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Abstract: Inverse lithography technique (ILT) is significant to reduce the
feature size of ArF optical lithography due to its strong ability to overcome
the optical proximity effect. A critical issue for inverse lithography is the
complex curvilinear patterns produced, which are very costly to write
due to the large number of shots needed with the current variable shape
beam (VSB) writers. In this paper, we devise an inverse lithography
method to reduce the shot count by incorporating a model-based frac-
turing (MBF) in the optimization. The MBF is formulated as a sparse
nonlinear inverse imaging problem based on representing the mask as
a linear combination of shots followed by a threshold function. The
problem is approached with a Gauss-Newton algorithm, which is adapted
to promote sparsity of the solution, corresponding to the reduction of the
shot count. Simulations of inverse lithography are performed on several
test cases, and results demonstrate reduced shot count of the resulting mask.
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1. Introduction

With the slow arrival of extreme ultraviolet lithography (EUV), optical lithography with ArF
source remains to be the most cost effective solution for semiconductor manufacturing. For
22nm node and beyond, the small feature size necessitates holistic optimization of the lithogra-
phy components [1]. Aggressive resolution enhancement such as inverse lithography technique
(ILT) plays an important role for the extension of this solution [2, 3].
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(a) target patterns (b) Manhattan patterns (c) curvilinear patterns
with edge-based OPC with pixel-based ILT

Fig. 1. The mask patterns in optical lithography.

The ILT employs a pixel-based representation of the mask patterns, which has a larger solu-
tion space over the conventional edge-based optical proximity correction (OPC) [4,5]. A critical
issue of ILT is that the optimized mask patterns can be very complex which are extremely ex-
pensive to make. As shown in Fig. 1, the mask patterns created with OPC are usually Manhattan
patterns with rectilinear edges, while those resulting from ILT are complex with many curvi-
linear shapes. The curvilinear patterns can lead to better image quality such as larger process
windows, but this is at the expense of a long writing time [6]. Nowadays, the masks are made
with writing machines such as the variable shape beam (VSB), which can only write rectangular
or triangular shots [7]. To prepare for mask writing, a fracturing process named the mask data
preparation (MDP) is performed to partition the mask patterns into rectangles and triangles.
The curvilinear patterns in ILT therefore require a large number of shots to write for acceptable
fidelity, resulting in a long writing time and high cost. Thus, reducing the shot count for ILT is
critical.

Many studies have been done to reduce the mask complexity in ILT. The level set algo-
rithm has been used to solve the ILT and can generate less complex masks, while allowing
flexible topographic variations [8, 9]. Regularization methods such as total variation are pro-
posed to reduce the mask complexity and remove the isolated holes [10]. These methods are
extended to regularization on mask edges to force them to be rectilinear [11]. The mask man-
ufacturability is also improved with wavelet penalty, topology filter, and block-based algo-
rithms [12–14]. A mask filtering algorithm is developed by Lv et al. to remove the mask details
and enhance the optimization efficiency as well [15]. The representation methods of mask pat-
terns are changed to discrete cosine function basis functions to reduce the complexity of the
optimized patterns [16]. These methods are quite effective to reduce the mask complexity most
of the time. However, they do not explicitly incorporate the mask writing process in the opti-
mization, and thus the shot count is not well controlled.

Another approach to reduce the mask making cost is to reduce the shot count during the
fracturing process in MDP. The traditional fracturing of Manhattan pattern is formulated as a
rectangular recovery problem, and can be solved by an algorithm with the computational cost
of O(n1.5log(n)) [17]. In order to take more detailed specification, such as silver reduction,
into account, the integer linear programming (ILP) algorithm is introduced to approach it with
constraints [18]. A recursive cost-based algorithm is developed by Jiang et al. to decrease the
external silver length and trapezoid numbers [19]. Other than the fracturing algorithms, the
mask writers also evolved from non-overlapping shots to overlapping ones so that the shot
count can be reduced [20]. The L-shape shot is recommended to write the mask with a higher
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efficiency and fewer shots [21]. However, these algorithms are mostly suitable for Manhattan
patterns, and writing curvilinear patterns is still challenging.

