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 A B S T R A C T

To meet the semiconductor industry’s demand for full-chip simulations and optimizations, fast and accurate 
compact models have become the most widely adopted resist models in Optical Proximity Correction (OPC) for 
mask synthesis. Current compact models usually rely on adding more model terms within a linear combination 
framework to handle specific resist characteristics, which increase the computational complexity and decrease 
the model generality. In this paper, we break away from the conventional linear combination framework and 
develop a fast, accurate, and versatile Wiener–Padé model. Additionally, we introduce a two-stage calibration 
strategy based on quadratic convex optimization with effective constraints, in order to improve the efficiency 
of the calibration process and effectively prevent overfitting and ill-conditioned problem in resist models. 
Experimental results demonstrate the efficiency and accuracy of our Wiener–Padé models and method of two-
stage calibration, while also verifying the benefits of incorporating constraints in the calibration process. Our 
methodology of Wiener–Padé modeling and quadratic convex optimizations provides a promising solution for 
advanced resist modeling and calibration in computational lithography.
1. Introduction

The development of semiconductor technology pushes the limits of 
photolithography to print tiny features on the wafer. As critical di-
mension (CD) shrinks and feature complexity grows, Optical Proximity 
Correction (OPC) for mask synthesis has become an indispensable tech-
nology for resolution enhancement. OPC is a computational technique 
used to modify the mask patterns to compensate for the distortions that 
arise during the lithographic process, ensuring that the printed features 
match the intended designs. As a key component of OPC tool, the resist 
model needs capture the nonlinear physical and chemical interactions – 
such as acid-base neutralization and diffusion reaction – occurring dur-
ing exposure and development. To meet the demands of full-chip OPC, 
resist modeling techniques need to be general, fast, and accurate [1,2]. 
The threshold-based models, such as the constant threshold model and 
the variable threshold model [3–5], are first proposed. These models 
correlate the threshold with the spatial information or properties like 
light intensity or gradient to extract the resist contour from the aerial 
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image. However, these models are limited to some specific lithogra-
phy conditions. Therefore, more advanced compact models have been 
introduced and widely adopted as the standard model for current OPC.

Current compact models use a series of operations on aerial images 
to describe highly nonlinear physical and chemical effects during the 
resist processes. The most representative one is the CM1, proposed 
by Yuri Granik and colleagues [6–9]. In this model, neutralization 
reactions during post-exposure bake can be described as the additive 
or subtractive transformations applied to the aerial image intensity. 
Gradient and Laplacian calculations highlight the local slope and cur-
vature of aerial images. Power and root operations mimic nonlinear 
intensity behaviors such as minimum and maximum response levels. 
Convolutions with Gauss–Laguerre kernels simulate the diffusion pro-
cesses during post-exposure bake. By linearly combining these terms, 
CM1 captures the complex resist effects while maintaining computa-
tional efficiency, making it widely applicable in most full-chip OPC 
lithographic resist modeling tasks. At more advanced nodes, resist 
characteristics and their underlying physical and chemical mechanisms 
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become increasingly complex. To enhance model accuracy and adapt 
to new challenges, various approaches have been employed to improve 
the compact models. By introducing new modeling terms, such as 
adding resist horizontal shrink term and horizontal development bias 
term, the compact model can be enabled to capture the unique physical 
effects of NTD resists [10]. And by extending the convolution targets 
to mask images, the compact model can adapt to deal with more 
comprehensive layout information [11]. By refining the convolution 
kernel design, such as incorporating a Gaussian diffusion function in the 
𝑧-direction, the compact model can be used to accurately simulate the 
3D resist profiles [12]. These enhancements, while effective in specific 
scenarios, primarily focus on increasing the complexity of the compact 
models by adding new terms or refining existing components within 
the framework of linear combinations. Moreover, the growth in model 
complexity can lead to overfitting or ill-conditioned issues. Current 
calibration methods, such as genetic algorithms [13], mini-batch gra-
dient descent (MGD) [14], and Landweber iteration method [15] often 
lack adequate constraints and often require engineers to have extensive 
experience or resort to trial-and-error over long periods.

In this paper, we go beyond the tradition of resist modeling by 
a linear combination of model terms, and propose an efficient resist 
model based on a Wiener–Padé framework, which leverages the ad-
vantages of both polynomial and rational approximations. This method 
not only maintains the computational efficiency but also offers the 
improved adaptability to complex nonlinear resist responses, providing 
a versatile solution for a wide range of lithographic applications. In 
addition, we develop a two-stage calibration method for the Wiener–
Padé model based on quadratic convex optimization algorithm. This 
method integrates the advantages of global optimality, computational 
efficiency, and constrained solutions, making it both efficient and 
robust for model tuning. In Section 2, we present the construction of 
this resist model, and a two-stage calibration approach based on the 
quadratic convex optimization algorithm. In Section 3, we conduct a 
comprehensive evaluation of the modeling accuracy and calibration 
efficiency. The conclusions are drawn in Section 4.

