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ABSTRACT 

In this paper, we propose a new regularization framework that regularizes mask directly by applying a mask filtering 
technique to improve computational efficiency and enhance mask manufacturability for pixel-based Inverse Lithography 
Technique (ILT). Generally, the synthesized mask by pixel-based ILT is a grey-level image, and possesses small, 
unwanted block objects, such as isolated holes, protrusions, and jagged edges, which are unreachable in the real 
manufacturing process. The proposed method filters (or regularizes) mask directly to guarantee manufacturability of the 
synthesized mask pattern; this technique is different from the conventional regularization method that regularizes mask 
by incorporating various penalty functions to a cost function. A tailored mask filter is developed in this special ILT case. 
In addition, we introduce a new metric, edge distance error which has the same dimension nanometer as edge placement 
error and has a continuous expression as pattern error, to guide mask synthesis. Simulation results demonstrating the 
validity and efficiency of the proposed method are presented. 

Keywords: Inverse Lithography Technology (ILT), computational efficiency, manufacturability, regularization, mask 
filtering technique, edge distance error (EDE) 

1. INTRODUCTION 
Inverse Lithography Technology (ILT), as one of resolution enhancement techniques (RETs) [1, 2], is considered as an 
economically viable method to meet various challenges in the future technology nodes. Pixel-based ILT considers a 
mask as a raster image constituted by pixels and synthesizes it pixel-by-pixel [3]. It is probably the most popular ILT in 
the literature due to its high flexibility and ease of understanding and implementation. Generally, pixel-based ILT treats 
mask synthesis as a rigorous inverse mathematical problem that aims at minimizing a cost function on the difference 
between the output and desired mask patterns [3]. However, the synthesized mask by pixel-based ILT is usually a grey-
level image, and possesses small, unwanted block objects, such as isolated holes, protrusions, and jagged edges, which 
are unreachable in the real manufacturing process [3-6]. To address these problems, regularization approaches are 
introduced to guarantee the synthesized mask to be binary and less complex. In the literature, almost all the 
regularization approaches take the regularization terms as penalty functions incorporated into the cost function with 
corresponding weighted parameters [3-8] as 
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Here, the operator Γ{·} is the forward mapping from the input mask M to the output pattern, Z* is the desired output 
pattern, Rk(M) are the various regularization terms. Generally, regularization terms can be classified into two types: one 
is related to the manufacturability, such as quadratic penalty term [3], total variation penalty term [3], and wavelet penalty 
term [5]; the other one is related to the fabrication process, such as image slope term and mask error enhancement factor 
(MEEF) [7, 8]. λk is the weight of the corresponding regularization term Rk(M). It should be noted that λk plays a critical 
role in the optimization process, however, how and why to choose a λk are rarely discussed in the literature. It is usually 
set as a constant by experience in advance. Here, we take the quadratic penalty term as an example to illustrate how 
weighted parameter λ impacts the optimization process. In this case, both smaller pattern error and quadratic error are 
preferred, where the pattern error is calculated by * 2

2|| { } ||M ZΓ −  and the quadratic error is equal to the value of 
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quadratic penalty term R(M) [3]. As Fig. 1 shows, a smaller weighted parameter λ of the quadratic penalty term results in 
a rapid convergence on pattern error. It is observed from Fig. 1(a) that the pattern error may meet the requirement after 
44 iterations, while the quadratic error is pretty high at this moment; it still needs extra iterations to reduce the quadratic 
error. On the other hand, a larger λ results in a good performance on the quadratic error while causing a poor 
convergence on the pattern error, as Fig. 1(d) reveals. As we can see from Fig. 1, the convergence of the pattern error and 
the quadratic error under such a regularization framework is out of synchronization. Noticing that a smaller λ will not 
achieve the regularization effects while a larger λ may result in a larger pattern error, it is therefore difficult to choose an 
appropriate constant value of λ. Moreover, the choosing of λ has a close relation with the mask features and simulation 
resolution. In mathematics, a solid approach is that the λ is adaptive in each iteration. However, this in turn increases the 
freedom of design variable, and it is generally tough to accomplish. 
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Fig. 1.  The convergence of pattern error, quadratic error and cost function values with different weighted parameters λ 
of quadratic penalty term, both using the mask M1 in Fig. 8 under the corresponding illumination condition. 