To meet this challenge, efforts are made to investigate the mask fracturing techniques along
with ILT. It is proposed that the curvilinear patterns can be approximated with Manhattan ones,
and then the mask can be manufactured with reasonable cost [22, 23]. However, the shot count
is very large, which makes the process expensive. Recently, model-based fracturing (MBF) at-
tracts much attention with its ability to balance the mask fidelity and mask writing cost [20,24],
especially with the need to consider the proximity effect of e-beam writers in the current ex-
tremely small scale of optical lithography [25]. An algorithm to fracture the curvilinear patterns
is developed, though it still relies on the approximation to edge representation [26]. Another
formulation based on integer linear programming method is established by Chan et al., and the
problem is solved with the branch and price algorithm [27]. This formulation demonstrates a
significant shot count reduction over the traditional methods. Nevertheless, the algorithm is not
very efficient and may need hours to fracture a mask pattern even in a very small region. Fur-
thermore, these algorithms consider the mask optimization and fracturing as independent pro-
cesses, and the MDP does not provide feedback to ILT. To tackle this issue, new process flow is
advised to incorporate the mask fracturing to OPC, and computational technique is applied to
optimize the mask writer [7,28]. However, the inefficient algorithm for MBF is computationally
challenging to be incorporated into the ILT.

The goal of this paper is to devise an ILT method that incorporates the MBF process for the
shot count reduction with an efficient fracturing algorithm. In this method, we represent the
mask with a linear combination of a set of basis functions followed by a threshold function to
model shot overlapping. The basis functions are defined as rectangular functions correspond-
ing to the shots. The threshold function enforces all the gray values obtained with the linear
combination to be 1 or 0, corresponding to the mask intensity. Using this representation, the
coefficients can characterize the mask with the basis functions. Therefore, the MBF can be
considered a problem to find the appropriate coefficients to recover the mask, and shot count is
measured by the number of nonzero coefficients. We formulate this problem as a sparse non-
linear inverse imaging problem aiming to recover the mask pattern and reduce the shot count
simultaneously. A Gauss-Newton algorithm is proposed to solve it with a high efficiency, and
the algorithm is adapted to promote sparsity of the solution.

In the following, we briefly introduce the ILT problem in Section 2. Then we introduce
the mask representation method and the nonlinear inverse imaging formulation of the MBF in
Section 3. After that, we perform simulations of ILT incorporating the fracturing process to
reduce the mask complexity. Comparisons of the resulting image quality and mask complexity
are made over the traditional ILT method to demonstrate its effectiveness.

2. ILT formulation

The main objective of inverse lithography is to design an optimal mask that can produce a
target pattern with a forward model. The model transfers the information of a mask pattern to
the wafer one as

I(x,y) = T
{

M(x,y)
}
, (1)

where I(x,y) is the resist pattern, (x,y) is the spatial coordinate, M(x,y) ∈ RN×N is the mask
pattern, represented by a 2D matrix. The forward model is denoted with T{·}, including an
imaging process of the optical system and a resist effect, as introduced in previous work [16,29].

The mask optimization problem is usually considered as an inverse problem, which can be
expressed as T−1{·} [10]. This is achieved by solving an optimization problem as

Mopt(x,y) = arg min
0≤M≤1

∥
∥
∥T

{
M(x,y)

}− It(x,y)
∥
∥
∥

2

2
, (2)
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where It(x,y) is the target pattern. The mask intensity is constrained to [0,1] for binary mask
optimization. The process variations such as defocus can be incorporated in the model, as shown
in [30, 31].

3. Mask fracturing formulation

3.1. Mask representation

After ILT, the mask undergoes a fracturing process that partitions the mask pattern to some shots
to prepare for mask writing. Here we propose a sparse nonlinear inverse imaging formulation
for efficient mask fracturing.

We first represent the shot in mask fracturing as a rectangular function

Sp(x,y) =

{
1, if |x− xp| ≤ W

2 and |y− yp| ≤ L
2

0, otherwise
, (3)

where (xp,yp) is the position of the center point, and W and L are the width and height of the
rectangle. Similar to Chan et al.’s algorithm, a library can be formed by the potential shots that
can be used to recover the mask pattern [27]. These shots defined by the rectangular functions
can include those shots with different sizes and center positions in the region of the target mask.