2. Theory and methods

2.1. Wiener–Padé resist modeling

Photoresists exhibit complex nonlinear effects in response to optical 
intensity. Polynomial approximation is one of the most commonly used 
methods to model such nonlinear behaviors due to its simplicity and 
ease of implementation. However, it often struggles with capturing the 
complex higher-order responses and quickly becomes unwieldy as the 
degree of the polynomial increases. Padé approximation, a classical 
method that represents functions as the ratio of polynomials 

𝑅(𝑥) =
∑𝑚

𝑖=0 𝑎𝑖𝑥
𝑖

1 +
∑𝑛

𝑗=1 𝑏𝑗𝑥𝑗
,  with 1 +

𝑛
∑

𝑗=1
𝑏𝑗𝑥

𝑗 > 0, (1)

provides an alternative with significant advantages, since it may con-
verge faster and provide better approximations [16–18]. To illustrate, 
we consider the Padé and polynomial approximation 
𝑅(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 +⋯ + 𝑎𝑛𝑥
𝑛, (2)

of the sigmoid function 

𝜎(𝑥) = 1
1 + 𝑒−𝑘𝑥

, (3)

one of the simplest resist models [1], for various steepness parameters 
k and polynomial degrees. Fig.  1 compares the polynomial and Padé 
approximations with degrees from 2 to 5 (columns) and 𝑘 values of 0.5, 
1, 2, and 10 (rows). It shows that as the polynomial degree increases, 
the fitting accuracy of both models generally improves, with Padé 
consistently showing superior performance. Notably, in each 𝑘 value 
(row), the Padé approximation with a lower degree often outperforms 
2 
Fig. 1. Comparison of polynomial and Padé approximations using sigmoid functions. 
(RMSE heatmaps for the polynomial and Padé approximations are displayed on the left 
and right halves of each subplot, respectively).

the polynomial with a higher degree. For instance, at 𝑘 = 2, the 
Root Mean Square Error (RMSE) for the 5th-degree polynomial is 
5.34e−02, whereas the RMSE for the 2nd-degree Padé is 3.76e−02, 
indicating that the Padé approximation can achieve better accuracy 
with a lower complexity. Although the simplified sigmoid response 
used for illustration does not encompass the full range of physicochem-
ical effects in resist behavior (such as resist shrinkage and developer 
diffusion), the Padé approximation’s superior mathematical flexibility 
in approximating complex shapes remains evident.

The Wiener model is also a mathematical model used to describe 
nonlinear systems, combining the polynomial functions and the con-
volution operations to capture the relationship between inputs and 
outputs [19–22]. It is particularly suitable for modeling photoresists 
due to their inherent nonlinear response characteristics. Its flexibility 
and adjustable parameters make it well-adapted to various materials 
and conditions in lithography processes [23]. Formally, the Wiener 
model expresses the output as: 

𝑅(𝐼)≈
𝑁
∑

𝑛=1

[ 𝐾
∑

{𝑘𝑖}=1
𝑤𝑘1𝑘2…𝑘𝑛

(

𝐻𝑘1⊗𝐼
)(
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⋯
(
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)

]

, (4)

where 𝐻𝑘 are the Wiener kernels, 𝐼 is the input aerial image, and 
𝑤𝑘1𝑘2…𝑘𝑛  are the Wiener coefficients. If we define (𝐻𝑘𝑛 ⊗ 𝐼) as the 
linear Wiener product (WP), (𝐻𝑘𝑛 ⊗𝐼)(𝐻𝑘𝑛+1 ⊗𝐼) as the quadratic WP, 
(𝐻𝑘𝑛 ⊗ 𝐼)(𝐻𝑘𝑛+1 ⊗ 𝐼)(𝐻𝑘𝑛+2 ⊗ 𝐼) as the cubic WP, and so on, then by 
linearly combining all these terms, we obtain: 

𝑅(𝐼) =
∑

𝑖
𝑤𝑖WP𝑖(𝐼), (5)

