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ABSTRACT 

In this paper, the aberration measurement technique using aerial image sensor (AIS) is further discussed, and an 
approach to optimize the pupil sampling scheme for this technique is proposed. The accuracy of this technique heavily 
relies on the pupil sampling scheme as it has a significant impact on the random error propagation of the Zernike 
coefficients. We formulate the optimization problem using a continuous function and using the gradient information to 
search the solution space. We also employ the regularization framework using penalty functions to restrain the 
complexity of the sampling scheme. The simulation work has demonstrated that the pupil sampling scheme obtained by 
the proposed optimization approach are more suitable than those by the trial and error method. 
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1. INTRODUCTION 
Wavefront aberration of projection lens is one of the most important indicators to evaluate the imaging quality of optical 
lithographic tools [1-2]. As numerical aperture (NA) yields to the manufacturing limit adapting to a higher resolution, it is 
necessary to ensure the wavefront aberration is no more than 10 mλ. Thus there is a need to develop in-situ techniques 
and systems to accurately measure aberrations up to the 37th or even higher-order Zernike coefficient. 

Due to the advantage of lower cost and easier implement in tools without a portable phase measurement interferometer 
PMI [3-5], aerial image based techniques, such as transmission image sensor (TIS) at multiple illumination settings 
(TAMIS) [6, 7] and Z37 aerial image sensor (AIS) [8-11] have been widely used for in-situ measurement of lens aberrations. 
In these techniques, binary grating marks are utilized to perform pupil sampling. For example, Z37 AIS technique is able 
to measure aberrations up to the 37th Zernike coefficient by introducing a set of 36 binary grating marks with different 
pitches and orientations. As these gratings are corresponding to 72 pupil sampling points, the wavefront aberration at 
each sampling point over the pupil plane can be obtained from the spectrum of the aerial image intensity, and finally the 
Zernike coefficients can be calculated from the over-determined equations by the least-square method. 

The optimization of the sampling scheme in the pupil plane is crucial in aerial image based aberration measurement 
techniques, since the sampling scheme greatly affects the measurement error in Zernike coefficients. The existing 
approach to optimize the pupil sampling scheme is mostly on the basis of trial and error method [11], which evaluates the 
pupil sampling schemes by the maximum error propagation ratio that has a relationship of parabolic dependence with the 
condition number. However, the trial and error method relies heavily on the list with limited pupil sampling schemes, 
and thus the pupil sampling scheme finally chosen for the aberration measurement may not be the best one. 

In this paper, the aberration measurement technique using aerial image sensor is further discussed, and a popular 
approach to optimize the pupil sampling scheme for this technique is proposed. The proposed approach simplifies the 
optimization of the pupil sampling scheme by using a continuous function and searches the solution space by using the 
gradient information based on Powell’s optimization method. Since this optimization method is suitable for non-
constraint problems, a regularization framework is introduced by using penalty functions to restrain the complexity of the 
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pupil sampling scheme. Simulation work was conducted to demonstrate the validity and advantage of the proposed 
approach by comparing to the trial and error method. 

2. ABERRATION MASUREMENT METHOD 
The in-situ technique based on aerial image sensor can measure aberrations up to the 37th Zernike coefficient. A set of 36 
binary grating marks with different pitches and orientations are used in this technique. Figure 1 shows schematically the 
optical imaging system of this technique in lithographic tools. When the light from the illumination system passes 
through the grating mark, the light beam is diffracted by the binary grating. As the duty of the grating is 50%, the 
diffracted rays have no even harmonics except for the 0th-order one, and they form an aerial image on the focal plane via 
the projection lens. The image sensor integrated into the wafer stage is used to collect the light intensity and convert it 
into electrical signals. 

 
Fig.1 Imaging of a binary grating in a lithographic tool. 