With the library, the mask is expressed as a linear combination using these rectangular func-
tions as basis functions [29]. After this linear combination, we enforce a threshold function on
it, and the mask pattern is represented as

M(x,y) = Γ
{ K

∑
p=1

αpSp(x,y)− c
}
, (4)

where αp is the coefficient for a basis function Sp, and K is the total number of basis functions
in the library. The coefficient determines whether the potential shot will be written in the mask
writing process. If the coefficient is nonzero, it will contribute to the mask recovery, and should
be written; otherwise, it will not. The threshold function is denoted by Γ{·}, and c is a value
to determine the threshold level. The linear combination value above the threshold c becomes
1 with the threshold function, and it becomes 0 otherwise, corresponding to the intensity of the
binary mask. The threshold function can also model the overlapping of two shots. For example,
if two shots overlap and both shots produce a gray scale values larger than c, the mask intensities
after the threshold are still 1, and will not cause representation errors.

To facilitate numerical computation, the threshold function is approximated with a differen-
tiable one [32]

Γ(ψ) =

⎧
⎪⎨

⎪⎩

1, ψ > ε
0, ψ <−ε
1
2 +

ψ
2ε +

1
2π sin(πψ

ε ), |ψ| ≤ ε
, (5)

where ψ is a gray scale value, and ε controls the sharpness of the transition. As illustrated in
Fig. 2, the region for the transition is determined by ε: a small ε leads to a sharp transition,
while a larger value makes the transition a gradual one.

3.2. Sparse nonlinear inverse imaging formulation

With this representation, the mask fracturing becomes the search for those nonzero coefficients
αp that are used to recover the mask pattern. Thus to reduce the shot count, we need to reduce
the number of nonzero coefficients, which can be measured by the sparsity of the coefficients.
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Fig. 2. The threshold function to allow overlapping of the shots.

Therefore, the MBF is formulated as a sparse inverse imaging problem, and the pattern error
between the recovered mask and the target one is defined as the cost function

E(ααα) =

∥
∥
∥
∥Γ

{ K

∑
p=1

αpSp(x,y)− c
}
−Mt(x,y)

∥
∥
∥
∥

2

2
, (6)

where ααα =
[
α1 α2 . . .αp

]T
is a vector denoting the coefficients, and Mt is the target pattern

to fracture. The �2 norm indicates the pattern fidelity between the two masks. Then, the problem
is formulated as

minimize E(ααα),

subject to ‖ααα‖0 ≤ σ , (7)

where the �0 norm constrained by σ measures the number of nonzero coefficients, correspond-
ing to the shot count.

Equation (7) however is difficult to solve, since the �0 norm is a hard constraint and non-
convex. It is usually relaxed by the �1 norm, which is convex, and the sparsity can still be
achieved [33]. Thus, the problem above is changed to

minimize E(ααα),

subject to ‖ααα‖1 ≤ σ̃ . (8)

where σ̃ is the maximum �1 norm to control the sparsity of the coefficients. It can be set to
balance the pattern error and the shot count. However, due to the threshold function to model
the shot overlapping, it is intrinsically nonlinear. We make use of a Gauss-Newton algorithm to
solve this problem and modify the traditional iteration process to promote sparsity.

In the Newton algorithm, the iteration direction δk in each iteration is obtained by solving a
second order Taylor expansion of the cost function as [34]

δk = argmin
δ

E(αααk)+JE(αααk)δ +
1
2

δ THE(αααk)δ , (9)

where δ is a variable introduced to calculate the iteration direction, E(αααk) is the cost function
at αααk, JE(αααk) and HE(αααk) are the Jacobian vector and Hessian matrix at αααk. We write the cost

function as a least square E(ααα) =
∥
∥G(ααα)

∥
∥2

2, where G(ααα) is defined as

G(ααα) = Γ
{ K

∑
p=1

αpSp(x,y)− c
}
−Mt(x,y), (10)
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the derivatives in Eq. (9) can be written as

JEδ = 2
〈
G′(ααα)δ ,G(ααα)