It can be seen that the Wiener model combines the WP𝑠 through a linear 
combination like the polynomial. By combining Padé approximations 
and the Wiener model framework, we propose a Wiener–Padé model 
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as [24]: 
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where 𝑍 is the number of numerator Wiener terms, 𝑤𝑖 and 𝑤𝑗 are 
Wiener coefficients, WP𝑖(𝐼) and WP𝑗 (𝐼) are Wiener products. This way, 
the Wiener–Padé model offers several advantages in resist modeling: 

• Efficient approximation capability: The Wiener–Padé model com-
bines the strengths of the Wiener model in describing nonlinear 
relationships and the efficiency of Padé approximation in ap-
proximating complex functions with fewer lower-order terms. 
Compared to models that rely solely on linear combinations, 
the Wiener–Padé model can achieve effective approximation of 
complex nonlinear resist responses with lower model orders.

• Better representation of nonlinear behavior: Rational functions 
in the Wiener–Padé model are generally non-divergent, making 
them particularly well-suited for modeling complex responses 
within resist. In contrast, conventional compact models based on 
linear combinations may require higher-order terms to describe 
these behaviors, leading to increased computational cost.

• Reduced computational complexity in optimization: The Wiener–
Padé model can achieve homogeneous terms by utilizing spe-
cific combinations. Such characteristic avoids the need for tak-
ing roots of high-power model terms, which significantly re-
duces the computational complexity involved in gradient-based 
optimization.

• Reduced overfitting risk: The Wiener–Padé model uses a rational 
function to approximate complex behaviors, effectively avoiding 
overfitting, especially in cases with limited data, such as the 
currently widely used calibration scenarios using CD gauges or 
contour points.

• High flexibility and versatility: By flexibly adding and combin-
ing terms in the numerator and denominator, it can adapt to 
a wide range of resist modeling scenarios. Traditional compact 
models can be regarded as a simplified linear form of the general 
Wiener–Padé model.

2.2. Wiener–Padé model calibration

For calibration, a resist model typically requires a large amount 
of actual CD measurements where genetic algorithm is commonly 
employed to ensure the global optimal solution. In order to avoid 
excessive computational time., gradient-based approaches, such as the 
MGD and the projected Landweber iteration algorithm, have been 
proven effective. Nevertheless, the performance and convergence speed 
of such methods are highly dependent on the accuracy of the initial 
point. In particular, poor initial values can lead to slow convergence. 
Additionally, due to the ill-conditioned problem and overfitting issues 
induced by the increased complexity of resist models, incorporating 
appropriate constraints into the calibration process becomes crucial as 
well.

To address these issues, we propose a two-stage approach based on 
the quadratic convex optimization algorithm [25–28]:

1. The qualitative calibration stage
The goal of this stage is to find a global approximate solution 
such that the simulated values of most CD gauges are close 
to the measured values. By leveraging the convex structure of 
the problem, we solve a relaxed version of the optimization 
to generate an initial guess. This step avoids local optima and 
accelerates convergence in subsequent iterations (see Appendix 
A.1 for mathematical formulation).
3 
2. The quantitative calibration stage
Starting from the initial values obtained in the qualitative stage, 
we refine the solution through iterative optimization. We recon-
struct the objective function in each iteration to minimize the 
discrepancy between the Wiener–Padé model simulations and 
actual measurement data by searching for the optimal pertur-
bation. This allows for progressive refinement of the solution, 
offering advantages such as robustness and the ability to con-
verge to a highly accurate solution even with complex model 
landscapes (algorithm details in Appendix  A.2).

In both processes, we apply appropriate constraints to prevent overfit-
ting. With the proposed strategy, we can improve model accuracy while 
reducing calibration time.

3. Experimental results

We have conducted a series of experiments to demonstrate the 
advantages of the proposed Wiener–Padé modeling and calibration 
method. We first evaluated the modeling accuracy of the Wiener–
Padé model, then compared the accuracy and efficiency of different 
calibration methods. Finally, we compared the calibration results for 
two practical lithographic models using the complete Wiener–Padé 
modeling and calibration approach versus the Wiener model.

