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ABSTRACT 

As critical dimension shrinks, pattern density of integrated circuits gets much denser and lithographic process variations 
become more pronounced. In order to synthesize masks that are robust to process variations, the average wafer 
performance with respect to process fluctuations is optimized. This approach takes into account process variations 
explicitly. However, it needs to calculate a large number of optical images under different process variations during its 
optimizing process and thus significantly increases the computational burden. Most recently, we proposed a convolution-
variation separation (CVS) method for modeling of optical lithography, which separates process variables from the 
coordinate system and hence enables fast computation of optical images through a wide range of process variations. In 
this work, we detail the formulation of robust inverse lithography making use of the CVS method, and further investigate 
the impacts of arbitrary statistical distribution of process variations on the synthesized mask patterns. 

Keywords: optical lithography, robust inverse lithography, process variations, distribution of process variations, 
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1. INTRODUCTION 

Inverse lithography technology (ILT) is considered as an effective and economically viable way to meet various 
challenges in current and future technology nodes [1, 2]. Its objective is to synthesize an input mask to deliver a desired 
output pattern on the wafer. Currently, as critical dimension (CD) shrinks, pattern density of integrated circuits gets 
much denser and lithographic process variations, such as lens-wafer defocus and exposure dose variation, become more 
pronounced. It therefore requires through process window compensated approaches to synthesize masks for the high 
volume production. To this end, the average wafer performance with respect to process fluctuations is optimized via 
minimizing the expectation of the difference between the output pattern and the desired pattern [3, 4]. This approach takes 
into account process variations explicitly, and is well understood and easily accomplished. It is a commonly used robust 
ILT, and one of its drawbacks is that it needs to calculate a large number of optical images under different process 
variations during its optimizing process. 

The imaging formation in optical lithography, especially adopted in ILT, is usually formulated in a bilinear form [5] 
according to Hopkins’ imaging theory [6], in which the transmission cross coefficient (TCC) matrix is introduced as a 
combination of the illumination source and pupil, and the optical image can be calculated by an equation with a four-fold 
integral. In order to simplify the integral operation, the concept of sum of coherent systems [7-9], which approximates the 
partially coherent system by the superposition of coherent systems, was introduced and it achieved a significant speedup 
by eigenanalyzing the TCC matrix and neglecting small eigenvalues. Nevertheless, the TCC kernels are usually obtained 
under the nominal (best) process condition, and an imaging simulator may have to repeat the costly TCC decomposition 
and mask-kernel convolutions when process parameters vary. 

Most recently, we proposed a convolution-variation separation (CVS) method for modeling of optical lithography [10], 
which separates process variables from the coordinate system and hence enables fast computation of optical images 
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through a wide range of process variations. The fundamental rationale behind the CVS method is that a physical quantity 
being dependent on both a spatial coordinate and other parameters can be represented by a sum of multiple series 
expansion terms, with each term consisting of one function dependent only upon the spatial coordinate and another 
function dependent only upon the other parameters. In this work, we provide detailed formulation of robust inverse 
lithography making use of the CVS method. In addition, we investigate the impacts of the statistical process variations 
distribution on the synthesized mask patterns in robust inverse lithography. 

2. METHODLOGY 

2.1 The lithography imaging model with process variations 

In this work, we consider two main process variations in optical lithography, i.e., lens-wafer defocus and exposure dose 
variation. So the lithography imaging model is decomposed into two parts, namely the defocused optical image 
formation and the resist development with an exposure dose variation. 

The defocused optical image I(r; h) generated by a partially coherent imaging system can be expressed by a bilinear 
transform in the spatial domain 

 †
1 2 1 2 1 2( , ; )( ; ) ( ) ( )d d ,D h M MI h = − −∫∫r r r r r r r r r  (1) 

where r is the two-dimensional (2D) spatial coordinate (x, y), h is the defocus, M(r) is the mask transmittance function, † 
denotes complex conjugation, and 

 †
1 2 1 2 1 2( , ; ) ( ) ( ; ) ( ; )D h J H h H h= −r r r r r r  (2) 

is called double-impulse response (DIR) function [5] whose Fourier transform is the familiar TCC [6]. Here, J(r1, r2) is the 
mutual intensity function of the illumination source, and H(r; h) is the defocused point spread function (PSF) [4] of the 
optical system as 
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where f is the normalized pupil plane coordinate, 1j = − , NA is the numerical aperture, λ is the incident light 

wavelength, ( ) circ( )H =f f%  is the pupil function at the best focus without any aberrations, and IFT{·} is the inverse 
Fourier transform. Intentionally, we expand the exponential function portion in Eq. (3) into Taylor series with the 
truncation order N as 
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Substituting Eq. (4) into Eq. (3), we can reformulate the defocused PSF H(r; h) as 
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It is noted that the process variable defocus h and the coordinate r in defocused PSF H(r; h) are separated. 

Subsequently, putting Eq. (5) into Eq. (2), we obtain a variable-separated DIR function with the truncation order N as 
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It is noted that Dn(r1, r2) is Hermitian and can be singular-value decomposed as 

 †
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where ϕnk(r) is the k-th kernels with K kernels in total, and μnk is its corresponding eigenvalue. Substituting Eq. (9) into 
Eq. (7) and then into Eq. (1), the defocused optical image I(r; h) is rephrased as 
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Here, ⊗ denotes the 2D convolution. It is noted that the basis image In(r) is independent of defocus which thus may be 
calculated and stored in advance. So the defocused optical images can be calculated efficiently and accurately by 
summing pre-computed and stored partial images In(r) weighted by the coefficients hn. The significance of Eq. (10) lies 
in that the fixed mask-kernel convolutions are fully separated from the process variable, defocus, and can be pre-
computed, so that optical images under a large range of defocus can be quickly calculated. This is the fundamental 
rationale behind the CVS method. 