According to the Hopkins imaging theory, the aerial image intensity can be expressed in the scalar form [14]: 
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where d is the axial shift of the aerial image sensor at the image plane, σ is the partial coherent factor and defined as the 
effective source filling factor in the projection optics pupil, ( )dgfgfTCC ,,,,, σ′′′′′′  is the transmission cross coefficient: 
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Here, ( )gfO ′′,  is the diffraction spectrum of the binary grating, ),,( σcc gfJ  represents the effective source in optical 
lithography as: 

 )circ(1),,( 2 σπσ
σ cc

cc

gf
gfJ

+
= . (3) 

The pupil function H(f, g, d) stands for the transmission function in the pupil plane and can be written as: 

 ( ) ( )[ ] ( )22circ,,exp,, gfdgfjkWdgfH +−= , (4) 
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where k = 2π/λ is the wave number, λ is the wavelength of the monochromatic light source, and W(f, g, d) is the total 
aberrated wavefront including the lens aberration. 

The +1st-order spectrum of the aerial image intensity can be determined by the interaction of the 0th-order and +1/-1st-
order diffraction lights of the object: 

 ( ) ( ) ( )[ ]dyxTCCdyxTCCdI mmmmmm ,,0,0,,,,,,0,0
2
1,,, σσ
π

σθρ −−+= , (5) 

where (xm, ym) represents the normalized Cartesian coordinates in the pupil plane, and can be transformed from the 
corresponding normalized polar coordinates (ρm, θm) by: 

 θρθρ sin  ,cos mmmm yx == . (6) 

The wavefront aberration at each sampling point W(ρm, θm) can be divided into even aberration and odd aberration: 

 ),(),(),( mmoddmmevenmm WWW θρθρθρ += , (7) 

By making some assumptions, Eq. (5) can be further simplified. It is noted that the phase shift φ(ρm, θm) of the +1st-order 
spectrum of the aerial image intensity at the ideal focal plane corresponding to d = 0 is proportional to the odd aberration, 
while the defocus D(ρm, θm) at which the amplitude of the +1st-order spectrum reaches the extreme value is proportional 
to even aberration: 

 kW mmmmodd /),(),( θρϕθρ = , (8) 

 ( )11),(),( 22 −−−= ρθρθρ NADW mmmmeven , (9) 

In order to calculate higher-order Zernike coefficients, enough sampling points in the pupil plane or enough binary 
grating marks with different pitches and orientations are essential. Assuming there are 36 grating marks, the wavefront 
aberrations at 72 corresponding sampling points can be obtained, and then can be used to calculate the Zernike 
coefficients up to the 37th term by the least-square method: 
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In a more compact notation Eq. (10) can be rewritten as: 

 RZW = . (11) 

where W is the vector containing the wavefront aberrations at the 72 sampling points; R is the matrix of Zernike 
polynomials; Z is the unknown Zernike coefficient vector to be measured; Rn(ρm, θm) and Zn are the nth Zernike 
polynomial over the pupil plane and its corresponding nth Zernike coefficient, respectively. 

To conclude, the aerial image based aberration measurement of projection optics in lithographic tools can be carried out 
in the process shown in Fig.2. 
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Fig.2 Process of aberration measurement based on aerial image sensor. 

3. OPTIMAZATION OF PUPUIL SAMPLING SCHEME 
The pupil sampling scheme is determined by the set of binary grating marks. Figure 3 shows schematically one of these 
50% duty marks and the two corresponding sampling points at the pupil plane. Considering this relationship between the 
binary grating and its corresponding sampling points, the optimization of pupil sampling scheme can be divided into two 
steps, namely optimization of orientations and optimization of normalized radii. 

 
(a) A binary grating mark                           (b) Two corresponding sampling points 

Fig.3 (a) A binary grating mark with orientation θ and pitch p, and (b) the two corresponding sampling points in the pupil 
plane with orientation θ and normalized radius ρ. 

