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ABSTRACT 

In this paper, the aberration measurement technique using aerial image sensor (AIS) is further derived, and the influence 
of partially coherent illumination on the performance of this technique is analyzed comprehensively in practice. The AIS 
based technique detects the intensity of the aerial image to obtain the wavefront aberration on each sampling point of the 
exit pupil using a set of 36 binary gratings with different pitches and orientations. The simulation work conducted by the 
lithographic simulator PROLITH has demonstrated that the aberration measurement errors grow with the partial coherent 
factor increasing. Two effects of the partially coherent illumination are proposed to interpret such influence that causes 
the measurement errors. 
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1. INTRODUCTION 
With ever decreasing feature sizes and pushing the limit of optical lithography, the overall performance of the optical 
imaging system becomes increasingly important. Contributing to a degradation of the image quality, the wavefront 
aberration of the projection lens in lithographic tools plays a critical role in the overall system performance [1, 2]. Usually, 
Zernike polynomials are introduced to represent the lens aberration, which are a complete orthogonal set of polynomials 
over the interior of the unit circle [3, 4]. The Zernike series representation is useful as it provides explicit expressions for 
the well-known low order aberration such as spherical, coma, astigmatism, etc which can be detected accurately in 
various aberration measurement techniques. However, in order to satisfy the requirement of optical path tolerances in the 
condition of higher numerical aperture (NA) in the future, the measurement of the higher order coefficients of Zernike 
polynomials becomes a necessary prerequisite. 

On the whole, a variety of in situ measurement techniques have been developed, which can be roughly classified into two 
types: pupil based and image based. In recent years, several pupil based techniques have been reported such as the 
integrated lens interferometer at scanner (ILIAS) [5], integrated projecting optics tester (iPot) [6, 7], and in situ phase 
measurement interferometer (iPMI) [8]. They are generally faster and more accurate than image based techniques because 
of the less metrology errors. Although pupil based techniques are able to accurately retrieve aberration up to the 37th 
Zernike coefficient, they are integrated with complex apparatus such as embedded interferometer and micro lens array, 
which result in high cost for lithographic tools. On the other hand, ASML Corporation has developed an aerial image 
based technique known as TIS at multiple illumination settings (TAMIS) [9], which utilizes a transmission image sensor 
(TIS) built into the wafer stage for receiving the aerial image intensity of the test binary marks. This measurement 
technique reduces the cost but maintains high sensitivity only to spherical, coma and astigmatism. 

In order to exactly measure aberration up to the 37th Zernike coefficient, Nikon Corporation has proposed a Z37 aerial 
image sensor (AIS) technique [10-13]. It has introduced a set of 36 binary grating marks with different pitches and 
orientations, corresponding to 72 pupil sampling points over the pupil plane. The wavefront aberration at each sampling 
point can be easily obtained from the spectrum of the aerial image intensity. Since obtaining the wavefront aberration at 
each sampling point requires highly coherent illumination, the Z37 AIS technique works best with coherent sources. In 
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practice, however, partial coherent sources are used in conventional lithographic tools which seriously affect the accuracy 
of the wavefront aberration measurement of the Z37 AIS technique. Therefore, it is unsuitable for aberration 
measurement in lithographic tools with partially coherent illumination. 

In this paper, we further investigate the aberration measurement method based on aerial image sensor, and then analyze 
the influence of partially coherent illumination. The fundamental relationship between the aberration and the first-order 
spectrum of the aerial image intensity is derived and established. Several simplifications are remarked in the process of 
deviation. Extensive simulation work was conducted by the lithographic simulator PROLITH, and two effects of the 
partially coherent illumination are proposed to interpret the influence. 

2. ABERRATION MEASUREMENT METHOD 

2.1 Theory  

The optical imaging system in lithographic tools is shown in Fig.1, in which the object plane coordinates (x0, y0), image 
plan coordinate (xi, yi), and pupil plane coordinate (f, g) are all normalized according to canonical coordinates proposed 
by Hopkins [14]. Thus the cut-off frequency from the pupil plane is normalized to the unit of one.  