3.1. Performance of a Wiener–Padé model

To validate the theoretical feasibility of a Wiener–Padé model, we 
conducted a series of experiments to compare the Wiener and pro-
posed Wiener–Padé models’ fitting performances. We used a simplified 
Wiener model of the following form: 
𝑅(𝐼) = 𝑎0 + 𝑎1 (𝐻 ⊗ 𝐼) + 𝑎2 (𝐻 ⊗ 𝐼)2 +⋯ + 𝑎𝑛 (𝐻 ⊗ 𝐼)𝑛 , (7)

and a Wiener–Padé model as follows: 

𝑅(𝐼) =
∑𝑛

𝑖=0 𝑎𝑖 (𝐻 ⊗ 𝐼)𝑖

1 +
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,  with 1 +

𝑛
∑

𝑗=0
𝑏𝑗 (𝐻 ⊗ 𝐼)𝑗 > 0, (8)

where, 𝐻 is a Gaussian kernel with 𝜎 = 30 nm was used; 𝐼 is generated 
under annular illumination (𝜎𝑖𝑛 = 0.5, 𝜎𝑜𝑢𝑡 = 0.75) in an immersion 
lithography system with 𝜆 = 193 nm and NA = 1.2.

There are two typical mask patterns: an array of equal lines and 
spaces and an isolated line or space [29].
Ex.1. Dense Array of Lines and Spaces 

For periodic dense lines and spaces, the spatial frequency response 
of the diffraction pattern appears as discrete diffraction orders [29]: 

𝑇𝑑𝑒𝑛𝑠𝑒(𝑓𝑥) =
1
𝑝

∞
∑

𝑗=−∞

sin(𝜋𝑤𝑓𝑥)
𝜋𝑓𝑥

𝛿
(

𝑓𝑥 −
𝑗
𝑝

)

, (9)

where, 𝛿 is the Dirac delta function, which is the mathematical rep-
resentation of a point of light. The final aerial image is formed by 
the incoherent superposition of coherent images corresponding to all 
discrete source points, where each coherent image is derived by taking 
the inverse Fourier transform of the shifted spatial frequency response 
𝑇 (𝑓𝑥) and then squaring its magnitude. In addition, we defined the ideal 
resist image using the sigmoid function [1]: 

𝑅𝑑𝑒𝑛𝑠𝑒(𝑥) = 𝜎 (cos(2𝜋𝑥∕𝑝)) = 1
1 + 𝑒−𝑘 cos(2𝜋𝑥∕𝑝)

. (10)

In this experiment, the aerial image was normalized, and the following 
parameters were applied:

𝑥: Horizontal position, varied from −320 nm to 320 nm with 640 
sampling points;

𝑤: Linewidth, set to 80 nm;
𝑝: Line space pitch, set to 160 nm;
𝑘: Slope factor of sigmoid function, set to 10.
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Fig. 2. Model fitting comparison for a dense array of lines and spaces.

We employed the Levenberg–Marquardt algorithm, a commonly 
used nonlinear least squares method, to fit the models. The sets of 
RMSE between the target and the simulation were computed over 
a defined interval of 𝑥 values for comparison and evaluation. Fig. 
2 demonstrates the fitting performance of Wiener and Wiener–Padé 
model for the resist image of a dense array of lines and spaces across 
different model orders, along with a comparison of RMSE values. Fig. 
2(a) shows the input aerial image and corresponding output resist 
image. Figs.  2(b) to 2(f) illustrate the fitting results for model orders 
from 2 to 6, where the blue dashed lines represent the Wiener model 
and the orange dash-dotted lines represent the Wiener–Padé model. 
Fig.  2(g) provides a comparison of RMSE values for each model order, 
showing that the Wiener–Padé model consistently achieves lower RMSE 
than the Wiener model. Notably, the RMSE of the 2nd order Wiener–
Padé model (3.40e−02 nm) is lower than that of the 6th order Wiener 
model (4.06e−02 nm).
Ex.2. Isolated Line or Space

For an isolated space, its diffraction pattern’s spatial frequency 
response manifests as a sinc function [29]: 

𝑇𝑖𝑠𝑜(𝑓𝑥) =
sin𝜋𝑤𝑓𝑥

𝜋𝑓𝑥
. (11)

We then defined the ideal resist profile using the sigmoid function [1]: 

𝑅𝑖𝑠𝑜(𝑥) = 1 −
(

1
1 + 𝑒−𝑘(𝑥−𝑐1)

+ 1
1 + 𝑒𝑘(𝑥−𝑐2)

)

. (12)

In this experiment, the aerial image was also normalized, and the 
following parameters were applied:

𝑥: Horizontal position, varied from −160 nm to 160 nm with 320 
sampling points;

𝑤: Width of the isolated line or space, set to 80 nm;
𝑘: Slope factor of sigmoid function, set to 10;
𝑐1: Left transition point, set to −40 nm;
𝑐2: Right transition point, set to 40 nm.
Fig.  3, similar to the previous Fig.  2, illustrates the fitting perfor-

mance and comparison of Wiener and Wiener–Padé models for resist 
4 
Fig. 3. Model fitting curve comparison for an isolated line or space.

image intensity of an isolated line or space. The nonlinearity of this 
pattern is slightly higher compared to the dense array of lines and 
spaces, which is reflected in the overall results. However, the results 
still reveal a consistent trend where the Wiener–Padé model signifi-
cantly outperforms the Wiener model across all orders. Notably, the 
2nd order Wiener–Padé model achieves an RMSE of 8.71e−02 nm, also 
lower than the 6th order Wiener model’s 1.13e−01 nm.

