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ABSTRACT 

The quadratic aberration model used in optical lithography is a natural extension of the linear model by taking into 
account interactions among individual Zernike coefficients. Although the model has been tested and verified in many 
applications, the effects of Zernike coefficients under partially coherent imaging are usually obtained by extensive 
experiments due to complexity of the model expression. In this paper, a generalized cross triple correlation (CTC) is 
introduced, and a fast algorithm to simulate the quadratic aberration model is developed. Simulations were performed by 
the proposed CTC based algorithm with different input Zernike aberrations for binary and phase shift masks with 
multiple pitches and orientations, which demonstrate that the proposed approach is not only accurate but also efficient 
for revealing the influence of different Zernike orders on aerial image intensity distributions under partially coherent 
illumination. 

Keywords: wavefront aberration, quadratic aberration model, cross triple correlation (CTC), transmission cross 
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1. INTRODUCTION 
As the limit of optical lithography is pushed and feature densities continue to increase, lens aberration has become one of 
the most important factors to evaluate the imaging quality of lithographic tools [1-3]. One method to mathematically 
model lens aberrations utilizes Zernike polynomials, which are a complete orthogonal set of polynomials over the 
interior of the unit circle [4,5]. The Zernike series representation is useful as it provides explicit expressions for the well-
known aberrations such as spherical, coma, astigmatism, etc., which can be classified into odd aberrations and even 
aberrations. Odd aberrations cause the image displacement and line-width asymmetry that influence the critical 
dimension uniformity [6], together with even aberrations reducing the maximum image irradiance and image log-slope 
which affects usable depth of focus [7]. Moreover, the interaction among different types of aberrations brings about the 
distinct deterioration of intensity or relative parameters such as critical dimension (CD) uniformity and position shift [8]. 
Considering the multiplicity of the Zernike aberration in practical projection lens, a detailed understanding and 
evaluating the effects of wavefront aberration represented by Zernike coefficients on imaging is crucial in lithography. 

The imaging optics configuration in lithographic tools is typically a partially coherent system that is characterized by the 
intensity distribution of the effective source and the pupil function of the projection lens. Imaging properties of such 
partially coherent systems have to be described using a bilinear model [9], which leads to time-consuming calculations 
and understanding difficulties, especially in the case when the wavefront aberration is involved. Recent years, an 
approximate linear response model of Zernike coefficients to the aerial image displacement has been reported and widely 
utilized for aberration comprehension and measurement. The linear relationship can be established between the intensity 
difference of adjacent peaks in the one-dimensional binary gating images [6,7,10], by supposing that the individual Zernike 
aberration in current lithographic projection lens is very small. Although this linear response model has a wide real-
world application of Zernike aberration characterization based on one-dimensional masks, it is needed to develop a more 
generalized Zernike response model suitable not only for one-dimensional but also for two-dimensional masks with a 

* Contact author: shyliu@mail.hust.edu.cn; phone: +86 27 87792409; fax: +86 27 87792413; http://www2.hust.edu.cn/nom. 

Optical Microlithography XXIV, edited by Mircea V. Dusa, Proc. of SPIE Vol. 7973, 
79731M · © 2011 SPIE · CCC code: 0277-786X/11/$18 · doi: 10.1117/12.879217

Proc. of SPIE Vol. 7973  79731M-1

Downloaded from SPIE Digital Library on 18 Oct 2011 to 115.156.244.32. Terms of Use:  http://spiedl.org/terms



 

 

relatively large amount of individual Zernike aberration. A quadratic aberration model which is a natural extension of the 
linear response model has been reported by taking into account interactions among individual Zernike aberrations [11]. 
The quadratic aberration model has been tested and verified in many applications under both one-dimensional and two-
dimensional masks, such as CD uniformity [8], aberration sensitivity analysis [12], and phase wheel target aberration 
monitoring [13]. However, the effects of Zernike aberrations on partially coherent imaging are usually obtained by 
extensive experiments or lithographic simulators [14], due to the complexity of the model formulation. The calculation of 
the quadratic aberration model directly by analytical expression is time consuming and thus impractical for in-situ 
measurement or characterization. 

In this paper, a generalized cross triple correlation (CTC) is introduced for fast calculating the quadratic aberration model. 
By decomposition of the transition cross coefficient (TCC) into CTCs, the Zernike aberration-induced intensities in the 
quadratic aberration model can be calculated quickly and separated clearly from each other. Simulations were performed 
by the proposed CTC based algorithm with different input Zernike aberrations for binary and phase shift masks with 
multiple pitches and orientations, which demonstrates that the proposed approach is not only accurate but also efficient 
for revealing the influence of different Zernike orders on aerial image intensity distributions under partially coherent 
illumination. It is expected that this method will have applications in the robust optical proximity correction (OPC) and 
inverse mask design with aberrations taking into account. It will also have applications in the aerial image based 
aberration analysis and metrology. 

