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ABSTRACT 

The library search is a widely used method for reconstruction of diffraction structures in optical scatterometry. In library 
search, an optimized set of geometrical parameters for a diffraction structure can be achieved by searching for a best 
match between the measured signatures and the simulated ones. The search speed and accuracy is the key to guarantee 
the effectiveness of this method, and some a priori geometrical model is necessary. Once the actual geometrical model of 
a measured signature is different from the model used in the establishment of library, the search result will be 
meaningless. Therefore, the classification and recognition of the geometrical profile for a measured signature is critical. 
In this paper, we develop two support vector machine (SVM) classifiers to deal with issue. One classifier is used to 
identify the geometrical profile of a diffraction structure from its measured signature, and the other one is to map the 
whole search range of the identified diffraction structure into a smaller one. By using some reliable and mature search 
algorithms, we can fast and accurately reconstruct the geometry profile of a diffraction structure in this optimized small 
range. Simulation and experiment have demonstrated that the SVM classifiers can identify the geometrical profile of 
one-dimensional trapezoidal gratings accurately, and the SVM-based library search strategy can achieve a fast and 
accurate extraction of parameters for diffraction structures. 

Keywords: scatterometry, metrology, critical dimension (CD), structure reconstruction, library search, support vector 
machine (SVM), classifier, ellipsometric signature 

1. INTRODUCTION 

Optical scatterometry is a non-contact, non-destructive and accurate technique that is now widely used in critical 
dimension (CD) metrology for sub-micro and nano structures. By analyzing the scattered optical signatures, the 
geometrical profiles of diffraction structures can be determined. In the analysis of optical signatures, since this type of 
problem is ill-posed, there is no analytical solution. To solve the ill-posed inverse problem in scatterometry, some 
nonlinear optimization approaches have been proposed, such as Levenberg-Marquardt (LM) algorithm [1, 2], artificial 
neural network (ANN) [3], and ANN-LM combined method [4]. However, the nonlinear optimization approach is usually 
time-consuming, as the structural profile is achieved through an iterative procedure that repeatedly requires computation 
of forward optical modeling. This is even worse and unacceptable when dealing with two-dimensional structures or more 
complex structures. Therefore, the library search method is still the most attractive technique in industry [5]. By 
simulating the optical signatures of a predetermined set of profiles and choosing the best candidate using search 
techniques, the geometrical parameters can be obtained accurately. However, several challenges arise for much more 
accurate and faster parameter extraction when the library grows larger and larger [6]. Currently, most of the effort to solve 
this problem is to design new matching cost functions [7, 8] and new searching strategies [9-11]. Comparing with designing 
cost functions, designing search strategies is a more direct method which aims to match not only accurately, but also fast. 

Another issue in library search is that the geometrical profiles of the diffraction structures are often unknown before the 
search itself. If the corresponding actual structures are not the same as the model in the forward optical modeling, the 

* Contact author: shyliu@mail.hust.edu.cn; phone: +86 27 8755 9543; webpage: http://www2.hust.edu.cn/nom. 

Metrology, Inspection, and Process Control for Microlithography XXVI, edited by Alexander Starikov, 
Proc. of SPIE Vol. 8324, 83242S · © 2012 SPIE · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.916259

Proc. of SPIE Vol. 8324  83242S-1

Downloaded from SPIE Digital Library on 05 Apr 2012 to 115.156.244.32. Terms of Use:  http://spiedl.org/terms



 

 

matching procedure will lead to be inaccurate or even erroneous. Thereofer, for a measured signature its corresponding 
geometrical model should be identified before the search. Recently, Gereige et al. proposed a method by artificial neural 
network (ANN) to classify geometrical profiles according to their corresponding optical signatures [12]. However, if the 
real geometrical parameters of a structure corresponding to the measured signature are not in the range of training data, 
the mapping accuracy can be guaranteed. 

Support vector machine (SVM) is a kind of machine learning algorithm based on statistical learning theory (SLT) [13, 14]. 
By taking SLT as system information, SVM can to some extent obtain an optimal result under limited information. In 
this paper, we introduce the SVM to deal with those challenges in the library search. We generate two SVM classifiers. 
One classifier is used to identify the geometrical profile of a diffraction structure from its measured ellipsometric 
signature, and then other one is used to map the whole search range of the identified diffraction structure into a smaller 
one. In the sub-library with a smaller range, we can use some search algorithm to fast match the best signature. We have 
demonstrated the feasibility of the SVM-based classifiers. 