These two comparative analyses highlight the significant advan-
tages of the Wiener–Padé model in enhancing nonlinear resist model-
ing. By integrating Padé approximation into the Wiener model, higher 
accuracy with lower computational complexity can be achieved.

3.2. Performance of two-stage quadratic convex optimization-based calibra-
tion

To assess the accuracy and efficiency of the two-stage quadratic 
convex optimization approach, we conducted a series of experiments 
using a real DUV immersion lithography case. The model parameters 
included an illumination wavelength of 193 nm, an NA of 1.2, and a 
6% attenuated phase shift mask (PSM). The optical setup utilized an 
annular illumination source with 𝜎 = 0.5∕0.75 and XY-polarization. The 
wafer stack consisted of a tri-layer structure, from top to bottom: an 
85-nm-thick JSR A2055 photoresist, a silicon-containing anti-reflective 
coating (SiARC), and a spin-on carbon (SOC) layer. Focus settings 
covered a ±60 nm defocus range with 20-nm steps. Processing involved 
a post-exposure bake (PEB) at 105 ◦C for 60 s. The test patterns, with 
feature sizes ranging from 40 nm to 500 nm, comprised over 3000 dif-
ferent test patterns, from which we randomly selected 100 CD gauges. 
Using a Wiener–Padé model with two linear terms and six quadratic 
terms, we calibrated the model parameters using three different meth-
ods: the classical genetic algorithm, the projected Landweber method, 
and the two-stage quadratic convex optimization approach. The exper-
iments were implemented in C++ and executed using OpenMPI. We 
recorded the calibration runtimes and the RMSEs in one slave rank on 
hardware consisting of an Intel Core i7-10700 CPU, which features 8 
cores and 16 threads, a base frequency of 2.90 GHz, and a maximum 
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Table 1
Comparison of calibration accuracy and efficiency across different methods.
 Model RMSE (nm) Time (h) 
 Classical genetic algorithm 0.989555 25.18  
 Projected Landweber method 1.050881 0.61  
 Two-stage approach 0.990187 0.02  

turbo boost of 4.80 GHz. The average memory consumption during 
optimization was measured as 453 MB for the Landweber method, 466 
MB for the two-stage approach, and 516 MB for the genetic algorithm, 
with all methods showing negligible memory fluctuations. The data 
presented in Table  1 shows that the two-stage quadratic convex op-
timization approach achieved an RMS of 0.990187 nm, which was on 
par with the genetic algorithm (0.989555 nm) but significantly better 
than the Landweber method (1.050881 nm). In terms of efficiency, the 
two-stage approach demonstrated a substantial improvement, requiring 
only 0.02 h for calibration, compared to 25.18 h for the genetic algo-
rithm and 0.61 h for the Landweber method. These results indicate that 
the two-stage approach not only maintains the accuracy of traditional 
methods like the genetic algorithm but also significantly reduces the 
computational time, making it a more efficient and practical option for 
resist calibration.

We also observed that, in the absence of constraints, both the 
genetic algorithm and the Landweber method occasionally encountered 
several issues, as illustrated by the green cutlines in Fig.  4. First of all, 
Fig.  4(a) shows very low intensity contrast, resulting in an extremely 
narrow process window. Additionally, while the intensity profile in-
tersects the threshold, the polarity of the intensity inside the contour 
in Fig.  4(b) is reversed. Furthermore, Fig.  4(c) demonstrates multiple 
intersections between the cutline and the threshold, resulting in the 
formation of holes. In Fig.  4(d), although the polarity of the intensity 
is correct, the intensity outside the contour approaches the threshold 
at distant locations, which can potentially result in the formation of 
multiple potential contours. These issues are difficult to detect solely 
based on the simulated CD values but can significantly impact the 
model’s applicability in large-area simulations and process window 
analysis. This highlights the importance of incorporating constraints on 
the intensity distribution in resist model calibration.