3.1 Optimization of orientations 

As mentioned in Eq. (10), the wavefront aberration at a pupil sampling point (ρm, θm) can be expressed as the sum of 
orthogonal Zernike polynomials:  

 n
n

mmnmm ZRW ∑= ),(),( θρθρ . (12) 

where the Zernike polynomials Rn(ρm, θm) is a sinusoidal or cosine function of 0-θ term, 1-θ term, 2-θ term, 3-θ term and 
so on. For example, the polynomial of Z7 term is expressed as: 

 θρρθρ cos)23(),( 3
7 −=R , (13) 
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This means that the polynomial R7 has a cosine function of 1-θ term, while its derivative to θ has a sinusoidal function: 

 θρρθρ sin)23(),( 3
7 −−=′R . (14) 

In order to measure the Zernike coefficient Zn with the less error, the angle θ should be chosen such that the derivative of 
Rn to θ is zero. At this angle, Rn reaches its extreme value for a given radius ρ and the wavefront aberration varies the 
most sharply along the change of ρ. In the case of Z7, it demands Eq. (14) to be zero, which means that θ is 0˚. The 
sampling point with this angle is said to be sensitive to Z7. Table 1 depicts all the angles sensitive to Zernike coefficients 
up to the 37th term.  

Table 1 Angles sensitive to Zernike coefficients up to the 37th term. 

θ terms Classification of aberration Function of θ Sensitive to Zernike coefficients Angles 

0-θ Spherical Non Z1, Z4, Z9, Z16, Z25, Z36 All 

1-θ Coma cosθ 
sinθ 

Z2, Z7, Z14 Z23, Z34 

Z3, Z8, Z15, Z24, Z35 
0˚ 
90˚ 

2-θ Astigmatism cos2θ 
sin2θ 

Z5, Z12, Z21, Z32 

Z6, Z13, Z22, Z33 
0˚, 90˚ 

45˚, 135˚ 

3-θ 3-foil cos3θ 
sin3θ 

Z10, Z19, Z30 

Z11, Z20, Z31 
0˚, 60˚, 120˚ 

30˚, 90˚, 150˚ 

4-θ 4-foil cos4θ 
sin4θ 

Z17, Z28 

Z18, Z29 
0˚, 45˚, 90˚, 135˚ 

22.5˚, 67.5˚, 112.5˚, 157.5˚ 

5-θ 5-foil cos5θ 
sin5θ 

Z26 

Z27 
0˚, 36˚, 72˚, 108˚, 144˚ 
18˚, 54˚, 90˚, 126˚, 162˚ 

Considering the simplicity for grating fabrication, 6 orientations with angles of 0˚, 30˚, 45˚, 90˚, 120˚, and 135˚ are 
preferred for the measurement of aberrations up to the 37th Zernike coefficient. 

3.2 Optimization of normalized radii 

The trial and error method [11] was adopted in Z37 AIS technique to optimize the pupil sampling scheme, in which a list 
of several sampling schemes is generated and evaluated. Figure 4 depicts two typical examples of the sampling schemes. 
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(a) Sampling scheme 1                                               (b) Sampling scheme 2 

Fig.4 Two typical examples of sampling schemes in the pupil plane. 

The way to evaluate the pupil sampling schemes is to calculate the maximum error propagation ratio of the matrix R, 
which has a relationship of parabolic dependence with the condition number [11]. Here, the condition number is defined as 
a square root of ratio between the maximum and the minimum singular values of R and can be used to describe the error 
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or uncertainty in solving Eq. (11). It is noted that the smaller the condition number is, the more accurate the outcome is, 
owing to the smaller maximum error propagation ratio. Therefore, the sampling scheme with a minimal value of 
condition number is chosen to be the optimal one. However, it is clear that this trial and error method relies heavily on 
the list of limited pupil sampling schemes and the sampling scheme finally chosen for the aberration measurement may 
not be the best one. 

