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ABSTRACT 

Optical scatterometry is widely used in the process control of integrated circuits (IC) manufacturing due to its inherent 
advantages such as nondestruction, high sampling rate, large aerial coverage and low-cost. However, in the conventional 
inverse problem solvent of optical scatterometry, the measurement errors are usually excessively simplified as normally 
distributed errors, which deviate from the actual complex ones. In this work, we will demonstrate that there exist typical 
outlying measurement errors in the measurement signature, and these outlying measurement errors will notably affect the 
result of each iteration step in the conventional Gauss-Newton (GN) method. By performing a method based on the 
principle of least trimmed squared estimator (LTS) regression instead of each GN iteration step, the higher measurement 
accuracy of a nanostructure can be achieved. The remarkably improved reconstruction of a deep-etched multilayer 
grating has demonstrated the feasibility of the proposed method. 

Keywords: optical scatterometry, Mueller matrix ellipsometry, inverse problem, data refinement, least trimmed squared 
estimator. 

1. INTRODUCTION 

With the continuing shrinkage of critical dimension (CD) in integrated circuits (IC) and the requirements of high volume 
and high precision manufacturing [1], nanometrology is now facing up to tremendous challenges. Among all the 
metrology techniques, the optics-based ones, such as critical dimension small-angle x-ray scattering (CD-SAXS) [2], 
specular x-ray reflectivity (SXR) [3] and ellipsometric scatterometry [4, 5], are regarded as having the potential to meet 
these strict demands. Moreover, optical scatterometry, can be regarded as the optimal optics-based technique according 
to its inherent advantages such as nondestruction, high sampling rate, large aerial coverage and low-cost [6]. Based on 
these superiorities, optical scatterometry has been successfully applied in the in-chip CDs and overlay displacement 
errors metrology of the dynamic random access memory (DRAM) manufacturing [7] and process control for back-end-of-
the-line (BEOL) [1], which have driven it to become the state-of-the-art nanometrology technique in IC manufacturing. 

Optical scatterometry is essentially a model-based technique, whose success highly relies on two procedures, i.e., 
forward modeling and inverse problem solvent. For the forward modeling, it is the procedure of using electromagnetic 
modeling algorithms such as finite element method (FEM) [8], the boundary element method (BEM) [9], the finite-
difference time-domain (FDTD) [10] or rigorous coupled-wave analysis (RCWA) [11, 12] to calculate the theoretical 
signature for a nanostructure. The forward modeling is relative simple and intuitive according to its inherent well-
posedness [13]. While for the inverse problem, it is inherently ill-posed and has attracted much more research attentions. 

Conventionally, the inverse problem in optical scatterometry is formulated as a nonlinear least square (LSQ) 
minimization with the object of finding the model parameters corresponding to the minimal LSQ function value. Under 
the normal distribution assumption of measurement errors, the LSQ function is the natural logarithm of the maximum 
likelihood estimation (MLE) function, whose minimization either by nonlinear regression with strict terminal condition 
or by library search with small enough grid can result in the optimal solution. However, as pointed out by Geary [14], in 
an actual measurement system, normality is only a myth. In the field of optical scatterometry, the measurement errors are 
never normally distributed in consideration of the multiple system error sources such as the finite bandwidth [15], the 
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power fluctuation of the incident beam [16] and the collimation of light source [15]. The superimposed effect of these 
different kinds of measurement errors may lead to some outlying ones whose scales are obviously larger than the rest. 
These outlying measurement errors will remarkably affect the final nanostructure measurement accuracy [17, 18]. 