To further evaluate the effect of constraints on the resist intensity 
distribution, we conducted an experiment on overfitting issues. Using 
these gauges, we calibrated a Wiener model with 38 model terms to in-
vestigate the impact of different constraint conditions on the calibration 
results. Specifically, we compared two scenarios: heavily constrained 
(red cutlines in Fig.  4) and lightly constrained conditions (yellow 
cutlines in Fig.  4), both employing a 1 nm sampling interval (indicated 
by dark red dots) and a 0.2 threshold value. Under heavily constrained 
conditions, constraints were applied to all sampling points across the 
entire CD gauge cutline between the two endpoints. In contrast, in the 
lightly constrained case, constraints were selectively applied only to 
a specifically chosen subset of sampling points, comprising five key 
locations: the two ends of the cutline, the center point, and two po-
sitions near the measurement locations. It is important to note that the 
manner of constraint application remained consistent across both sce-
narios. Taking Fig.  4(a) as an example, for sampling points where the 
simulated intensity was expected to be near the threshold, constraints 
were applied according to Eq.  (23). For points expected to be below 
the threshold, constraints were implemented as described in Eq.  (24), 
while for points expected to be above the threshold, constraints were 
formulated based on Eq.  (25). The results, as depicted in Fig.  4, indicate 
that both types of constraints effectively addressed the overfitting issues 
observed under unconstrained conditions. Notably, heavily constrained 
conditions led to higher intensity contrast and imaging quality, while 
lightly constrained conditions kept all intensity distributions within 
the constraint range, making the intensity values more controllable. 
Therefore, appropriate constraints on the resist intensity distribution 
are crucial in the calibration process.
5 
Fig. 4. Intensity distribution of resist response for different constraint conditions 
along the CD gauges: (a) 80 nm spaces with 170 nm pitch, (b) 48 nm lines with 
110 nm pitch, (c) a 45 nm line between two 74 nm space ends, (d) a 160 nm space 
between dense 70 nm line ends with 126 nm pitch. Each subplot shows cutlines 
of the simulated resist response after calibration, illustrating issues encountered in 
unconstrained optimization (green lines) and the effects of heavily constrained (red 
lines) and lightly constrained (yellow lines) conditions. Dark red dots indicate the 
control points used in the constrained cases.

3.3. A holistic lithography test case

To test the effectiveness of the Wiener–Padé modeling and cali-
bration methods in practical applications, we conducted comparative 
experiments using a positive tone development (PTD) and a negative 
tone development (NTD) lithographic process. In the PTD case, the 
lithographic model parameters were the same as introduced in Sec-
tion 3.2, but with 3271 gauges used for calibration and 164 gauges used 
for verification. For the NTD model, the parameters were 𝜆 = 193 nm, 
NA = 1.3, and a 6% attenuated PSM mask with a −0.5 nm pattern bias. 
In this case, 1500 gauges were used for calibration and 93 gauges for 
verification.

Table  2 shows the comparative performance metrics for the Wiener 
and Wiener–Padé models in the PTD and NTD cases, where model 
calibration is considered complete when 95% of the simulation errors 
for the gauges are within the reference range. For the PTD case, 
the reference range is ±2.5 nm for 1D patterns and ±6 nm for 2D 
patterns. Similarly, for the NTD case, the reference range is ±2 nm 
for 1D patterns and ±4 nm for 2D patterns. We utilized a unified 
set of terms, composed of aerial image features and Laguerre–Gauss 
kernels, for both PTD and NTD calibrations. It is evident that the 
Wiener–Padé model achieves calibration using only approximately two-
thirds of the term count required by the Wiener model, while also 
demonstrating superior RMSE and error range metrics. Specifically, for 
the PTD case, the Wiener–Padé model achieves an RMSE of 0.8784 nm 
compared to 0.9523 nm for the Wiener model, with an error range 
of 15.4820 nm versus 17.5470 nm for the calibration gauges. For the 
verification gauges, the RMSE is 0.8873 nm for the Wiener–Padé model, 
outperforming the Wiener model’s 1.0505 nm, with a reduced error 
range of 4.3942 nm compared to 6.9559 nm. In the NTD case, the 
Wiener–Padé model achieves an RMSE of 1.1754 nm (vs. 1.2834 nm) 
and an error range of 13.3772 nm (vs. 16.6335 nm) for the calibration 
gauges. For the verification gauges, it maintains its advantage with an 
RMSE of 5.1918 nm compared to 5.3909 nm and an error range of 
32.1864 nm versus 33.7054 nm.
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Table 2
Comparative performance metrics for the Wiener and the Wiener–Padé model.
 Case Model Term Calibration Verification

 RMSE (nm) Error range (nm) Within range (%) RMSE (nm) Error range (nm) 
 PTD Wiener 13 0.9523 17.5470 97.03 1.0505 6.9559  
 Wiener–Padé 8 0.8784 15.4820 98.07 0.8873 4.3942  
 NTD Wiener 19 1.2834 16.6335 95.00 5.3909 33.7054  
 Wiener–Padé 12 1.1754 13.3772 95.53 5.1918 32.1864  
Fig. 5. Distribution of simulation errors for the Wiener and the Wiener–Padé Model 
in the (a) PTD and (b) NTD lithographic cases.