 
Fig.1 Optical lithographic imaging system 

In this measurement method, an aerial image sensor built into the wafer stage for detecting the aerial image intensity of 
the reticle. The spectrum of the aerial image intensity is extracted by Fourier transformation and is subsequently 
analyzed for aberration measurement. This reticle is designed to be a binary grating with opening width pm/2, where m = 
1, 2, 3, ..., 36. The orientation of the binary grating is defined by the angle θ ranging from 0o to 180o. Considering the 
one-dimensional object in the θ direction with normalized spatial period pm=1/fm, the spectrum of the mth grating O(f, g) 
becomes: 
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Actually, as the even-order diffraction lights passing the binary grating are missing except the 0th-order diffraction light, 
the spectrum O(f, g) is nonzero only at odd-order frequencies and 0th-order frequency: f = 0, ±fm, ±3fm, …, (2k+1)fm, 
k∈N. 

Based on the partially coherent imaging theory in the frequency domain, the aerial image intensity of the one-
dimensional object can be expressed as: 
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where O(f’, g’) is the Fourier spectrum of the binary grating mentioned above, and TCC(f’, f”;g’, g”) is introduced as the 
concept of transmission cross-coefficient: 
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where J(fc, gc) represents a typical illumination source in optical lithography as: 
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where σ is the partial coherent factor which defined as the effective source filling factor in the projection optics pupil. 
Optical transfer function H(f, g) is commonly introduced to describe the property of the object lens system on a certain 
illumination source condition: 

 )],(exp[)(circ),( 22 gfjkWgfgfH +=  (5) 

where k = 2π/λ is the wave number; λ is the wavelength of the monochromatic light source; and W(f, g) is the total 
wavefront aberration including a defocus aberration Wdefoucs and a relative lens aberration Wlens. The latter one Wlens is 
composed of an odd aberration Wodd as well as an even aberration Weven.  

In order to achieve a certain connection between the wavefront aberration and the intensity of the aerial image, Eqs.(1) to 
(3) are combined together. The nth-odd spectrum of intensity can be expressed as: 
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where n=1, 3, 5, …, and C0 is a determined constant unrelated to the spatial period pm=1/fm.  

For the same order of diffraction, the terms in Eq. (2) maintain constant except the term of exp[2πjxi(f’-f’’)+yi(g’-g’’)]. 
This means that the spectrum of the intensity is determined by f’-f” and g’-g” merely for a certain order of diffraction. 
So each odd-order spectrum of the aerial image intensity is considered to be the interaction between the 0th-order 
diffraction and each odd-order diffraction spectrum term, and it contains all the wavefront aberration information that we 
are interested in. Therefore, wavefront aberration can be extracted just from the first-order spectrum of the aerial image 
intensity, that is n = 1. 

Under the nearly fully coherent illumination condition, the partial coherent factor σ approximates 0, and the parameters 
of the illumination source fc, gc can be also treated as 0, thus the illumination source can be normalized as: 
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Replacing the TCC with the relationships in Eqs. (1), (4) and (7), Eq. (8) can be simplified as: 
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where C1 is a certain constant unrelated to the aberration and diffraction orders; the wavefront aberration W(ρ, θ) is the 
normalized form of W(f, g) in the pupil plane, and ρ is the normalized radius ranging from 0 to 1. 