2. METHODS 

2.1 Principle of SVM 

By using the radial basis function (RBF) as the kernel, we can nonlinearly map the input signatures to a high dimensional 
feature space. Then in the high dimensional feature space we can construct an optimal separating hyperplane so that we 
can classify those signatures. For a binary classification problem, a set of training signatures are as follows: 

 1 1 2 2( , ),  ( , ),  ...,  ( , )l lx y x y x y  (1) 

 n
ix R∈ , { 1,  1}yi ∈ − , 1,  2,  ...,  i l=  (2) 

where xl is a n-dimensional vector, and l is the number of training signatures. Training signatures are used in the training 
of SVM network. 

For the classification of a measured signature x, the value of decision function f corresponding to x decides which class 
the input signature x belongs to. The decision function f can be defined by 

 [ ]( ) sign ( )f x x bω= ⋅Ψ +  (3) 

where ω is the support vector which is the linear combination of training data, b is the bias, and ψ is a RBF kernel 
defined by 
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where xc is the centre of kernel function, σ is the scaling factor. The ω in Eq. (3) can be expressed by  
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where λi is the weight coefficient of the ith input signature. By substituting Eq. (5) into Eq. (3), we can get the following 
equation 
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Hence, as shown in Eq. (6), for the input signature x the decision function f can judge which class it belongs to. 
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2.2 SVM-based library search strategy 

In this paper, we divide the reconstruction of diffraction structures by library search into two parts. The first part is the 
identification for the profile of a diffraction structure by its measured ellipsometric signature (if the profile model of the 
structure is known, then this procedure can be skipped). Once the profile is identified, then the next step which is the 
search for a nearest neighbour of the measured signature in the library will be conducted. The flowchart of this method is 
shown in Figure 1. 

For the identification stage, a SVM classifier is trained to recognize the geometrical profile of a structure by its measured 
ellipsometric signatures. For the binary classification task, we use numeric ‘1’ to represent one kind of profile model, and 
numeric ‘0’ to represent the other profile model. Thus, the output of classifier is ‘1’ or ‘0’.  

 
Fig. 1. Flowchart of SVM-based library search 

Once the identification stage is finished, then the library search stage can be conducted. In the library search stage, 
instead of searching for a nearest neighbour of the measured ellipsometric signature by linear search in the whole library, 
we propose a SVM-based library search strategy which can reduce the searching time and at the same time keep the 
parameters extraction accuracy. In our SVM-based library search strategy, a multi-classification SVM classifier is 
trained to map the measured signature corresponding to the known structures which is identified by the first binary SVM 
classifier into a sub-library of the whole spectral library. In order to simplify our process, we will simulate the signatures 
to establish a spectral library for one-dimensional trapezoidal grating. However, the predefined model in the SVM 
classifier has nonnumeric information about the sub-libraries. Hence we need to translate the textual data into numerical 
form. Here we assume that the library is divided into M sub- libraries. The first sub-library is coded with a vector 
[1(1)…0(n)…0(M)] [12]. The sub-library n is coded with the vector [0(1)…1(n)…0(M)]. The flowchart of the SVM-based 
library search method is as shown in Figure 1. 

In consideration of the highly nonlinear separated ellipsometric signatures, we use RBF kernel. And in the training of 
SVM classifier, we use quadratic programming (QP) to search for the separating hyperplane. For the first SVM classifier 
which is used for identification, we will test its generalization ability. Hence a set of newly simulated testing 
ellipsometric signatures are used. The classification accuracy is the major target that we concern. There are many factors 
that affect the classification accuracy. To objectively and quantitatively estimate the relationship between those factors 
and classification accuracy is very difficult. Here we estimate the scaling factor in the RBF kernel and number of 
signatures’ effect on classification accuracy. 
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3. RESULTS AND DISCUSSION 

3.1 Description of the Grating Models 

For the purpose of geometrical profile’s identification and fast extraction of geometrical parameters, simulation and 
experiment are conducted based on one-dimensional periodic structures. In our simulations, two grating models are used, 
as shown in Figure 2. The first one is a one-dimensional trapezoidal photoresist grating with a period of 400 nm 
deposited on a silicon substrate which is coated by an anti-reflective layer. The second one is a one-dimensional 
sinusoidal photoresist grating with the same materials and pitch as trapezoidal grating. In the experiment part, a one-
dimensional trapezoidal photoresist grating with the same period and materials as discussed above is fabricated.   

