (2010) 041305.

[24] X.G. Chen, C.W. Zhang, S.Y. Liu, Depolarization effects from nanoimprinted grating
structures as measured by Mueller matrix polarimetry, Appl. Phys. Lett. 103 (2013)
151605.

[25] X.G. Chen, S.Y. Liu, C.W. Zhang, H. Jiang, Z.C. Ma, T.Y. Sun, Z.M. Xu, Accurate charac-
terization of nanoimprinted resist patterns using Mueller matrix ellipsometry, Opt.
Express 22 (2014) 15165.

[26] S.Y. Liu, Computational metrology for nanomanufacturing, Proc. SPIE 8916 (2013)
891606.

[27] S.Y. Liu, X.G. Chen, C.W. Zhang, Mueller matrix polarimetry: a powerful tool for
nanostructure metrology, ECS Trans. 60 (2014) 237.

[28] M. Bass, Handbook of Optics, third ed.McGraw-Hill, New York, 2010. (vol. 1, chap. 15).
[29] A. De Martino, Y.K. Kim, E. Garcia-Caurel, B. Larde, B. Drévillon, Optimized Mueller
polarimeter with liquid crystals, Opt. Lett. 28 (2003) 616.

[30] E. Garcia-Caurel, A. De Martino, B. Drévillon, Spectroscopic Mueller polarimeter
based on liquid crystal devices, Thin Solid Films 455–456 (2004) 120.

[31] R.M.A. Azzam, Photopolarimeter measurement of the Mueller matrix by Fourier
analysis of a single detected signal, Opt. Lett. 2 (1978) 148.

[32] R.W. Collins, J. Koh, Dual rotating-compensatormultichannel ellipsometer: instrument
design for real-timeMueller matrix spectroscopy of surfaces and films, J. Opt. Soc. Am.
A 16 (1999) 1997.

[33] O. Arteaga, J. Freudenthal, B. Wang, B. Kahr, Mueller matrix polarimetry with four
photoelastic modulators: theory and calibration, Appl. Opt. 51 (2012) 6805.

[34] H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications, Wiley, West
Sussex, 2007.

[35] J.J. Gil, E. Bernabeu, Depolarization and polarization indices of an optical system, Opt.
Acta (Lond.) 33 (1986) 185.

[36] H.C. van de Hulst, Light Scattering by Small Particles, Dover, New York, 1981.
[37] X.G. Chen, S.Y. Liu, H.G. Gu, C.W. Zhang, Formulation of error propagation and esti-

mation in grating reconstruction by a dual-rotating compensator Mueller matrix
polarimeter, Thin Solid Films 571 (2014) 653.

[38] ITRS report, 2013 ed. http://public.itrs.net.
[39] C.H. Herzinger, B. Johs,W.A.McGahan, J.A.Woollam,W. Paulson, Ellipsometric determi-

nation of optical constants for silicon and thermally grown silicon dioxide via a multi-
sample, multi-wavelength, multi-angle investigation, J. Appl. Phys. 83 (1998) 3323.

[40] A.R. Forouhi, I. Bloomer, Optical properties of crystalline semiconductors anddielectrics,
Phys. Rev. B 38 (1988) 1865.

[41] G.E. Jellison Jr., F.A. Modine, Parameterization of the optical functions of amorphous
materials in the interband region, Appl. Phys. Lett. 69 (1996) 371.

[42] E.D. Palik, Handbook of Optical Constant of Solids, Academic Press, San Diego, 1991.

http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0090
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0090
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0090
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0095
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0095
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0095
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0100
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0100
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0100
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0105
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0105
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0105
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0110
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0110
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0110
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0115
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0115
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0120
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0120
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0120
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0125
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0125
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0125
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0130
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0130
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0135
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0135
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0140
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0145
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0145
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0150
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0150
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0155
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0155
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0160
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0160
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0160
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0165
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0165
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0170
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0170
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0175
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0175
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0180
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0185
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0185
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0185
http://public.itrs.net
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0190
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0190
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0190
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0195
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0195
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0200
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0200
http://refhub.elsevier.com/S0040-6090(15)00122-4/rf0205

	Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology
	1. Introduction
	2. Fundamentals
	2.1. Basic principles and instrumentation of MME
	2.2. Data analysis revisited from the viewpoint of computational metrology

	3. Application to nanostructure metrology
	3.1. Measurement of e-beam patterned grating structures
	3.2. Measurement of nanoimprinted resist patterns
	3.3. Measurement of lithographic patterns with line edge roughness
	3.4. Measurement of etched trench nanostructures

	4. Conclusions
	Acknowledgments
	References