In this paper, we propose a new regularization framework that regularizes the mask directly by using a mask filtering 
technique. In such a framework, the original cost function Eq. (1) is changed to Eq. (2) as 
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where S[·] is a mask filtering operator, and it is designed based on the manufacturing constraints. It is noted that the 
pattern error F{M} of the filtered mask S[M] instead of the original mask M, is calculated and will be iteratively reduced 
in the optimization process. The filtering technique is widely used in signal and image processing, and has been used for 
many years in various application fields as a numerical method to ensure regularity or existence of solutions to an 
engineering problem, such as structural topology optimization problem [9, 10]. In this paper, grey-level transitions and 
small, unwanted block objects in the mask are all interpreted as unwanted noises, and it is therefore natural to use filters 
to remove these noises to satisfy the manufacturing constraints. Section 2.3 details this mask filtering technique. 

Moreover, we introduce a new metric, edge distance error (EDE), to guide mask synthesis in the ILT framework. It has 
the same dimension nanometer as edge placement error (EPE) but has a continuous expression as pattern error. The 
detailed description of EDE will be given in Section 2.2. 

In addition, with the critical dimension (CD) decreasing, the printed dimension becomes increasingly sensitive to the 
fluctuation in the fabrication process, which limits the yield in the semiconductor industry. Instead of using process 
penalty terms, such as image slope term and MEEF, a statistical strategy is applied to minimize the exception of EDE 
under different process variations weighted by their statistical probability to enhance the robustness of layout patterns [12-

14]. This approach is directly related to the fabrication process and is well understood and easily accomplished, while 
using process penalty terms can be considered as a roundabout regularization approach and requires deeper 
understanding of mask topology and the imaging system. 

The remainder of this paper is organized as follows. Section 2 details the proposed mask filtering technique. Section 3 
provides the simulation results to demonstrate the validity and efficiency of the proposed method. Finally, we draw some 
conclusions in Section 4. 
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2. METHODOLOGY 

2.1 The lithography imaging model 

Abstractly, the imaging process for optical lithography is mathematically described as 

 ( ) { ( )},Z M= Γr r  (3) 

where r represents spatial coordinates (x, y), and the operator Γ{·} is the forward mapping from the input mask M(r) to 
the output pattern Z(r). In practice, the Γ{·} in Eq. (3) consists of projection optics effect and resist effect. The projection 
optics effect, namely the optical image in resist I(r), can be modeled as a pupil function with a partially coherent 
illumination source [15], which can be approximated by the sum of coherent systems (SOCS) method [11], the optimal 
coherent approximation (OCA) approach [16], or the analytical circle-sampling technique [17] as the superposition of 
several coherent systems, 

 
2

1
( )= ( ) ( ) .

n

q q
q

I λ h M
=

⊗∑r r r  (4) 

Here hq(r) is the qth optical kernel, λq is the eigenvalue of the qth kernel with n kernels in total, and ⊗ denotes the 2-D 
convolution. The resist effect can be approximated by a constant threshold resist (CTR) model using a logarithmic 
Sigmoid function [3], 
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with a being the steepness of the Sigmoid function and t being the threshold. In reality, t is equal to the threshold level of 
the resist. Combining Eqs. (4) and (5), we can write the lithography imaging equation as 
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2.2 Edge distance error and the inverse lithography problem definition 

Generally, L2 norm is employed as a metric to evaluate the difference between the output pattern of M(r) and the desired 
pattern Z*(r) in pixel-based ILT framework as 
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F{M} is called pattern error. It is noted that pattern error is a continuous function, and hence the gradient of F{M} with 
respect to the mask can be analytically calculated [3, 6]. However, this metric is not intuitive, for its magnitude is not 
directly related to the CD error and highly depends on the mask features and simulation parameters, such as simulation 
grid size. To address this problem, we therefore introduce a derivation from the pattern error, which can convey CD 
information and is independent of mask features and simulation parameters. In Fig. 2, the red dots are discrete pixels of 
resist; Sshadow denotes the absolute area between the target contour and the real resist contour, and L is the perimeter of 
the target feature. The edge distance error (EDE) is defined as 

 EDE .shadowS
L

=  (8) 

It is noted that the EDE has the same dimension of nanometer as EPE. It can be interpreted as the mean EPE when 
segments are small enough. Assuming the pixel grid size is small enough, Sshadow can be approximated by multiplying the 
total number of pixels in shadow by the element (pixel) area as 
 ( ).shadow x yS N δ δ= ⋅ ⋅  (9) 

It is noted that N is the total number of the red dots in the shadow as Fig. 2 shows. Since the value of pixel in resist is 
either 0 or 1, according to the definition of pattern error in Eq. (7), the N is almost equal to pattern error, namely, 
N=F{M}. Substituting N=F{M} into Eq. (9) and then into Eq. (8), the EDE can be approximated by G(M) as 
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In this paper, we adopt G(M) to express and calculate the EDE. 
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Fig. 2.  The pixel-based expression theory of resist. 