 
Fig. 2. Geometrical profiles of trapezoidal grating and sinusoidal grating. The left model is defined by three 
parameters: d (height), SWA (sidewall angle) and fΛ (f is duty cycle, Λ is pitch). The right model is defined by two 
parameters: A (amplitude) and Z0 (offset along Z axis). 

3.2 Simulation Results 

For the purpose of identifying the geometrical profiles, and in order to estimate the scaling factor in the RBF kernel and 
number of signatures’ effect on classification accuracy, different sets of training ellipsometric signatures and different 
values of σ are generated, respectively. Each set is an equal mixture of signatures for trapezoidal and sinusoidal profiles. 
The geometrical parameters are randomly chosen from the following variation ranges: 290 < d < 320 nm, 150 < fΛ < 190 
nm, 86° < SWA < 90°, 160 < A < 180 nm, 160 < Zo < 180 nm for the trapezoidal and sinusoidal profiles. The incident 
wavelengths are between 380 nm and 780 nm, with a step of 10 nm and an incident angle θ=65° in the classical 
mounting (i.e., φ=0°). 

Table 1. The corresponding ranges of the parameters for of each set 

 Range of D 
(nm) 

Range of fΛ 
(nm) 

Range of SWA 
(°) 

Range of Zo 
(nm)

Range of A 
(nm) 

Remark 

Set 1 [290 320] [150 190] [86 90] [160 180] [160 180] No range exceeds 
Set 2 [290 320] [150 190] [86 90] [160 180] [150 180] A exceeds 
Set 3 [290 320] [150 190] [86 90] [150 180] [160 180] Zo exceeds 
Set 4 [280 320] [150 190] [86 90] [160 180] [160 180] d  exceeds 
Set 5 [290 320] [150 200] [86 90] [160 180] [160 180] fΛ exceeds 
Set 6 [290 320] [150 190] [80 90] [160 180] [160 180] SWA exceeds 
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In order to test the generalization of the SVM classifier, we do not generate the testing signatures from the parameters 
ranges as discussed above. Here we generate six sets of testing ellipsometric signatures from the following parameters 
ranges, respectively (the number of signatures in each set is 400): As shown in Table 1, for the six sets of testing samples, 
we have five sets for each of whose one parameter range is not the same as the training samples (or exceeds). The testing 
results are shown in Fig. 3. 
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Fig. 3. Classification accuracy for trapezoidal grating and sinusoidal grating under different parameter ranges. The 
parameter range of the first sub-image in the top row is the same as training pairs.  

In Figure 3, the X axis of the six sub-images corresponds to number of training signatures, and the Y axis corresponds to 
the value of sigma in RBF kernel. The ranges of the sigma and number of training signatures for the six sub-images are 
the same, which are: 0.1 < sigma < 2, 1 < number of training signatures < 200. The increment in X axis and Y axis is 1 
and 0.02, respectively. We can find that for the five sub-images on the left in Figure 3 there exists a curve which 
separates the image according to classification accuracy. Those curves can be described as hyperbolas with different 
biases. If a point is above those curves, the classification is nearly100%. For a point under those curves, the classification 
accuracy is below 100% and unstable. Hence we indicate that the ability of generation of SVM classifier is excellent 
which can help to classify those geometrical profiles even their parameter values are not in the ranges of training pairs. 
Also, we can find that for the classification of trapezoidal gratings with the exceeding range of d (depth), more training 
pairs and bigger sigma are necessary in specified ranges when compared to any other aspect. However, there exists no 
hyperbola in the last sub-image. In the sixth sub-image with an exceeding range of SWA we can find that from the 
bottom left corner to top right corner the classification accuracy is arising. Hence we suppose that a bigger sigma and 
bigger number of training signatures can make the classification accuracy close to 100%. 