In order to achieve an optimal result of pupil sampling scheme, here we adopt a popular approach from the field of 
optimization theory. By formulating the optimization problem, we introduce a continuous cost function: 

 ))(cond()( xRx =f  (15) 

where x is a vector of the parameters to be optimized, R(x) represents the matrix of Zernike polynomials derived from x, 
and cond means the function to obtain the condition number of R. Thus, the optimization problem turns into a 
minimization problem: 
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where ρ is a vector consisting of the 36 normalized radii of pupil sampling points corresponding to the 36 pitches of 
binary gratings. In Eq. (16), there are too many parameters in the vector x to be optimized. On the assumption that the 
distances ∆ρ between two adjacent sampling points of the same orientation are identical, the model can be simplified as: 
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where ρ1, ρ2,…, ρ6  represent the smallest normalized radii for the 6 orientations, and ∆ρ1, ∆ρ2,…, ∆ρ6 represent the 
distances between two adjacent sampling points of each orientations. Thus the number of parameters in vector x to be 
optimized is reduced from 36 to 12, while other normalized radii in vector ρ can be obtained from vector x. By 
employing the regularization framework using the penalty function P(x), the bound constrained optimization problem is 
reduced to an unconstrained one: 
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where α1, α2 are the user-defined parameters to reveal the weights of the regularization; P1(x) and P2(x) are penalty 
functions: 
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Conjugate gradient methods are widely used for optimization. The basic idea is to search the n-dimensional space in non-
interfering directions for n parameters iteratively by using the gradient information. Powell has developed the conjugate 
gradient method into an efficient method without calculating derivatives [15]. Noting that the derivative of the cost 
function in Eq. (18) cannot be achieved, we adopt Powell’s method to search the solution space. This method is able to 
guarantee the efficient convergence of each iterative procedure when searching along 12 independent directions that 
relate to the 12 parameters to be optimized. That is to say, there are 12 changes in each iteration cycle. The procedure of 
the iteration is as follows. The search starts from an initial value 1,)(

0 =kkx  which represents the iteration number and the 
initial direction )12,,2,1( K=iis  which represent the coordinate directions. 

Step 1: For i = 1, 2, ..., 12, calculate the optimal step iα  satisfying the condition )(min)( )()(
1
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1

k
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k
i

k
ii

k
i FF sxsx αα
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and define iiii sxx α+= −1 . The optimal step is obtained by golden section method which is based on interval 
elimination principle. 
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Step 2: Find the integer r, 121 ≤≤ r  meeting the requirement that )()( )()(
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0
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r xxs −=+  and replace rs  with 112+s , which is the 
steeply direction corresponding to )(k

rFΔ . 

Step 5: If the result meets the optimization goal, the iteration terminates. Otherwise, let the iteration number k=k+1, and 
go to Step 1. 

The output of the optimization iteration gives out the best pupil sampling scheme. Once the sampling scheme is 
determined, the periods of the binary gratings p can be obtained from the corresponding normalized radii ρ: 

 
NAM

p
⋅⋅

=
ρ

λ
. (20) 

where M is the magnification factor of the projection lens. 

4. SIMULATION AND DISCUSSION 
Simulations were conducted to testify the proposed optimization method. As described above, 6 angles of 0˚, 30˚, 45˚, 
90˚, 120˚, and 135˚ were determined as the orientations of the sampling points at the pupil plane. An initial pupil 
sampling scheme was generated from randomly selected radii. During the optimization process, the penalty coefficients 
α1 and α2 were both set to be 10. The iteration of the optimization process and the optimized result are shown in Fig.5. It 
is clear that the initial pupil sampling scheme is quite poor as the value of cost function is as high as 1.236×105. The cost 
function value decreases sharply to the order of tens only after the first several iterations, and then it converges gradually 
to a minimal value of 14.21 after 405 iterations. This optimized sampling scheme is quite satisfactory as its 
corresponding condition number is as low as 4.21. 
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(a) The convergence of the cost function                                             (b) The optimized sampling scheme 

Fig.5 The optimization process with a very poor initial pupil sampling scheme. 