〉
, (11)

1
2

δ THE(αααk)δ =
〈
G′(ααα)δ ,G′(ααα)δ

〉
+
〈
G′′(ααα)[δ ,δ ],G′(ααα)

〉
, (12)

where G′(αααk), G′′(αααk) are the first and the second order derivatives of G(αααk) at αααk, and 〈·〉
denotes the inner product. In the Gauss-Newton algorithm, the inner product term containing
the second order derivative G′′(αααk) is ignored to reduce the computation cost. Substituting the
above expressions in Eq. (9), the quadratic form is equivalent to

∥
∥G(ααα)

∥
∥2

2 +2
〈
G′(ααα)δ ,G(ααα)

〉
+
∥
∥G′(ααα)δ

∥
∥2

2 =
∥
∥G′(ααα)δ +G(ααα)

∥
∥2

2. (13)

Therefore, the iteration direction can be obtained by

δk = argmin
δ

∥
∥G′(αααk)δ +G(αααk)

∥
∥2

2, (14)

which is a linear least square problem.
To promote the sparsity of the solution for the optimization problem, we modify the algo-

rithm to search for sparse coefficients [32]. To achieve this, a sparse regularization term is added
when solving the above linear problem

δk = argmin
δ

‖αααk +δ‖1,

subject to
∥
∥G′(αααk)δ +G(αααk)

∥
∥2

2 ≤ τ, (15)

where the �1 norm controls the sparsity of αααk +δ , which is the successive coefficient, and τ is
a parameter to control the iteration direction. In this way, the coefficients updated by

αααk+1 =αααk +δk, (16)

are naturally sparse.
The detailed derivation of the first order derivative G′(ααα) is shown in the Appendix. The op-

timization expressed in Eq. (15) can be solved by taking advantage of the popular linear sparse
basis pursuit algorithms. Thus, the sparsity can be promoted without adding much computation
cost from the traditional Gauss-Newton algorithm.

3.3. Illustration of model-based fracturing

To illustrate this idea, we perform the fracturing on a simple mask pattern. As shown in Fig. 3,
the mask pattern to fracture in the blue lines is curvilinear. It is represented by a 125×125 pixel
image, and the pixel size is 0.5nm. It should be noted that the number of potential rectangles to
recover the mask pattern can be huge even for a very small region, and thus the size of the library
formed can be extremely large [27]. To make the algorithm tractable, we limit the shots to be
squares with fixed sizes. In this simulation, we set the potential shots as 23× 23nm squares,
and the distance between two adjacent rectangles is 1.5nm, which leads to a shot library with
1600 squares. The maximum value of the �1 in Eq. (8) is set as 0.5 to limit the number of
squares. The value c in the threshold function is 0.5, and ε to control the sharpness is set as 0.2.
After performing the optimization, the squares selected are merged to form rectangles if they
are connected and have parallel edges.

The mask fracturing is conducted with the Gauss-Newton algorithm introduced above, and
the linear least square problem formulated in Eq. (15) is solved with a toolbox SPGL1 [35].
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Fig. 3. The mask fracturing result for a typical mask pattern. The blue lines stands for the
contour for the mask shape, and the red lines show the shots.
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Fig. 4. The values of the representation coefficients, which are shown to be sparse. The
optimized result is obtained with 5 iterations within 2.6 seconds.

The fracturing result of the given mask pattern is illustrated in Fig. 3, and the corresponding
mask representation coefficients are shown in Fig. 4. The mask shapes are depicted with the
blue contours, and the shots are with red rectangles. It is shown that the fracturing result is
similar with the benchmark results shown in [27], which is known to be the optimal result. The
optimized values of the coefficients are shown in Fig. 4, with most of them are zeros, and those
nonzero ones are annotated with red circles. This demonstrates that only several squares are
chosen for the representation among the shot candidates, which indicate the proposed sparsity
promotion algorithm is effective. The slightly different number of coefficients with the shot
count comes from the merging after conducting the optimization.