Fig.  5 further illustrates these trends. For both the PTD and the NTD 
cases, the Wiener–Padé model demonstrates more concentrated errors 
with better-controlled error ranges in the calibration part. For the PTD 
verification patterns, the Wiener model shows a subset of errors that 
deviate significantly, while the Wiener–Padé model maintains errors 
tightly distributed around zero. In the NTD verification tests, both the 
Wiener and the Wiener–Padé models struggled to squeeze the model 
errors down to a desired ∼ 10 nm level, indicating either a resist 
response beyond the employed Wiener and Wiener–Padé model forms 
or insufficient pattern coverage in the set of selected training data. One 
possibility is to incorporate a resist shrinkage model beyond the Wiener 
or Wiener–Padé framework. Another approach is to enrich the training 
data to include some of the typical failing patterns. Both directions are 
being considered and investigated in our ongoing research.

To assess the generality and applicability of the Wiener–Padé model, 
we conducted a process window analysis. Figs.  6 and 7 illustrate the 
Bossung curves of the Wiener and the Wiener–Padé model in the PTD 
and NTD cases under different defocus conditions for different Focus 
Exposure Matrix (FEM) patterns. In addition, we calculated the mean 
absolute errors (MAE) between simulated and measured values for each 
model across defocus. The difference in MAE, denoted as 𝛥, is visually 
represented in Figs.  6 and 7. Values with red backgrounds indicate cases 
where the Wiener–Padé model exhibits larger MAE than the Wiener 
model, while values with green backgrounds signify superior Wiener–
Padé performance. For the PTD case, the patterns are: (a) 64 nm lines 
with 260 nm pitch, (b) 64 nm lines with 1500 nm pitch, (c) 58 nm lines 
with 116 nm pitch, (d) 80 nm spaces with 160 nm pitch, (e) 74 nm lines 
with 340 nm pitch, (f) 74 nm lines with 1000 nm pitch, (g) 140 nm lines 
with 280 nm pitch, (h) 160 nm spaces with 320 nm pitch, (i) a 60 nm 
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Fig. 6. Bossung plots of the Wiener and the Wiener–Padé Model in the PTD litho-
graphic case under different defocus conditions for patterns: (a) 64 nm lines with 
260 nm pitch, (b) 64 nm lines with 1500 nm pitch, (c) 58 nm lines with 116 nm 
pitch, (d) 80 nm spaces with 160 nm pitch, (e) 74 nm lines with 340 nm pitch, (f) 
74 nm lines with 1000 nm pitch, (g) 140 nm lines with 280 nm pitch, (h) 160 nm 
spaces with 320 nm pitch, (i) a 60 nm space between line ends with 80 nm width, (j) 
a 70 nm space between line ends with 100 nm width, (k) 150 spaces nm between line 
ends with 60 nm width and 126 nm pitch, and (l) 150 nm spaces between line ends 
with 70 nm width and 200 nm pitch.

space between line ends with 80 nm width, (j) a 70 nm space between 
line ends with 100 nm width, (k) 150 spaces nm between line ends 
with 60 nm width and 126 nm pitch, and (l) 150 nm spaces between 
line ends with 70 nm width and 200 nm pitch. The defocus range spans 
from −60 nm to +60 nm with a 20 nm interval. As shown in Fig.  6, 
the Wiener–Padé model achieves smaller MAE in 9 out of 12 patterns, 
providing more accurate predictions. For the NTD case, the patterns 
are: (a) 74 nm lines with 700 nm pitch, (b) 90 nm lines with 600 nm 
pitch, (c) 106 nm lines with 100 nm pitch, (d) an isolated 73 nm line, 
(e) two 150 nm lines, (f) three 150 nm lines, (g) 90 nm lines with 
400 nm pitch, (h) 150 nm lines with 430 nm pitch, (i) 64 nm lines 
with 600 nm pitch and scattering bars, (j) 64 nm lines with 1500 nm 
pitch and scattering bars, (k) 120 spaces nm between line ends with 
70 nm width and 140 nm pitch, and (l) 60 nm spaces between line ends 
with 74 nm width and 148 nm pitch. The defocus values range from 
−100 nm to 100 nm. Fig.  7 also demonstrates the superior performance 
of the Wiener–Padé model, with 8 out of 12 patterns exhibiting smaller 
MAE compared to the Wiener model. Furthermore, for cases such as 
(i) and (j), which include scattering bars, and (k) and (l), which are 
2D patterns, the Wiener–Padé model shows a significantly closer trend 
than the Wiener model. These indicate that the Wiener–Padé model has 
better predictive capability for the process window.