In the present paper, we will stand on the view of least trimmed squared estimator (LTS) [19, 20] instead of LSQ fitting to 
reduce the effect of outlying measurement errors on the measurement accuracy. Specifically, we will firstly demonstrate 
that the result of each iteration step in the conventional LSQ function based Gauss-Newton (GN) method is notably 
affected by the outlying measurement errors. Then by using a method based on the principle of LTS we can eliminate 
these data pairs suffering from outlying measurement errors directly, after which the more robust and accurate iteration 
result can be achieved. A data pair consists of a current residual and a specific row of the linear operator, where the 
current residual is defined as the measured signature minus the theoretical signature of the current estimated model 
parameters, and the linear operator is the negative Jacobian matrix that is obtained by calculating the partial differential 
of signatures with respect to model parameters. Here those data pairs suffering from outlying measurement errors are 
uniformly called outliers in this manuscript. The proposed method offers a different way of thinking that only requires 
some mathematical methods to correct the intermediate procedures, and therefore the conventionally complicated and 
time-consuming processes such as measurement configuration optimization [21] and correction of limited NA [15] effect 
can be avoided. The improved reconstruction of a deep-etched multilayer grating has demonstrated the feasibility of the 
proposed method. 

2. METHODLOGY 

2.1 Inverse problem in optical scatterometry 

The inverse problem in optical scatterometry is usually described as an object to minimize an LSQ function, which can 
be generally expressed as 

 2 T

1
( ) [ ( )] [ ( )] [ ( )].

m

j j j
j

F w y f
=

= − = − −∑x x y f x w y f x  (1) 

Here yj is the jth measured data point, and y is the measured signature as a vector containing m data points. fj (x) is the jth 
calculated data point with respect to the profile parameters under measurement as an n-dimensional vector x = [x1, x2, …, 
xn]T, and f(x) is the calculated signature as a vector containing m data points. wj is the jth weight factor, and w is an m × 
m diagonal matrix with diagonal elements {wj}. If the diagonal element wj of matrix w is given by wj = 1/σ2(yj), where 
σ(yj) is the standard deviation of the measurement error that follows the normal distribution, Eq. (1) relates to the 
commonly used chi-square statistic χ2. Consequently, without losing generality, the inverse problem in optical 
scatterometry can be formulated as 

 
Targ min{[ ( )] [ ( )]},ˆ

∈Ω
= − −

x
x y f x w y f x  (2) 

where x̂  is the solution of the inverse problem, and Ω is the associated parameter domain. 

2.2 Solution to the inverse problem with GN method 

In consideration of the highly nonlinear relationship between the n-dimensional vector x and the calculated signature 
f(x), the inverse problem shown in Eq. (2) is usually solved iteratively until an optimal result x̂ is reached. If the result of 
the current ith iteration is represented by x(i), the necessary condition for x(i+1) to minimize F(x) as shown in Eq. (1) is 
that ( 1)( )iF +∇ =x 0 . The relationship between x(i) and x(i+1) can be expressed as ( 1) ( ) ( )i i i+ = + Δx x x , where Δx(i) is the 
parameter departure vector. By using the Taylor expansion, we can approximate the gradient in the vicinity of x(i) as 

 ( 1) ( ) ( ) ( ) 2 ( ) ( )( ) ( ) ( ) ( ) ,i i i i i iF F F F+∇ = ∇ + Δ = ∇ +∇ Δx x x x x x  (3) 

where ( )( )iF∇ x is the gradient of F(x) at x(i), which can be written in matrix notation as 

 ( ) ( ) T ( )( ) 2 ( ) ,i i iF∇ = Δx J x w y  (4) 

where J(x(i)) is the m × n Jacobian with respect to x(i), and Δy(i) is the residual column vector given by 
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 ( ) ( )( ).i iΔ = −y y f x  (5) 

The term 2 ( )( )iF∇ x  in Eq. (4) is the n × n Hessian matrix at x(i). Since the calculation of the Hessian matrix is very time-
consuming, it is usually approximated as 

 2 ( ) ( ) T ( )( ) 2 ( ) ( ).i i iF∇ ≈x J x wJ x  (6) 

Substituting Eq. (4) and Eq. (6) into Eq. (3) and letting Eq. (3) equal zero, we will have 

 ( ) T ( ) ( ) ( ) T ( )( ) ( ) ( ) .i i i i iΔ = − ΔJ x wJ x x J x w y  (7) 

Further we will have 

 ( ) ( ) T ( ) -1 ( ) T ( )[ ( ) ( )] ( ) ,i i i i iΔ = − Δx J x wJ x J x w y  (8) 

which assumes that the expression J(x(i))TwJ(x(i)) is nonsingular. By conducting Eq. (3) ~ Eq. (8) iteratively, we can 
obtain an optimal result x̂ . 