4. Simulation results

In the following simulations, we focus on incorporating MBF into ILT so that the optimized
mask patterns can be less complex. The flow to conduct the inverse lithography is described in
Fig. 5. For a given target pattern, we first perform ILT with pixel-based optimization using the
conjugate gradient algorithm introduced previously [30]. To provide feedback for mask opti-
mization, we perform a mask fracturing with the Gauss-Newton algorithm introduced above.
After this process, another ILT is conducted to generate an optimized pattern with the desired
image quality.

In the simulations, the imaging system is set as an immersion one with a quasar illumination
source whose inner and outer radii are 0.68 and 0.92, respectively, and the opening angle is 45◦.
The wavelength of the source is set as 193nm, and the numerical aperture (NA) of the imaging
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Fig. 5. The flow to incorporate MBF into pixel-based ILT.
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Fig. 6. The target mask patterns for simulations of inverse lithography.

system is set as 1.35. The test patterns are shown in Fig. 6, whose critical dimension (CD) is
45nm, where the mask on the left is a simple one, and the right one is more complex. They are
represented by 301× 301 and 401× 401 matrices, respectively. Each pixel is 3.5nm for both
masks. The red lines in the figure mark the locations to evaluate the process windows to measure
the imaging performance. Similar with our previous work, the process windows are measured
as exposure-dose (E-D) window represented by two curves: an upper one corresponding to the
doses when the printed CD is 10% smaller than the target one, and a lower curve is 10% larger
than it.

In the mask fracturing, we resize the mask patterns to 101×101 pixel image to perform the
optimization to avoid the large computation and storage requirement caused by the large library.
Similar to the previous illustration, we select the potential shots as 3×3 squares to reconstruct
the mask patterns, and the distance between the basis functions equals to 1 pixel. Thus, the
total number of basis functions K equals to 9801 in the shot library. Due to the magnification,
the actual basis functions to recover the mask are approximately magnified by 3 and 4. The
threshold value c and ε to control the sharpness is set the same as the example shown in Section
3. The maximum values of the �1 norm σ̃ are 50 and 90, respectively.

We perform simulations following the flow given in Fig. 5 for the first target pattern under the
best focus plane. The MBF and ILT in the flow can be iterated for multiple times to improve the
image quality and the mask complexity. However, it is at the cost of a larger computation cost. In
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Fig. 7. The mask patterns produced with an initial ILT, a mask fracturing, and the final
optimized one are shown in Figs. 7(a)–(c). The magnified views of the patterns annotated
by the red rectangles are shown in Figs. 7(d)–(f). The bottom row shows the produced resist
patterns corresponding to the mask patterns in the top row.

our simulations, we observe obvious mask complexity reduction if the MBF is performed after
the ILT for the first iteration. Even though more times of MBFs are conducted, the reduction of
mask complexity is not obvious, and the computation amount increases significantly. Thus, we
show the results with only one MBF conducted in the simulations.

For the first test pattern, the produced patterns with initial pixel-based ILT, the one generated
with mask fracturing, and final optimized one, are shown in Figs. 7(a)–7(c). Magnified windows
marked as red rectangles in these patterns are shown in the lower row as Figs. 7(d)–7(f). The
output patterns corresponding to these masks are depicted as Figs. 7(g)–7(i) in the bottom row.
The average edge placement error (EPE) of the produced patterns on the wafer delivered by
the mask Figs. 7(a) and 7(c) are 2.55nm and 2.40nm, indicating similar image quality. The
MBF process takes only several seconds, which means the fracturing can be conducted very
efficiently. However, another optimization is required after the fracturing, which can make the
proposed ILT more computationally intensive than the traditional method.

The pattern shown in Fig. 7(b), which is the recovered one by MBF, is a rectilinear approx-
imation of the optimization result shown in Fig. 7(a). Most of the features in it are rectilinear,
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Fig. 8. Simulation results for the first target pattern. Top row shows the optimized mask
pattern Fig. 8(a), the produced resist pattern Fig. 8(b), and the measured process windows
Fig. 8(c) for the traditional method, while the lower row shows those with the proposed
method.

and it captures the important assistant features generated in the ILT. However, it fails to print
some of the main features of the target pattern, as shown in Fig. 7(h). The average EPE is not
available in several locations since the main features in these places are not printed out. Thus,
we conduct another ILT with this pattern as the initial value, and produce an optimized pattern
as Fig. 7(c). The produced one becomes more complex compared with Fig. 7(b), but it is less
complex than Fig. 7(a). It preserves the rectilinear features such as the rectangles shown in
Fig. 7(e), and the line edges are smoother than Fig. 7(a). The similar average EPE it delivered
compared with Fig. 7(a) indicates that it has competitive image performance.