2. THEORY 
2.1 Optical imaging system 

An optical lithography imaging system is shown in Fig. 1, in which both the object and the light source are of finite 
extent. In order to simplify the expressions of the imaging system, in the drawing we introduce the Cartesian object plane 
coordinates x0, image plane coordinates x and pupil plane coordinates f, which are two-dimensional real vectors and all 
normalized according to canonical coordinates proposed by Hopkins [2], thus the cut off frequency from the pupil plane is 
normalized to the unit of one. The scalar form of Hopkins imaging theory for partially coherent imaging is used to depict 
its behavior [15]: 

Projection Optics
Object Plane 

(Mask)
Condenser 

Lens Extended 

Source

Image Plane

Wafer

Exit Pupil  
Fig. 1. Optical lithography imaging system. 

 [ ]1 2 1 2 1 2 1 2( ) ( ) ( )TCC( , ) exp 2 ( ) ,I O O i d dπ∗= − − ⋅∫∫x f f f f f f x f f ,  (1) 

where TCC(f1, f2) is introduced as the concept of the transmission cross coefficient: 

 1 2 1 2TCC( , ) ( ) ( ) ( ) .J H H d∗= + +∫f f f f f f f f  (2) 

Here O(f) is the diffraction spectrum of a mask pattern. J(f) describes the effective source intensity distribution under 
Kohler illumination. With a conventional circular illumination, it is constant within a radius proportional to partial 
coherence factor (σ): 

 2

1( ) circ .J
σπσ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

f
f  (3) 

H(f) is the objective pupil function and is given by 
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 [ ]( ) exp ( ) ,H ikW= −f f  (4) 

where k=2π/λ is the wave number, λ is the wavelength of the monochromatic light source, and W(f) is the total aberrated 
wavefront including the lens aberration Wlens(f) and an even-type aberration Wdefocus(f) that is induced by and proportional 
to the axial shift h (in nm) of the image plane: 

 ( ) ( ) ( ),lens defocusW W W= +f f f  (5) 

 
22( ) ( ) 1 1 ,defocus defocusW h w h NA⎡ ⎤= ⋅ = − −⎢ ⎥⎣ ⎦

f f f  (6) 

where NA is the image-side numerical aperture of the projection lens. The lens aberration function can be can be 
expressed as orthonormal Zernike fringe polynomials: 

 ( ) ( ),lens n n
n

W Z R= ∑f f  (7) 

where n indicates Zernike index, Rn(f) indicates the nth Zernike polynomial for normalized Cartesian coordinate over the 
pupil plane. 

2.2 Theory and algorithm of CTC 

The cross triple correlation (CTC) is defined as [16]: 

 1 2 1 2( , ) ( ) ( ) ( ) ,KLMC K L M d= + +∫f f f f f f f f  (8) 

where K(f), L(f), and M(f) are three different functions. f, f1, and f2 are variables that can be any real scalars for a one-
dimensional signal, or two-dimensional real vectors representing the normalized spatial-frequency pupil coordinates. 
Most of the physical functions required for analysis of lithographic systems have compact support, and integration can be 
treated over whole space of f. It is interesting to note that the expression of TCC in Eq. (2) is quite similar to the CTC in 
Eq. (8), except with the difference that the last two functions involved in TCC are two conjugate pupils instead of the 
two fully independent functions in CTC. Therefore, TCC can be considered as a special case of CTC. 

From Eq. (8), each point in CKLM(f1,f2) is the integral area of the product of three functions when two movable ones are 
on a specific position as shown in Fig. 2. Especially, as f, f1, and f2 are two-dimensional real vectors, the CKLM(f1,f2) 
becomes a four-dimensional matrix. It is time consuming to obtain each point in the four-dimensional matrix directly by 
Eq. (8), because of repeating integrations are needed for different positions (f1,f2). 
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Fig. 2. Representation of the mathematical meaning of CTC. 