2.2 Aberration measurement 

Considering the property of the odd aberration and even aberration, they can be obtained separately. In terms of the 
symmetry of the odd aberration, there is: 

 ),(),( πθρθρ +−= oddodd WW  (9) 

From Eqs.(8) and (9), the relationship between the odd aberration and the first-order spectrum can be expressed as: 

 )],(exp[2)0,( 1 θρoddm jkWCfI =  (10) 

Obviously, the odd wavefront aberration is linear with the phase shift of the first-order spectrum of intensity φ. This is 
the relationship for the odd wavefront aberration measurement: 
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On the other hand, as shown in Fig.2, a perfect wavefront focuses on the ideal focal plane, while an aberrated wavefront 
comes to a plane which is called the best focal plane in which the first-order spectrum of the intensity reaches the 
extreme value. The axial shift between the best focal plane and the ideal focal plane is defined as the defocus D.  

 
Fig.2 The defocus caused by even wavefront aberration 

Based on the optical theory, the defocus aberration is another type of even aberration which can be expressed as the sum 
of relative even aberrations, thus the relative even aberration Weven(ρ,θ) is proportional to the defocus as [15, 16]: 

 ( )11),(),( 22 −−−=−= ρθρθρ NADWW defocuseven  (12) 

where D (in nm) is the defocus shown in Fig.2, and NA is the image-side numerical aperture of the projection lens. 

2.3 Zernike coefficient measurement 

In this aberration measurement method, the aberrations at selected points on the lens exit pupil are obtained directly from 
a set of 36 binary grating objects with opening width pm/2. They are designed with different spatial periods and in 
orientations such as θ = 0o, 30o, 45o, 90o, 120o, and 150o. Two symmetric points are detected with each binary grating by 
scanning the aerial image sensor each time. So the aberration up to 37th Zernike coefficient can be obtained by least-
square method. The odd and even wavefront aberration can be expressed respectively: 
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In a more compact notation, Eqs. (13) and (14) can be rewritten as: 

 ),(),( θρθρ oddoddodd RZW =  (15) 
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where Wodd and Weven are vectors respectively indicating the odd and even aberration at the setting of 36 binary gratings; 
Zodd and Zeven are unknown Zernike coefficient vectors to be measured; and Rodd and Reven are matrices of odd and even 
Zernike polynomial, respectively. 

3. SIMULATION 

3.1 Theoretical validation under coherent condition 

The essentials of this aberration measurement are two linear relationships, between the phase shift and the odd 
aberration, and between the defocus and the even aberration, respectively. The lithographic simulator PROLITH was 
used in these simulations. The wavelength is 193nm, and the NA is 0.75. To simulate the nearly fully coherent 
illumination condition, we set the partial coherent factor as 0.001. The input wavefront aberration ranges from -8mλ to 
8mλ with an increment of 0.5mλ. Figure 3 compares the calculated and simulated results, in which the lines show the 
linear relationships calculated by Eq. (11) and Eq. (12) while the points depict the relationships simulated by PROLITH. 
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(a)                                        (b) 

Fig.3 Correlation plots between (a) the odd aberration and the phase shift, and (b) between the even aberration and 
defocus. The lines are calculated by Eq. (11) and Eq. (12) while the points are simulated by PROLITH. 

From the results shown in Fig.3, it is clear that the calculated values by Eqs.(11) and (12) have an excellent correlation 
with those simulated by PROLITH, thus the relationships in Eq. (11) and Eq. (12) are verified. 

Figure 4 depicts further simulations by PROLITH to evaluate the overall performance of the proposed technique under 
coherent condition. Two sets of Zernike coefficients were generated to simulate the input wavefront aberrations, in 
which the higher-order Zernike coefficients of Input 1 are much smaller than those of Input 2, thus the simulated 
aberration of Input 1 is more practical as in a real-world lithographic tool. 