2.3 Robust solution to the inverse problem based on the principle of LTS 

By using the expressions of ( ) 1 2 ( )( )i / i=J w J x% and ( ) 1 2 ( )i / iΔ = Δy w y% , we can rewritten Eq. (8) as 

 ( ) ( )T ( ) -1 ( )T ( )[ ] .i i i i iΔ = − Δx J J J y% % % %  (9) 

Obviously, Eq. (9) is the LSQ solution of the compatible system of equations: 

 ( ) ( ) ( )*- ,i i iΔ = ΔJ x y% %  (10) 

where ( )*iΔy% is the optimal approximation of ( )iΔy in the subspace ( )(- )iℜ J% , namely, ( )*iΔy% satisfies 

 ( )

( ) ( )* ( ) ( ) ( )
2 2
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Here 2 and Θ denote the 2-norm and space of ( )iΔx , respectively. Expression (10) can be explained as the search of a 

hyperline with the optimal slope ( )iΔx that can best fits the m data pairs ( - kJ% , kyΔ% ), where - kJ% and kyΔ% represent the kth 

row of ( )- iJ% and kth element of ( )iΔy , respectively. The row number of ( )- iJ% , i.e., variable m, represents the number of 

wavelength points. If the measurement errors in ( )iΔy are relatively small, Eq. (8) usually ensures the relative accurate 
value of ( )iΔx . However, in consideration of the superimposed effect of different error sources, the expected high 
linearity of the m data pairs does not always hold. The outliers will largely affect the estimation of ( )iΔx , therefore the 
iterative phase of GN algorithm shown in Eq. (8) can only give the rough estimation of ( )iΔx , which will reduce the 
measurement accuracy according to error accumulation. In this paper, we propose to use a correction based on the 
principle of LTS to eliminate h data pairs that are defined as outliers. LTS method is proposed by Rousseeuw [19] and has 
been demonstrated that can yield a reliable analysis of regression data [22]. For simplicity we first express the m data pairs 
as a dataset { }(- ); =1,...,k k, y k m= ΔZ J% % and represents the kth residual by ( )i

k k kr y= Δ + ΔJ x%% , then the LTS estimator is 
defined as the optimal ( )iΔx denoted by ( )iˆΔx in this paper that minimizes 
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( ) 2
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where ( ) ( ) ( )2 2 2
1: 2: :m m m m

r r ... r≤ ≤ ≤  are the ordered squared residuals. This is equivalent to finding the (m - h) data pairs 

with smallest LSQ function values. The LTS estimate is the LSQ fitting to these (m - h) data pairs. For the choice of h 
value, it is related to the LTS breakdown value and our priori-knowledge of the nonlinear data pairs number, in this 
paper we set h as 0.15. Since expression (6) is a regression problem, which can be solved effectively by gradient-based 
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algorithms. It is expected that the result ( )iˆΔx obtained by the proposed method is more robust and accurate than the 
conventional one. 

In summary, the proposed method introduces an additional “inner” LTS regression to replace the conventional GN 
iteration step as presented in Eq. (8) to directly eliminate the outliers that affect the LSQ fitting. Since the LTS regression 
is regardless of the forward modeling simulator, it can be done very quickly and presents no remarkable influence on the 
time cost. 

3. RESULTS 

3.1 Sample description and measurement setup 

The sample under measurement is a deep-etched multilayer grating, whose cross-section image obtained by a 
transmission electron microscopy (TEM) (TE20, TEM.FEI Co.) and the corresponding geometrical model are presented 
in Fig. 1(a) and Fig. 1(b), respectively. As can be seen in Fig. 1(b), this sample consists of Si, SiO2, and nitride Si3N4 
trapezoidal gratings from bottom to top, and it can be characterized by 7 geometrical parameters that are D1, H1, D2, H2, 
D3, H3 and pitch P. A self-developed dual-rotating compensator Mueller matrix ellipsometer (DRC-MME) prototype 
suitable from ultraviolet to infrared spectrum [23] is used for demonstration. Data analysis is performed using the in-house 
developed optical modeling software based on RCWA. In the following contents, D1, H1, D2, H2, D3, and H3 are 
measurands, while the pitch P is fixed at 154 nm. 