To achieve an efficient CTC calculation, in this paper we utilize the fast Fourier transform (FFT) based algorithm. Let 
cklm(x1,x2), k(x1,x2), l(x1,x2) and m(x1,x2) are the Fourier transform of CKLM(f1,f2), K(f1,f2), L(f1,f2) and M(f1,f2), 
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respectively. Based on the theorem of Tichmarch, the cross triple correlation (CTC) can be treated as a kind of 
generalized convolution, and then the cklm(x1,x2), k(x1,x2), l(x1,x2) and m(x1,x2) satisfy [16]: 

 1 2 1 2 1 2( , ) ( ) ( ) ( ).klmc k l m= − −x x x x x x  (9) 

From Eq. (9), CTC can be calculated in the spatial domain as cklm(x1,x2). As shown in Fig. 3, after performing inverse 
fast Fourier transform (IFFT) to cklm(x1,x2), CKLM(f1,f2) can be efficiently obtained, which directly lead to fast algorithms 
for the CTC calculation as the time-consuming integration in Eq. (8) is avoided and replaced by the simple multiplication 
of k(x1,x2), l(x1,x2) and m(x1,x2). 

K(f1,f2)

L(f1,f2)

k(x1,x2)

cklm(x1,x2)

MultiplyFFT

FFT
IFFT

M(f1,f2)
FFT

l(x1,x2)

m(x1,x2)

CKLM(f1,f2)

 
Fig. 3. Block diagram of FFT based CTC algorithm. 

2.3 CTC based quadratic aberration model 

According to Eq. (2) and defining P(f)=exp[-ikWdefocus(f)], the expression for TCC in the case that Zernike aberrations are 
induced can be written as: 

 1 2 1 2 1 2TCC( , ) ( ) ( ) ( ) exp Z ( ) Z ( ) .n n m m
n m

J P P ik R R d∗ ⎧ ⎫⎡ ⎤= + + − + − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ∑∫f f f f f f f f f f f f  (10) 

Applying the Taylor series expansion of the exponential function, the TCC in Eq. (10) can be decomposed up to 
quadratic terms as a TCC quadratic approximation: 

 1 2 0 1 2 1 1 2 2 1 2TCC( , ) ( , ) ( , ) ( , ),T T T≈ + +f f f f f f f f  (11) 

where T0(f1,f2), T1(f1,f2) and T2(f1,f2) represent the unaberrated TCC, linearly aberrated TCC and quadratically aberrated 
TCC, respectively. T1(f1,f2) and T2(f1,f2) can be further decomposed into Tlin

(n)(f1,f2) and Tquad
(n,m)(f1,f2) with a set of input 

Zerinke coefficients. 

 
( ) ( , )

1 2 0 1 2 lin 1 2 quad 1 2TCC( , ) ( , ) Z ( , ) Z Z ( , ).n n m
n n m

n n m
T T T= + +∑ ∑∑f f f f f f f f  (12) 

Here, Tlin
(n)(f1,f2) and Tquad

(n,m)(f1,f2) are linearly aberrated TCC and quadratically aberrated TCC based on individual 
Zernike aberrations. Each term of T0(f1,f2), Tlin

(n)(f1,f2) and Tquad
(n,m)(f1,f2) can be represented as a weighted sum of several 

CTCs: 

 0 1 2 0,0;0,0 1 2( , ) ( , ),T C=f f f f  (13) 

 ( )
lin 1 2 ,0;0,0 1 2 0,0; ,0 1 2( , ) ( , ) ( , ) ,n

n nT ik C C⎡ ⎤= − −⎣ ⎦f f f f f f  (14) 

 ( , ) 2
quad 1 2 , ;0,0 1 2 ,0; ,0 1 2 ,0; ,0 1 2 0,0; , 1 2

1( , ) ( , ) ( , ) ( , ) ( , ) ,
2

n m
n m n m m n n mT k C C C C⎡ ⎤= − − − +⎣ ⎦f f f f f f f f f f  (15) 

where Ck,l;m,n(f1,f2) is a special CTC of the following notation with defining R0(f)=1: 

 [ ]{ } [ ]{ }, ; , 1 2 1 1 1 2 2 2( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .k l m n k l m nC J P R R P R R d∗= + + ⋅ + + + ⋅ +∫f f f f f f f f f f f f f f f f  (16) 

Consequently, substituting Eq. (12) into Eq. (1), the total image intensity can be decomposed and represented as a 
quadratic aberration model in the following formulations: 
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( ) ( , )

0 1 2 0 lin quad( ) ( ) ( ) ( ) ( ) Z ( ) Z Z ( ),n n m
n n m

n n m
I I I I I I I≈ + + = + +∑ ∑∑x x x x x x x  (17) 

where I0(x) is called the aberration-free intensity; I1(x) and I2(x) displays the aberration-induced intensity distributions of 
linear and quadratic terms, respectively. Similar to the T1(f1,f2) and T2(f1,f2), I1(x) and I2(x) can be decomposed into 
Ilin