Proc. of SPIE Vol. 7511  751104-5

Downloaded from SPIE Digital Library on 22 Nov 2009 to 211.69.199.2. Terms of Use:  http://spiedl.org/terms



0 5 10 15 20 25 30 35 40
-40

-20

0

20

40

Zernike Order

Ze
rn

ik
e 

C
oe

ffi
ci

en
t (

m λ
) Input 1

 

 

Measured
Input

0 5 10 15 20 25 30 35 40
-0.1

-0.05

0

0.05

0.1

Zernike OrderZe
rn

ik
e 

C
oe

ffi
ci

en
t E

rro
rs

 (m
λ)

 

 
Odd
Ev en

 

0 5 10 15 20 25 30 35 40
-40

-20

0

20

40

Zernike Order

Ze
rn

ik
e 

C
oe

ffi
ci

en
t (

m λ
) Input 2

 

 

Measured
Input

0 5 10 15 20 25 30 35 40
-0.1

-0.05

0

0.05

0.1

Zernike OrderZe
rn

ik
e 

C
oe

ffi
ci

en
t E

rro
rs

 (m
λ)

 

 

Odd

Ev en

 
(a)                                                 (b) 

Fig.4 Two simulations of Zernike coefficient measurement under coherent condition. The wavelength is 193nm, the NA is 
0.75, and the partial coherent factor is 0.001. 

From Fig.4 it is noted that the absolute errors of the measured Zernike coefficients are all below 0.1mλ, even in the case 
of Input 2 with large values of higher-order aberrations. These results and a lot of other simulations demonstrate that the 
proposed technique yields a high quality of wavefront estimate under coherent condition. 

3.2 Influence of partial coherent factor 

In practice, the illumination source of a real-world lithographic tool cannot be reduced to a point and is usually larger 
than 0.3. Figure 5 depicts the measurement results of some single Zernike coefficients compared to the theoretical values 
at different sampling points when the partial coherent factor varies from 0.05 to 0.3. As an example, Z7=0.02 is used to 
simulate the odd aberration, while Z9=0.02 is representative of even aberration. When the partial coherence is smaller 
than 0.05, it would be considered as an ideal constitution of the illumination coherence. 
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Fig.5 The variation of the measured aberration at different sampling points with partial coherence factor ranging from 0.05 
to 0.3. (a) Z7 is set to be 0.02 to simulate the odd aberration, and (b) Z9 is set to be 0.02 to simulate the even 
aberration. 

In Fig.5 it is clear that the measurement error significantly increases as the partial coherence factor σ grows. For 
instance, the root mean square (RMS) of the absolute aberration errors in Fig.5 (a) reaches 8.013mλ when σ=0.2, and 
then becomes 10.602mλ when σ grows up to 0.3. From these simulation results it is concluded that the partial coherent 
factor can significantly influence the measurement error. 
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Figure 6 shows the RMS of aberration measurement errors for different types of wavefront aberrations as the partial 
coherent factor changes from 0.001 to 0.4. The RMS of the aberration errors is calculated from all the values of 
wavefront aberrations at the sampling points shown in Fig.5. It is noted that generally the RMS of aberration 
measurement errors becomes larger as the partial coherent factor increases, but such influence of partial coherent factor 
is different for different types of aberrations. 
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Fig.6 Influence of partial coherent factor on measurement errors for different types of aberrations. 

The influence of partial coherent factor σ on the overall performance of aberration measurement was also simulated as 
shown in Fig.7 and Fig.8, in which σ is set to be 0.1, 0.2, 0.3 and 0.4, and all the inputs of Zernike coefficients are the 
same as Input 1 shown in Fig.4. As expected, the measurement errors of Zernike coefficients increase as σ increases. 

0 5 10 15 20 25 30 35 40
-40

-20

0

20

40

Zernike Order

Ze
rn

ik
e 

C
oe

ffi
ci

en
t (

m λ
) σ = 0.1

 

 

Measured
Input

0 5 10 15 20 25 30 35 40
-10

-5

0

5

Zernike OrderZe
rn

ik
e 

C
oe

ffi
ci

en
t E

rro
r (

m λ
)

 

 

Odd
Ev en

 

0 5 10 15 20 25 30 35 40
-40

-20

0

20

40

Zernike Order

Ze
rn

ik
e 

C
oe

ffi
ci

en
t (

m λ
) σ = 0.2

 