In order to validate our guess, we simulated another image with a bigger range of sigma and bigger range of number of 
training signatures, as shown in Figure 4. 
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Fig. 4. Classification accuracy under different conditions. The left is a classification accuracy image for trapezoidal 
grating and sinusoidal grating under the exceeding range of SWA. The exceeding SWA range of the right sub-image 
is: 80° < SWA < 90°. The right is four classification accuracy curves with different number of training pairs under 
different magnitudes of noise. 

The left image in Figure 4 indicates that if we want to classify a trapezoidal grating whose range of SWA is out of the 
range for training signatures, more training signatures and bigger sigma are necessary for the correct classification. 
Different magnitudes of noise may lead to different classification accuracy. Hence we add Gaussian noise into the testing 
signatures. The standard deviation of the Gaussian (magnitude) model is set as a percentage of the mean of the simulated 
signatures [15]. As shown in the right of Figure 4, each curve has a boundary point which divides the classification 
accuracy into two parts: one part indicates the classification accuracy is 100%, the other one indicates the classification 
accuracy is below 100%. Also, we can hardly find the two red curves, because the two red curves are overlaying (As 
shown in the sub-image on the right side). This indicates that the two curves have the same classification effect. In Table 
2, we show the boundary point (maximal level of noise) for each set of training signatures in detail. 

Table 2. Boundary point of each set of training signatures 

 Number of training pairs The maximal level of noise 
(Boundary point) 

Remark 

Set 1 300 0.0147 If the level of noise is bigger than the 
maximal level of noise (boundary 
point), the classification accuracy is 
below 100%. 

Set 2 350 0.0149 
Set 3 400 0.0155 
Set 4 450 0.016 

Once the relationship exists in sigma, number of training signatures and classification accuracy is confirmed, we next can 
use the method discussed above to continue our SVM-based library search strategy. For the discussion above, we chose 
the magnitude of noise as 0.001, and the number of training signatures was chosen as 350. We then continue our 
improved library search strategy by using a 25-classification classifier. The extracted parameters errors and searching 
time by SVM-based library search strategy is compared with the results by linear search method of the whole library. 
The results are as shown in Figs. 5 to 7. 

0.05 0.1 0.15 0.2 0.25 0.3
10

20

30

40

50

60

70

80

90

100

Magnitudes of noise

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

 

 
number of training pairs is 300
number of training pairs is 350

Boundary point: 
0.016 

Proc. of SPIE Vol. 8324  83242S-6

Downloaded from SPIE Digital Library on 05 Apr 2012 to 115.156.244.32. Terms of Use:  http://spiedl.org/terms



 

 

0 50 100
2

4

6

8
x 10

-3 Consuming time

number of testing samples

tim
e(

s)

20 40 60 80 100
-0.5

0

0.5
Extracted error of Depth

er
ro

r(n
m

)

20 40 60 80 100
-2

-1

0

1

2
Extracted error of CD

er
ro

r(n
m

)

20 40 60 80 100
-0.4

-0.2

0

0.2

0.4
Extracted error of SWA

er
ro

r(n
m

)

 
Fig. 5. The searching time and extracted errors of depth, CD and SWA by linear library search method. 
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Fig. 6. The searching time and extracted errors of depth, CD and SWA by SVM-based library search method. 
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Fig. 7. The searching time of linear search method and SVM-based search method, respectively. 

As shown in Figure 7, the searching time by linear search is nearly 20 times than the SVM-based method. Also, as 
shown in Figure 5 and Figure 6, the extracted parameters errors by the two different methods are nearly the same when 
set the initialized condition properly, which means the classification accuracy ratio is nearly 100% for each of the testing 
samples. Hence, we indicate that the SVM-based library search method is a speed controllable method which only adds a 
time-consuming but off-line procedure. 

3.3 Experimental Results 

In our experiments, a trapezoidal grating was fabricated in order to validate experimentally the SVM-based library search 
strategy. Figure 8 depicts the geometrical model and top-down scanning electron microscopy view of one-dimensional 
trapezoidal grating. The measured value of CD is 172 nm by scanning electron microscopy. 