D1

H1

P

H2

H3

(a)

Si3N4 SiO2 Si

(b)

D2

D3

 

Fig. 1 The (a) cross-section TEM image and (b) geometrical model of the investigated deep-etched multilayer grating. 

3.2 Numerical results 

In this section, we simulate the measurement process of the multilayer grating by firstly calculating its corresponding 
Mueller matrix. The true values of profile parameters D1, H1, D2, H2, D3, and H3 of the grating are set as 75 nm, 135 nm, 
90 nm, 10 nm, 130 nm and 135 nm respectively. The incident and azimuthal angles are set as 55° and 0° respectively, 
and the wavelength varies from 200 nm to 800 nm with the resolution set as 10 nm. Then the simulated normal 
distributed errors are added into the calculated Mueller matrix to form the “measurement” signature. The standard 
deviation or noise level of the simulated normal distributed errors at a specific wavelength is set as a fraction of root-
mean-square (rms) in the Mueller matrix over the full wavelength range of interest. The fractions of the wavelengths 
differ with each other, but are all within the range of 1% ~ 5%. Besides the random errors, system errors such as the 
limited spectral resolution of the monochromator and finite numerical aperture may also have an influence on the 
measurement accuracy [15], it is therefore their effect should be taken into consideration in this paper. Moreover, since the 
standard deviations of measurement errors at all the wavelength points are obtained by a pre-established noise model, the 
biases between the actual standard deviations and the estimated ones are inevitable. Hence, we will add a perturbation at 
each true standard deviation of a wavelength point to simulate the estimated standard deviation. Each perturbation scale 
is randomly chosen within the range of 20%± of the corresponding true standard deviation. 
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Fig. 2 Weighted measurement errors of Mueller matrix elements. The Mueller matrix elements are normalized to m11. The horizontal 
axes, varying from 200 to 800 nm with an increment of 10 nm, denote the wavelengths, and the vertical axes, varying from -200 to 
200, denotes the associate weighted measurement errors. 

TABLE 1. Comparison of parameters extracted from GN and our proposed methods 

 D1 (nm) H1 (nm) D2 (nm) H2 (nm) D3 (nm) H3 (nm) 
True 75 135 90 10 130 135 
GN 76.6 136.6 87.1 8.5 133.2 133.6 

Proposed 75.0 134.3 90.0 11.1 130.0 134.6 
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Fig. 3 Iteration results of (a) D1, (b) H1, (c) D2, (d) H2, (e) D3, and (f) H3. Black squares and triangles represent the values obtained by 
the GN method and our proposed method respectively. Black dash dotted lines represent the true values. 

To demonstrate the existence of outlying “measurement” errors, we first present the weighted “measurement” errors in 
Fig. 2. The weighted “measurement” errors are the “measurement” errors divided by their corresponding standard 
deviations at all the wavelength points. Obviously, we can find there are some outlying “measurement” errors in the off-
diagonal Mueller matrix elements of Fig. 2, and the some absolute values of whom are even as large as 200. Then the 
GN method and our proposed method are used to extract the profile parameters from the “measurement” signature. We 
present the extracted results in Table 1, in which we can clearly find that the proposed method leads to the more accurate 
results than that of GN method. We also present the iteration results of GN and our proposed methods in Fig. 3. As 
expected, we can find that at each iteration step the iterative result of our proposed method is different from that of the 
conventional GN method. The above simulation has demonstrated the correctness of our proposed method. 
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3.3 Experimental results 

In the following content we will experimentally demonstrate the improved grating reconstruction by our proposed 
method. The Mueller matrices (normalized to m11) were measured at 61 points over wavelengths ranging from 200 to 
800 nm with the resolution set as 10 nm, and the incidence angle was fixed at 55°. While for the azimuthal angle, we 
treated it as a floating parameter since in our DRC-MME prototype there is no positioning device on the rotating stage 
yet and the zero angle cannot be guaranteed accurately by the manual mode. The pitch P is fixed at 154 nm, and the 
profile parameters as well as the azimuthal angle φ are under measurement. The initial values of geometrical parameters 
and azimuthal angle are chosen as the nominal ones and zero, respectively. 