Generally, G(M) is treated as a cost function to guide mask synthesis under nominal conditions, i.e., no defocus or 
dosage variations, etc. In order to enhance process robustness, process variations should be taken into account under the 
mask synthesizing process. Here, we use the expectation of EDE under different variations as a cost function as 
expressed by 

 [ ]( ) ( ) ( ; ) ,J M G Mζ ψ= ⋅var var  (11) 

where ζ denotes expectation, var represents a collection of parameters of process variations including, for example, 
defocus, exposure dosage variation, and lens aberrations, etc., and ψ(var) is the statistical probability of the process 
variation var. J(M) is called the statistical EDE and is used as a cost function to guide the mask synthesis. The gradient 
of J(M) with respect to mask M will be used in the optimization process, and it is given as 
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where † means the conjugate operator; hq(r; var) is the qth optical kernel under the process variation var; hq
flip(r; var) is 

the up-down and left-right flip of hq(r; var), i.e., , 1, 1( ; ) | ( ; ) |flip
q i j q N i N jh h − + − +=r var r var , where i, j are integers and belong 

to [1, N]; and a is the steepness of the Sigmoid function in Eq. (5). 

In order to guarantee mask manufacturability, mask quadratic error and complexity should be considered. In this paper, 
the quadratic metric RQ(M) and the complexity metric RTV(M) [3] are adopted to quantify the corresponding performance. 
In this paper, we focus on the binary mask. So the quadratic metric RQ(M) and the complexity metric RTV(M) [3] are 
expressed respectively as:  

 2
Q ( ) [1 (2 1) ] ,R M M d

Ω
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Therefore, combining the optimization objectives of mask quadratic metric, mask complexity, and the statistical EDE, 
we state the inverse lithography problem as: 

Finding M*(r) to minimize: J(M), RQ(M) and RTV(M) 

subject to: 0 ≤ M ≤ 1. 

It is noted that this problem has three mutually exclusive minimization objectives. In the literature, they are usually 
combined with certain proportions λ1 and λ2 to state a single-objective minimization problem [3-6] as: 

Finding M*(r) to minimize: J(M)+λ1RQ(M)+λ2RTV(M) 

where: λ1, λ2 ≥ 0 

subject to: 0 ≤ M ≤ 1. 

2.3 The mask filtering technique 

In this paper, we propose an alternative method to solve this multiple-objective minimization problem. We first interpret 
grey-level transitions and small, unwanted block objects, such as isolated holes, protrusions, and jagged edges or other 
details that cannot be fabricated, as unwanted noises in the mask, and then design a tailored filter S[·] to remove these 
noises to satisfy manufacturing constraints, 

 [ ].M S M=%  (16) 

After the filtering process, the quadratic metric RQ(M) and complexity metric RTV(M) of the filtered mask M%  are rather 
small. Then we calculate the statistical EDE of this filtered mask, 

 [ ]( ) ( ) ( [ ]; ) .J M G S Mζ ψ= ⋅var var  (17) 

In the optimization process, we ensure that the statistical EDE of the filtered mask is iteratively decreasing. It should be 
noted that the synthesized mask after each iteration is filtered and satisfies all the optimization objectives except the 
statistical EDE; namely, it satisfies the manufacturing constraints. As a result, we only need to reduce the statistical EDE 
of this filtered mask. In this perspective, the multiple-objective minimization problem is degraded to a single-objective 
minimization problem. This approach is called the mask filtering technique. The filter operator S[·] is very flexible, for it 
can be defined based on different mask manufacturing rules. This makes it possible for the filtered mask to be sent to 
fabrication directly. The most basic filter should filter the gray-level image to be a district 0 or 1 and guarantee mask to 
be less complex. In this paper, we therefore define a basic mask filter as 

 1[ ] sig[ ( )].S M Mτ −= ⋅ Ο ⊗  (18) 

Here, the steepness of this Sigmoid function is aS and the threshold is tS, O is a Gauss filter to relieve mask complexity, 
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where r0 is the center point and ||r-r0|| means the distance from r to r0. τ is the normalized weight of the Gauss filter O(r), 
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where Ω1 is the number of pixels in O(r). The gradient of S[·] with respect to M is given as 

 { }1 1 1[ ] sig[ ( )] sig[ ( )] .flip
M SS M a M Mτ τ τ− − −⎡ ⎤∇ = ⋅Ο ⊗ ⋅ ⋅ Ο ⊗ ⋅ − ⋅ Ο ⊗⎣ ⎦1  (21) 

where Ω is the simulation area, or the number of pixels in M, ||·||1 is L1 norm and D is an operator of first derivative as 
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Combining Eqs. (12) and (21), the gradient of J(M) with respect to M is, 
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With the gradient Eq. (22), we apply a steep-descent method [3] to solve this problem. 