 

 Si 

depth

     
Fig. 8. Geometrical model and top-down scanning electron microscopy view of the one-dimensional trapezoidal 
photoresist grating with a pitch of 400 nm. 

Here we extract the depth, CD and SWA (the nominal sidewall angle is 90°, but the actual value of SWA may have a 
little bias compared to the nominal value. Hence, the SWA also needs to be extracted). We established a simulated 
signature library. We set the CD from 150 to 190 nm, the depth from 290 to 320 nm, both with an increment of 1 nm, 
and the SWA from 86° to 90°with an increment of 0.1°. We repeatedly measured the patterned region for 10 times 
(different measurements may contain different noise levels). A ten-classification classifier was trained in the SVM-based 
method, and the experimental results are shown in Fig. 9, Fig. 10, and Table.3. 
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Fig. 9. Classification for the experiment signatures of one-dimensional trapezoidal grating. The data in the right 
table represents the Euclidean distance between experiment signatures and classification plane as shown in the left 
image. 
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Fig. 10. Comparison of theoretical and experiment signatures  

Table 3. Comparison of linear search and SVM-based library search 

Measurement 
order 

Nominal CD 185 nm, 
SEM CD 172 nm 

Nominal depth 310 nm Nominal SWA 90° Ratio of 
time 

Linear SVM-based Linear SVM-based Linear SVM-based 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

164 
163 
162 
164 
162 
162 
161 
162 
162 
162 

164 
163 
162 
164 
162 
162 
161 
162 
162 
162 

297 
299 
301 
298 
303 
303 
304 
303 
303 
303 

297 
299 
301 
298 
303 
303 
304 
303 
303 
303 

88.4 
88.4 
88.0 
88.4 
88.0 
87.6 
87.6 
87.6 
87.6 
87.6 

88.4 
88.4 
88.0 
88.4 
88.0 
87.6 
87.6 
87.6 
87.6 
87.6 

11.0 
8.9 

12.8 
13.1 
10.9 
11.1 
10.6 
11.1 
10.5 
11.1 

Measurement 
Order 

Euclidean distance 

1 28.2190 
2 28.2212 
3 28.2221 
4 28.2207 
5 28.2182 
6 28.2148 
7 28.2136 
8 28.2141 
9 28.2143 

10 28.2140 
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Figure 9 indicates that for the 10 measurements, although different measurements may contain different noise levels, the 
classification is correct (experiment signatures are represented by small red circles). Also, as shown in the right table, the 
Euclidean distances between experiment signatures and classification plane for all the measurements are nearly the same, 
which means the noise level for every measurement has limited influence on the classification accuracy.  

Figure 10 is a comparison of theoretical and experiment signatures in one measurement, the extracted values of 
parameters corresponding to the theory signatures are 303 nm, 162 nm, and 87.6°, respectively. It demonstrates an 
excellent agreement between the three parameter theory and experiment. 

As shown in Table 3, the parameter extracted values by linear search method and SVM-based method are all the same, 
but the searching time of SVM-based method is only about ten percent of the searching time by linear search method. 
Hence, we indicate the SVM-based method is a time-controllable and accurate method which can be applied in OCD 
metrology. 

4. CONCLUSIONS 

In this paper, we have introduced an SVM-based classification technique that can be applied in the identification of 
geometrical profiles of diffraction structures. Our simulation and experiment have shown that the SVM classifiers can 
accurately identify the geometrical profile of one-dimensional trapezoidal grating even though the different levels of 
noise exist in the signatures. We also have obtained several curves that represent the relationship among the 
classification, the number of training signatures, and the value of sigma. For the case of a point that is above those curves, 
the classification accuracy is nearly 100%. By further extending the application of SVM in scatterometry-based structure 
reconstruction, an SVM-based library search strategy is proposed. Before searching for the nearest neighbor of an 
experimental signature in a library, a multi-classification SVM classifier is trained. Once a measured signature is 
obtained, the SVM classifier can map the signature into its corresponding sub-library. By searching in the sub-library, 
the searching time can be reduced significantly compared to the linear search in the whole library. The simulation and 
experiment have demonstrated that the SVM-based library search strategy can achieve a robust and fast extraction of 
structural parameters. 
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