The defocused optical image I(r; h) goes through the resist development to form the printed image on the wafer. The 
resist effect can be approximated by a constant threshold resist model using the following Sigmoid function, 

 [ ] 1sig ( ; ); .
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+ − −

r
r  (12) 

where a is the steepness of the Sigmoid function and t is the threshold level of the resist. Specifically, exposure dose 
variation can be accounted for by varying the threshold t. 

In this work, we use Z(r) to denote the output pattern on the wafer of the input mask M(r) under the defocus h and dose 
variation t. Combining Eqs. (10) and (12), we can formulate the lithography imaging equation as 
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2.2 Formulation of robust inverse lithography 

We formulate the robust inverse lithography problem as 

 [ ]* arg min ,
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Here, R(M) is regularization term with the corresponding weight κ to promote mask manufacturability, G(M) is called 
statistical edge distance error (EDE) [11, 12] to evaluate the difference between the output pattern of input mask M(r) and 
the desired pattern Z*(r) on the wafer, δx and δy are the lengths of the discretized mask grid along the x and y directions, 
respectively, L is the perimeter of the desired pattern contour, α(·) is the density of a prescribed distribution of defocus, 
β(·) is the density of a prescribed distribution of exposure dose, Z(r; hp, tq) represents the output pattern of the defocused 
image I(r; hp) on the wafer under the exposure dose level tq, and ||·||2 is the L2 norm. Equation (14) may be solved by an 
optimization algorithm [8], in which the forward lithography imaging simulation is iterated many times and each iteration 
requires calculating a total of P defocused images. 
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3. SIMULATIONS 

Simulations were performed on a partially coherent imaging system with a quasar source illumination (σout/σin/degree = 
0.9/0.6/45º). The wavelength in the simulations was set at 193 nm, and the numerical aperture (NA) was 1.35. The resist 
effect was approximated by a Sigmoid function with a = 100 and t = 0.4. All the simulations were carried out with in-
house Matlab codes on a HPZ820 Workstation. 

3.1 Computational complexity analysis of convolution-variation separation method 

From the definition of robust inverse lithography problem in Sec. 2.2, numerous optical images under different defocus 
are required to be calculated and repeated in each iteration. In conventional approaches, to calculate P discrete sampling 
points of defocus, they need to generate and use P sets of process models. Let T denote the computational complexity for 
simulating one sampling point of defocus, and let T(P) be the total computational complexity for simulating P sampling 
points of defocus; then the following formula holds true for all conventional approaches: 

 ( ) .T P T P= ×  (16) 

In the presented CVS method, let T0 denote the computational complexity of calculating all basis images In(r) in Eq. 
(11), and let δT denote the extra complexity for summing up the series in Eq. (10). It is usually the case that δT  T0 and 
T0 ≈ T × (N + 1), where N is the truncation order of Eqs. (5) and (7). Therefore, the computational complexity for 
simulating one defocus sampling point is TCVS(1) = T0 + δT, whereas the cost for simulating P sampling points of defocus 
would be 

 CVS 0( ) .T P T T Pδ= + ×  (17) 

As demonstrated in Fig. 1, the advantage of using CVS method become apparent as the defocus number P > (N + 1), and 
gets larger. 

 

Figure 1.  Computational complexity of the conventional approaches and the CVS method for simulating P defocus 
sampling points. T denotes the computational complexity of the conventional approaches for simulating one defocus 
sampling point. Here, we set the truncation order N = 3. 

3.2 Results of robust inverse lithography 

Figure 2 shows a desired output pattern on the wafer with CD of 32 nm. The pattern has a size of 401×401 pixels with a 
pixel size of 2 nm. The synthesized input mask patterns under different defocus and exposure dose distributions are 
shown in Fig. 3. As expected, different distributions result in different mask patterns. Moreover, it is particularly 
interesting to observe that the sub-resolution assist features (SRAFs) in Figs. 3(a) and 3(e) are dramatically different. 
That means different SRAFs patterns correspond to different process distributions. 

Figures 3(d) and 3(h) depict the exposure-defocus (E-D) trees of the synthesized mask patterns by setting the EDE [11, 12] 
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to within ±10% of the CD target. To clearly show the process distribution, we draw the E-D window along with its 
probability distribution. It demonstrates that the proposed robust inverse lithography is sensitive to the difference of the 
process distribution, and it has the capacity of synthesizing a mask pattern to match the distribution. 

4. CONCLUSIONS 

In this work, we formulate the robust inverse lithography in a statistical manner, and employ a CVS method to calculate 
numerous defocused optical images. Benefiting greatly from the CVS method, we can take numerous defocus sampling 
points to exactly model its real distribution without proportionally increasing the computational complexity. Compared 
to conventional approaches, the superior scalability of the CVS method is apparent when the number of defocus gets 
larger. In addition, we observe that different process distributions result in mask patterns with dramatically different 
SRAFs in robust inverse lithography. Therefore, it has practical significance to consider the real process distribution in 
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Figure 2.  Desired pattern on the wafer. 
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Figure 3.  (a) The synthesized mask pattern under the exposure distribution (b) and defocus distribution (c), (d) is its E-D 
window. (e) The synthesized mask pattern under the exposure distribution (f) and defocus distribution (g), (h) is its E-D 
window. 
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robust inverse lithography to raise yield. 
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