Further simulations of ILT are performed for both target patterns under various defocus
planes. The range of the defocus is set as 0 to 60nm with an interval of 10nm. The optimized
patterns for the first target pattern are shown in Figs. 8(a) and 8(d), and 8(b), 8(c), 8(e) and 8(f)
show the produced resist patterns and process windows of the two methods, respectively. The
process windows are measured as the overlapping area of the exposure-dose (E-D) windows
for the measurement places marked as red lines in Fig. 6(a). It is demonstrated in Figs. 8(b)
and 8(d) that in both cases the printed patterns at the best focus plane have a good fidelity to the
target pattern. The sizes of the overlapping process windows are similar, and the depth of focus
(DOF), which is the largest range of the defocus to print an acceptable pattern, are 42nm and
46nm, respectively. We make comparison between the optimized patterns shown in Figs. 8(a)
and 8(c), and again we observe that the pattern produced with a fracturing method is less com-
plex. It has more rectilinear angles, and some of the assistant features generated are almost
rectangles, which can be written with only one shot. However, most of the features shown in
Fig. 8(a) are curvilinear, which are expensive to write.
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Fig. 9. Simulation results for the second test pattern. Optimization results such as opti-
mization pattern Fig. 9(a), resist pattern Fig. 9(b) and process windows Fig. 9(c) for the
traditional ILT are shown in the top row, and those for the proposed ILT method are shown
in the lower row.

Similar simulations are conducted for the second target pattern. The optimized patterns with
and without the fracturing are shown in Figs. 9(a) and 9(d), and the corresponding resist patterns
at the best focus plane and the overlapping process windows are shown in Figs. 9(b), 9(c), 9(e),
and 9(f), respectively. It is again observed that the optimized pattern shown in Fig. 9(c) is
simpler than the one in Fig. 9(a) with more rectilinear features, and less isolated points. Both
patterns can print the main features of the target pattern with good fidelity. The sizes of the
overlapping process windows measured at the four locations shown in Fig. 6(b) are similar, and
the depth of focus are 84nm and 82nm. The simulation results again demonstrate the MBF
proposed can be helpful to reduce the shot count of the optimized patterns while preserving the
image quality.

5. Conclusions

This paper proposes to incorporate an MBF process in ILT to reduce the shot count of the op-
timized mask patterns. The MBF process is formulated as a sparse nonlinear inverse imaging
problem, which aims to produce a pattern that is faithful to the target one and acceptable for
mask writing simultaneously. The problem is then solved efficiently by a Gauss-Newton al-
gorithm that can promote sparsity in the iterations. Simulations performed show the proposed
algorithm can obtain similar fracturing result compared with known optimum, and incorpo-
rating this process into ILT is effective to reduce the shot count while producing competitive
image performance.
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A. Appendix: Gradients derivation

In the following we explain how to compute the derivative G(αααk) needed to solve the linear
sparse basis pursuit problem in Eq. (14), dropping index k for brevity. To facilitate the compu-
tation, we rewrite the expression of G(ααα) in Eq. (10) as

G(ααα) = Γ
(
Sααα − c

)−Mt(x,y), (17)

where S is a N2 ×K matrix generated by stacking the vector form of basis rectangular function
Sp(x,y) together. Then the derivative can be computed as

G′(ααα) = diag
[
Γ′(Sααα − c

)]
S, (18)

where diag[·] transform a vector of the size N2×1 to a diagonal matrix of the size N2×N2. The
values in the diagonal of the matrix is filled with the vector, and others are zeros. The derivative
the threshold function in Eq. (5) is

Γ′(ψ) =

{
0, |ψ|> ε
1
2ε +

1
2ε cos(πψ

ε ), |ψ| ≤ ε
. (19)
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