(n)(x) and Iquad
(n,m)(x) multiplying by the corresponding Zerinke coefficients. Thus the Ilin

(n)(f1,f2) and Iquad
(n,m)(f1,f2) 

represent the linearly and quadratically aberrated aerial image based on individual Zernike aberrations. The I0(x), Ilin
(n)( x) 

and Iquad
(n,m)(x) can be directly calculated from T0(f1,f2), Tlin

(n)(f1,f2) and Tquad
(n,m)(f1,f2) by the formulations of 

 [ ]0 1 2 0 1 2 1 2 1 2( ) ( ) ( ) ( , ) exp 2 ( ) ,I O O T i d dπ∗= − −∫∫x f f f f f f x f f  (18) 

 [ ]( ) ( )
lin 1 2 lin 1 2 1 2 1 2( ) ( ) ( ) ( , ) exp 2 ( ) ,n nI O O T i d dπ∗= − −∫∫x f f f f f f x f f  (19) 

 [ ]( , ) ( , )
quad 1 2 quad 1 2 1 2( ) ( ) ( ) exp 2 ( ) .n m n mI O O T i d dπ∗= − −∫∫x f f f f x f f  (20) 

3. SIMULATION 
3.1 Simulation of TCC quadratic approximation 

We model a 0.75 NA imaging system operating at λ=193nm and defocus=0nm with a coherence factor of 0.70 in Matlab. 
Since each CTC and TCC are both represented by four-dimensional matrices in Cartesian coordinates (f, g; f’, g’), the 
cross-sections of the corresponding CTC and TCC can be depicted by a matrix slice which is a  two-dimensional 
matrices in Cartesian coordinates (f, g) with considering f’=0 and g’=0. Figure 4 depicts an example of decomposing 
TCC(f, g) into the unaberrated term T0(f, g), linearly term T1(f, g) and quadratic term T2(f, g) under the input an individual 
Zernike coefficient Z7=0.1λ. The e(f, g) is defined as a residual TCC calculated by e(f, g)=TCC(f, g)-[T0(f, g)+T1(f, 
g)+T2(f, g)]. 
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Fig. 4. An example of decomposing TCC(f, g) into the unaberrated term T0(f, g), linearly aberrated term T1(f, g) and 

quadratically aberrated term T2(f1, f2) under the input Zernike coefficient Z7=0.1λ. 
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From Fig. 4, the TCC(f, g) is a complex value due to the fact that the aberration W(f) itself is real but its exponential 
function term for phase change is complex in Equation (10). Because the defocus=0nm in the simulation, the 
Ck,l;m,n(f1,f2) obtained from Eq. (16) keeps a real value. Determined by Eqs. (11) to (15), The linear term T1(f, g) and 
quadratic term T2(f, g) thus become pure imaginary and real values, respectively. It is also observed that both the real part 
and imaginary part of e(f, g) are on the same order of 10-3, which confirms that the quadratic term T2(f, g) plays the same 
important role in the TCC approximation as the linear term T1(f, g) plays. Considering individual aberration in current 
lithographic projection lens is typically less than 0.1λ, the TCC quadratic approximation will provide an efficient 
approach in the TCC modeling with a high accuracy. 

Figure 5 illustrates an result of calculating CTCs for Tlin
(7)(f, g) which multiplying by Z7 equals to the linear term T1(f, g) 

in Fig. 4. Figure 6 represents the CTCs for Tquad
(7,7)(f, g) which multiplying by square Z7 equals to the quadratic term T2(f, 

g) shown in Fig. 4. It is interesting to note that the pairs of CTCs, such as [C7,0;0,0(f, g), C0,0;7,0(f, g)], [C7,7;0,0(f, g), C0,0;7,7(f, 
g)], and [C7, 0;7,0(f, g), C7, 0;7,0(f, g)] are exactly the same but the coordinates (f, g) are exchanged with each other. This is 
due to the mathematically property of CTCs as expected in Equation (16). Therefore, for the purpose of fast calculation 
and simulation, we need to calculate only half of the CTCs to establish the TCC quadratic approximation. 
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Fig. 5. Representation of the linearly aberrated TCC term Tlin

(7)(f1, f2) as a sum of weighted CTCs. 
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(7,7)(f, g) as a sum of weighted CTCs. 