In order to further verify the proposed optimization method, another pupil sampling scheme with a much lower value of 
cost function was generated as the initial input. The iteration of the optimization process and the optimized result are 
shown in Fig.6. As expected, the cost function decreases sharply from the initial value of 15.18 only after the first several 
iterations, and then it converges gradually to a minimal value of 14.16 after 369 iterations. This means that the proposed 
optimization method can achieve a further optimized result even though the initial input is good enough, and of course 
the trial and error method does not have this merit. 
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Fig.6 The optimization process with a good enough initial pupil sampling scheme. 

From Fig.5 and Fig.6, it is interesting to note that the optimized results are different due to the different initial sampling 
schemes, but the cost function values of the optimized results both approximate to the minimal value of 14. This means 
that whether the cost function value of the initial scheme is high or low, the optimization process can guarantee a desired 
output. 

In order to demonstrate the influence of pupil sampling scheme on the error of aberration measurement, we further 
performed simulations using the lithographic simulator PROLITH. The wavelength in the simulations is 193nm, NA is 
0.75, and the partial coherent factor σ is set to be 0.001 to simulate the nearly fully coherent illumination condition. The 
optimized sampling scheme (Scheme A) with cost function value of 14.16 shown in Fig.6(b) and a randomly selected 
sampling scheme (Scheme B) with cost function value of 31.68 shown in Fig.4(a) are used for comparison. The aberrated 
wavefront used as input is the sum of Zernike terms from Z2 to Z37. The measured Zernike coefficients for these two 
schemes and their errors to the input values are depicted in Fig.7. 
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Fig.7 The measured Zernike coefficients and measurement errors for the two sampling schemes. Scheme A is shown in 

Fig.6(b) and Scheme B is shown in Fig.4(a). 
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From the results shown in Fig.8, it is obvious that the maximal measurement error of all Zernike coefficients is below 
0.1mλ for Scheme A, but is nearly as high as 0.4mλ for Scheme B. The corresponding root mean squares (RMS) of the 
measurement error for these two sampling schemes are 0.021mλ and 0.098mλ respectively. These results demonstrate 
that the cost function value (or the condition number) of the sampling scheme has a significant influence on the accuracy 
of aberration measurement. This observation is further verified in Fig.8, in which 20 sets of Zernike coefficients from Z2 
to Z37 are generated randomly as inputs of PROLITH, and the measurement results are all combined together to calculate 
the RMS errors of each Zernike coefficient for the two schemes. Obviously, the errors detected by Scheme A with the 
lower cost function value are balanced, while some terms of errors induced by Scheme B are so high that will definitely 
decrease the accuracy of aberration measurement. 
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 Fig.8 The RMS of measurement errors with 20 inputs for the two sampling schemes. Scheme A is shown in Fig.6(b) and 

Scheme B is shown in Fig.4(a). 

5. CONCLUSIONS 
In this paper, we have analyzed the aberration measurement of optics lens in lithographic tools based on aerial image 
sensor, and have focused on the optimization of pupil sampling schemes for this technique. Considering the simplicity 
for grating fabrication, 6 orientations with angles of 0˚, 30˚, 45˚, 90˚, 120˚, and 135˚ are preferred for the measurement of 
aberrations up to the 37th Zernike coefficient. A new approach based on Powell’s optimization method has been proposed 
for the optimization of normalized radii, which introduces a continuous cost function and searches the solution space 
with gradient information. The simulation work has demonstrated that the pupil sampling scheme obtained by the 
proposed optimization approach are more suitable than those by the trial and error method. The results simulated by 
PROLITH have further verified that the measurement errors of Zernike coefficients by the optimized scheme with a 
lower cost function value are much less than those by the schemes with higher cost function values. It is expected that 
the proposed optimization approach will have potential applications not only in the Z37 AIS technique, but also in the 
other aerial image based techniques such as TAMIS.  
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