 

Measured

Input

0 5 10 15 20 25 30 35 40
-20

-10

0

10

Zernike OrderZe
rn

ik
e 

C
oe

ffi
ci

en
t E

rro
r (

m λ
)

 

 

Odd
Ev en

 
Fig.7 Overall performance of measuring aberrations up to 37th Zernike coefficient with partial coherent factor σ is 0.1 and 0.2. 
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Fig.8 Overall performance of measuring aberrations up to 37th Zernike coefficient with partial coherent factor σ is 0.3 and 0.4. 

4. INTERPRETATION 

4.1 Effect of diffraction spot 

From the simulation results, the partial coherent factor has a significant influence on the accuracy of the aberration 
measurement method. Noting that several simplifications have been introduced in the mathematical derivation, here we 
propose two effects of partial coherent factor to try to interpret the above influence. One effect is that the off-axis outer 
parts of the illumination source with a finite size may cause the first diffraction orders to pass outside the lens pupil. In 
Eq. (7), we calculate the integration of illumination source as 1 under the fully coherent condition. Under the partial 
coherent condition, however, the area of the integration would be less than 1 if the first-order diffraction light is too close 
to the boundary of the pupil, or even part of the first-order diffraction light exceeds the pupil. In this case, the difference 
of the integral area contributes to the error of aberration measurement. 

In order to reduce the measurement error, the integral region S in Eq. (7) should be calculated as the intersection of the 
pupil function in Eq. (5) and illumination source in Eq. (4), shown as the shadowed area in Fig.9. Here R1 represents the 
radius of the first-order diffraction spot which is equal to the partial coherent factor σ, R2 is the radius of the exit pupil, 
and the distance of these two centers of circles is equal to the normalized grating pitch. 

 
Fig.9 Representation of the integral region S 
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4.2 Effect of aberration smoothness 

The other effect is that the wavefront aberration at each sampling point is simply assumed to be the smoothed average 
value of those inside the integral region S. From Eq. (6), the first-order spectrum of intensity is expressed as: 
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Considering the wavefront aberration is extremely small, we simplify the expressions as:  

 
)0,(),(

1)0,0(),(

mccm

cc

fWgffW
WgfW

±≈+±
=≈

 (18) 

The first-order spectrum of intensity is thus simplified as: 

 )]}0,()0,0([exp{)]}0,0()0,([exp{)0,( 00 mmm fWWjkSCWfWjkSCnfI −−+−=  (19) 

It is obvious to note that the simplifications in Eq. (18) are the crucial reason to cause measurement errors. The first-
order spectrum of intensity in Eq. (17) consists of two parts, both of which are the sum of aberrations over the integral 
region S shown in Fig.9, while in Eq. (19) they are simplified as the aberration at the sampling point multiplied by the 
integral region S. As the partial coherent factor increases, this effect of aberration smoothness is more serious as the 
integral region S also increases, thus leads to more errors of aberration measurement. 

5. CONCLUSIONS 
In this paper, the aberration measurement technique based on AIS has been explicitly presented. Two linear models have 
been mathematically derived, revealing the relationships between the odd aberration and phase shift of the first-order 
spectrum of image intensity, and between the even aberration and defocus, respectively. The simulation work conducted 
by PROLITH shows that this technique achieves perfect results with nearly fully coherent illumination, but the absolute 
measurement error becomes larger with the partial coherent factor increasing. Two effects of the partially coherent 
illumination, namely effect of diffraction spot and effect of aberration smoothness have been proposed to interpret such 
influence. It is demonstrated that this technique only works best with coherent sources, and is therefore unsuitable for 
aberration measurement in conventional lithographic tools with partially coherent illumination. In order to achieve higher 
measurement accuracy, this technique should be improved by further considering the influence of partial coherent factor 
on pupil sampling. 
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