3.2 Simulation of CTC based quadratic aberration model 

To simulate the CTC based quadratic aberration model, we set the imaging system operating at λ=193nm and NA=0.75 
with a coherence factor of 0.35 and defocus of 100nm. Both the one-dimensional binary grating (pitch=1000nm, opening 
width=100nm) and alternating phase shift grating (pitch=1000nm, opening width=500nm) are utilized as input mask 
patterns for example. The total image intensity can be decomposed and represented as a quadratic aberration model 
which is expressed by the sum of the aberration-free intensity I0(x), linear intensity term I1(x) and quadratic intensity 
term I2(x). The error of the quadratic aberration model is introduced as e(x) with the expression of e(x)=I(x)-
[I0(x)+I1(x)+I2(x)]. 
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Figure 7 shows the simulation results of the binary grating and alternating phase shift grating under the input individual 
Zernike coefficient Z9=0.1λ which is a even type aberration. From Fig. 7, it is noted that both the linear term I1(x) and 
quadratic term I2(x) contribute to a symmetrical effect on the image intensity distribution, as the aberration-free intensity 
I0(x) is symmetrical about x=0. The model error e(x) thus shows a small amount of and a symmetrical intensity 
distribution on the order of 10-3, when the maximum value of I0(x) is normalized to 1. 
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Fig. 7. Simulation result of the quadratic aberration model for the binary grating and alternating phase shift grating 

under the input parameters: NA=0.75, λ=193nm, Z9=0.1λ, σ=0.35, defocus=100nm. 

Figure 8 illustrates the simulation results of the binary grating and alternating phase shift grating under the input 
individual Zernike coefficient Z7=0.1λ which is a odd type aberration. From Fig. 8, it is observed that the linear term I1(x) 
shows an asymmetrical effect on the image intensity distribution, different from that in Fig. 7. The quadratic term I2(x) 
create a symmetrical intensity distribution similar to that shown in Fig. 7. The model error e(x) also keeps a small value 
on the order of 10-3, which demonstrates that the quadratic aberration model achieves a high accuracy in the aerial image 
intensity approximation. 
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Fig. 8. Simulation result of the quadratic aberration model for the binary grating and alternating phase shift grating 

under the input parameters: NA=0.75, λ=193nm, Z7=0.1λ, σ=0.35, defocus=100nm. 

Except one-dimensional masks with multiple pitches and orientations are input for simulations, a contact cross pattern 
are designed as a two-dimensional mask for simulating the quadratic aerial image model. Figure 9 depicts the calculation 
result based on the contact cross pattern with setting parameters of NA=0.75, λ=193nm, Z7=0.1λ, σ=0.70 and 
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defocus=0nm. From Fig. 9, the linear term I1(x, y) appears asymmetrical about x axis but symmetrical about y axis, while 
the aberration-free intensity I0(x, y) is symmetrical about (x, y)=(0,0). This effect is due to the asymmetric property of Z7 
aberration about f axis on the pupil plane. The quadratic term I2(x, y) contributes a symmetric effect on the image 
intensity distribution, similar to the one dimensional symmetric property of I2(x) shown in Fig. 9. The one dimensional 
intensity distributions can be thus considered as a cross section (y=0) of the two dimensional intensity distributions. 
From this observation and lots of other simulation results for binary and phase shift masks with multiple pitches and 
orientations, it is found that the proposed CTC based quadratic aberration model is suitable and efficient for one/two-
dimensional aerial image approximation with a high accuracy. 
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Fig. 9. Simulation result of the quadratic aberration model for the contact cross pattern under the input parameters: 

NA=0.75, λ=193nm, Z9=0.1λ, σ=0.70, defocus=0nm. 

4. CONCLUSIONS 
We propose a CTC based method suitable for fast calculation and evaluation of quadratic aberration model in partially 
coherent imaging systems. By further investigating the Hopkins’ imaging theory, a TCC quadratic approximation is 
proposed for characterizing TCC up to the quadratically aberrated term. A quadratic aberration model is subsequently 
established for aerial image calculation and decomposition, based on the TCC quadratic approximation. Each term in the 
TCC quadratic approximation can be represented as a weighted sum of several CTCs. Due to the fast algorithm for 
calculating CTCs, the TCC quadratic approximation and the quadratic aerial image model can be efficiently obtained. 
Simulations were performed by the proposed CTC based algorithm with different input Zernike aberrations for binary 
and phase shift masks with multiple pitches and orientations, which demonstrate that the proposed approach is not only 
accurate but also efficient for revealing the influence of different Zernike orders on aerial image intensity distributions 
under partially coherent illumination. It is expected that this method will have applications in the robust OPC and inverse 
mask design with aberrations taking into account. It will also have applications in the aerial image based aberration 
analysis and metrology. 
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