3. SIMULATIONS 
Simulations were performed on a partially coherent imaging system with an annual source illumination whose outer 
radius was σout= 0.7 and whose inner radius was σin = 0.4. The wavelength in the simulations was set to be 193nm, and 
the numerical aperture (NA) was 1.35. The maximum optical image of a single bar with target CD was normalized to 1. 
The resist effects were approximated by a Sigmoid function with a = 100 and t = 0.7. The Gauss filter O(r) has a size of 
21×21 pixels and σO = 4. The parameters of the Sigmoid function in the proposed filter S[·] were aS = 300 and tS = 0.5. 
Since we focus on developing a new regularization framework in this paper, process variations will not be taken into 
consideration in the proposed simulations. That means var is the nominal process condition and therefore ψ(var) = 1. All 
the simulations were carried out on a HPZ800 workstation of 3.47 GHz Xeon. 

3.1 Simulations of edge distance error 

An example of a real resist feature and a target pattern is presented in Fig. (3). In this case, the true absolute area between 
the target contour and the real resist contour is 1.853×104nm2, the perimeter of the target pattern is 1.70×103nm, and 
therefore the true EDE is 10.90nm. Table 1 summarizes the relative error compared to the true EDE when using different 
pixel grid size. The EDE in Table 1 is calculated by Eq. (10) and the pattern error is calculated by Eq. (7). From Table 1, 
it is observed that the magnitude of pattern error varies with the pixel grid size while the EDE does not. When the pixel 
grid size is small enough (0.5nm for example), the EDE calculated by the proposed method is almost equal to the true 
value. With the increase of pixel grid size, the accuracy of the EDE remains acceptable. So the EDE calculated by the 
proposed method can be used to guide mask synthesis. 
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Fig. 3.  Comparison of the real resist contour and the target contour. 

Table 1.  Results of the pattern error and the EDE when using different pixel grid size. 

Pixel grid size (nm) 0.5 1 1.5 2.5 3 
EDE (nm) 10.897 10.768 10.610 10.352 10.124 

Pattern Error 7.410×105 1.831×105 8.017×104 2.816×104 1.912×104 
Relative EDE error 0.28% 1.2% 2.7% 5.0% 7.1% 

3.2 Simulations of the mask filtering technique 

Figure 4 shows the performance of the proposed method with a common circuit pattern SRAM. All images are of size 
321×321 pixels with a grid resolution of 2.5 nm. The target CD is 45nm. The optimization is terminated after 200 
iterations. M* is the desired SRAM pattern, and Г(M*) is its output binary pattern on the wafer with an EDE of 10.48nm. 
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MS is the mask obtained by the proposed method, and Г(MS) is its output pattern with an EDE of 1.28nm. MP is the 
absolute binary mask, which is obtained by a post-processing of MS using a global threshold 0.5, and Г(MP) is its output 
pattern with an EDE of 1.28nm. I(·) is the corresponding optical image of the input mask M. It is observed that the 
synthesized grey-mask MS is very close to the post-processing mask MP, and reaches an almost identical resist feature 
and EDE. 
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Fig. 4.  Simulation results of the proposed method. M* is the target mask, MS is the synthesized mask by the proposed 
method, MP is the binary mask which is obtained by a post-processing of MS using a global threshold 0.5, I(·) is 
corresponding optical image in resist and Г(·) represents the resist features. 

Figure 5 presents some intermediate results obtained in the iteration process by the proposed method. M#0 denotes the 
initial mask; M#n means mask that is obtained after the n-th iteration. The EDE means the EDE between the resist 
feature of the M#n and the target pattern. It is noted that each obtained intermediate mask is very close to binary and has 
a low mask complexity. This demonstrates that the proposed method can regularize the mask to eliminate the grey-level 
transitions and small, unwanted objects. 