TABLE 2. Comparison of parameters extracted from MME and TEM measurement 

 D1 (nm) H1 (nm) D2 (nm) H2 (nm) D3 (nm) H3 (nm) φ (°) 
TEM 75.01 135.60 86.90 9.92 123.13 134.29  
GN 73.11 133.45 88.44 13.42 127.34 130.21 -2.30 

Proposed 75.13 136.33 87.79 8.48 127.21 132.83 -2.75 
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0

400

200 400 600 800

 

Fig. 4 Experimental weighted fitting differences of Mueller matrix elements. The Mueller matrix elements are normalized to m11. The 
horizontal axes, varying from 200 to 800 nm with an increment of 10 nm, denote the wavelengths, and the vertical axes, varying from 
-400 to 400, denotes the associate weighted fitting differences. 

Firstly we will validate some of the measurement errors in the measured Mueller matrix of the deep-etched multilayer 
grating are abnormally distributed. We calculate the weighted fitting differences of the measured and best fitted Mueller 
matrix elements, as shown in Fig. 4. The best fitted Mueller matrix elements correspond to the extracted values of 
geometrical parameters that are obtained by GN method. Note that in practice to accurately obtain the measurement 
errors is impossible, thus the fitting differences between the measured Mueller matrix and the best fitted one is a 
compromise, but it is still able to indirectly reflect the actual statistics property of the measurement errors in the 
measured signature. As can be seen in Fig. 4, many data points in the diagonal elements of Mueller matrix are obviously 
out of the range of -3 ~ 3, and a part of which are even larger than 300. Moreover, we could also notice that most of the 
large abnormally distributed data points locate in the Mueller matrix elements of m12, m21, m33, m34, m43 and m44. 

We use the proposed method and the conventional GN method to extract the geometrical parameters of the deep-etched 
multilayer grating respectively, and present the fitted results in Table 2. As expected, all of the fitted geometrical 
parameters obtained by our proposed method are closer to the TEM measured ones than that obtained by GN method. 
Specifically, we can find that the values of D1, H1, D2, H2, D3, and H3 obtained by our proposed method are 1.82 nm, 
1.45 nm, 0.64 nm, 2.08 nm, 0.12 nm and 2.59 nm closer to the TEM measured values than that by GN method, 
respectively. Moreover, the relative accuracy improvements of parameters D1, H1, D2, H2, D3, and H3 are 95%, 67%, 
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41%, 59%, 3% and 62% respectively. The relative accuracy improvement is defined as GN TEM Robust TEM

GN TEM

x x x x
e

x x
− − −

=
−

, 

where xGN, xTEM and xRobust are the measured values by GN method, TEM and our proposed method respectively. The 
above results have demonstrated that the measurement errors in the measured signature cannot be treated as normally 
distributed, and it is necessary to use the principle of LTS to suppress the effect of outlying measurement errors. 

4. CONCLUSIONS 

In summary, we have demonstrated that outlying measurement errors will reduce the accuracy of ( )iΔx estimation by 
simulation and experiment. Moreover, we have proposed a method based on the principle of LTS to detect and eliminate 
outliers for estimating the more accurate result of each iteration step, by which the final measurement accuracy has been 
improved when compared with the conventional GN method. The proposed method enables us to obtain the 
nanostructure reconstruction with high accuracy without perform the complicated and time-consuming processes such as 
measurement configuration optimization and limited NA correction. We believe the present work will provide a different 
point of view for the accurate nanostructure reconstruction in IC manufacturing. 
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