Figure 6 presents some intermediate results obtained in the iteration process by the conventional regularization method. 
The conventional regularization method takes different penalty terms and incorporates them into the cost function with 
the corresponding weight, and then seeks the minimum of such a weighted cost function. In this case, we take the 
quadratic term, and the corresponding weighted parameter λ is set to be 0.1. From Fig. 6, it is observed that the 
intermediate result with this method possesses grey-level transitions. The EDE may satisfy a 5%CD error after 50 
iterations, while the quadratic error is pretty high at this moment; it still needs extra iterations to reduce the quadratic 
error, although the EDE achieves the demand. This is one of the drawbacks of the conventional regularization method. 

As revealed in Fig. 5 and Fig. 6, the intermediate mask with the proposed method has a low level in quadratic error and 
mask complexity, which is quite an improvement over the conventional regularization method. Since the convergence of 
the EDE and the quadratic error with the conventional regularization method is out of synchronization, it therefore needs 
several iterations to achieve a low level on both the EDE and the quadratic error. With the proposed method, the iteration 
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(optimizing process) can be stopped whenever the EDE reaches the demand without worrying about the 
manufacturability. What’s more, compared to the conventional regularization method, the proposed method does not 
raise computational complexity; it just adds a computation of Eq. (21) whose runtime is far less than the total calculation 
time. In this simulation case, the average runtime of each iteration with the proposed method is 1.183s, while the one 
with the conventional regularization method is 1.175s. That means the proposed method enhances the mask 
manufacturability with an almost equal runtime compared to the conventional regularization method. In this perspective, 
the proposed method is therefore more efficient than the conventional regularization method. 
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Fig. 5.  Some intermediate results obtained in the iteration process by the proposed method. 
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Fig. 6.  Some intermediate results obtained in the iteration process by the conventional regularization method. 

Figure 7 shows the convergence properties and the solution properties with different methods. From Fig. 7, the results 
with the conventional regularization method with different weighted parameters λ demonstrate that a small weight causes 
a fast convergence on EDE but results in a slow convergence on quadratic error; a large weight results in a fast 
convergence on quadratic error while finally causing a higher EDE. That means a smaller λ will not achieve the 
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regularization effects, while a larger λ may result in a large EDE. For this reason, it is difficult to choose an appropriate 
value of weighted parameter λ to get a win-win situation. This is the second drawback of the conventional regularization 
method. On the other hand, it is observed that the EDE with the proposed method converges rapidly while the quadratic 
error remains at a low level, which demonstrates that all the intermediate masks satisfy the quadratic error constrains. 
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Fig. 7. The convergence properties and solution properties with different methods. 

Another two sets of simulation under different illumination conditions are performed and the results are shown in Fig. 8. 
Simulation of M1 is performed on a partially coherent imaging system with an annual source illumination (σout/σin = 
0.7/0.4) and the NA is 0.85. The four images are of size 401×401 pixels with a grid resolution of 2.5 nm. M1S is the mask 
obtained with the proposed method. Simulation of M2 is performed on a partially coherent imaging system with a quasar 
source illumination (σout/σin/degree = 0.9/0.6/45º), and the NA is 1.25. The four images are of size 361×361 pixels with a 
grid resolution of 2.5 nm. Г(·) is the corresponding resist features. From Fig. 8, it is demonstrated that the proposed 
method can synthesize a mask pattern under different illumination conditions and shows the possibility of reaching a 
considerably lower EDE. 
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Fig. 8. Some simulation results of the proposed regularization framework. M1 and M2 is the target pattern, M1S and M2S 
is the synthesized mask by the proposed method, and Г(·) represents the corresponding resist feature. 
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4. CONCLUSIONS 
In this paper, we propose a new regularization framework by using a mask filtering technique that regularizes the mask 
directly to improve computational efficiency and guarantee manufacturability. A tailored mask filter is developed based 
on the manufacturing constraints. In the proposed regularization framework, each intermediate mask satisfies the 
manufacturing constraints, so we only need to ensure the decrease of the EDE in the iteration process. In this perspective, 
the multiple-objective problem is degraded to a single-objective problem. The mask filter is very flexible and can be 
defined according to different mask manufacturing rules to make a filtered mask that can be sent directly to fabrication. 
Compared to the conventional regularization method, the proposed method avoids choosing weighted parameters of 
various regularization terms and guarantees the manufacturability of each intermediate mask without raising 
computational complexity. In addition, we develop a new metric, EDE, which has the same dimension nanometer as EPE 
and has a continuous expression as pattern error, to guide mask synthesis. Simulation demonstrated the validity and 
efficiency of the proposed method. 
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