To evaluate the model complexity and computational efficiency, we 
recorded the combination of terms and the calibration time for each 
model, as shown in Table  3. In both PTD and NTD cases, the Wiener–
Padé model uses significantly fewer terms than the Wiener model (6 
vs. 12 for PTD, 10 vs. 18 for NTD), especially quadratic terms, which 
contribute more to the model’s complexity. In addition, the Wiener–
Padé model completes calibration in 0.11 h, significantly faster than 
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Fig. 7. Bossung plots of the Wiener and the Wiener–Padé Model in the NTD litho-
graphic case under different defocus conditions for patterns: (a) 74 nm lines with 
700 nm pitch, (b) 90 nm lines with 600 nm pitch, (c) 106 nm lines with 100 nm 
pitch, (d) an isolated 73 nm line, (e) two 150 nm lines, (f) three 150 nm lines, (g) 
90 nm lines with 400 nm pitch, (h) 150 nm lines with 430 nm pitch, (i) 64 nm 
lines with 600 nm pitch and scattering bars, (j) 64 nm lines with 1500 nm pitch and 
scattering bars, (k) 120 spaces nm between line ends with 70 nm width and 140 nm 
pitch, and (l) 60 nm spaces between line ends with 74 nm width and 148 nm pitch.

Table 3
Comparative calibration time for the Wiener and the Wiener–Padé model.
 Case Model Terms

(Linear+Quadratic)
Calibration
time (h)

 

 PTD Wiener 13 (1+12) 1.81  
 Wiener–Padé 8 (2+6) 0.11  
 NTD Wiener 19 (1+18) 0.87  
 Wiener–Padé 12 (2+10) 0.03  

the Wiener model’s 1.81 h. For the NTD case, due to a reduction in 
the number of calibration gauges from over 3000 to 1500, both models 
require less calibration time, but the Wiener–Padé model shows a much 
greater reduction, completing calibration in just 0.03 h compared to the 
Wiener model’s 0.87 h.

4. Conclusion

In this paper, we presented a method for fast and accurate resist 
modeling using a Wiener–Padé formulation and a means of two-stage 
calibration using quadratic convex optimizations with effective con-
straints, aimed at improving the adaptability of compact models in 
handling complex nonlinear resist responses as well as addressing the 
challenges of runtime efficiency and overfitting in calibration.

Compared with the Wiener model, the present Wiener–Padé model 
showed superior fitting accuracy with lower model order. Particu-
larly, the 2nd-order Wiener–Padé model exhibited superior perfor-
mance than the 6th-order Wiener model. The two-stage quadratic 
convex optimization-based calibration approach exhibited comparable 
accuracy as genetic algorithm and over 30 times efficiency upon 
the Landweber algorithm. Furthermore, we showcased the complete 
Wiener–Padé modeling and calibration method using the compact 
Wiener model as baseline in a practical PTD and a NTD case. The 
Wiener–Padé model outperformed the Wiener model across various 
performance metrics in both two cases, including RMSE, error range, 
and process window prediction, for calibration and verification pat-
terns. Additionally, the Wiener–Padé model used only around 2/3 terms 
required by the Wiener model in both two cases, and the calibration 
time represented a reduction of at least over 16 times. These results 
demonstrate that the Wiener–Padé model, combined with the proposed 
7 
two-stage calibration approach, provides a promising solution for ad-
vanced resist modeling and calibration in computational lithography, 
with higher accuracy and efficiency as well as reduced complexity.
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Appendix. Mathematical details of the two calibration stages

A.1. The qualitative calibration stage

As shown in Fig.  8, the primary goal in this stage is to ensure that 
the simulation values at measured positions 𝑝 closely align with the 
model threshold TH. Beyond this, the simulation values at points inside 
and outside the contour should deviate from the threshold as much 
as possible. Depending on the polarity of the test patterns, our point 
selection varies. As illustrated in Fig.  8(a), for a mask with bright-
field, points that deviate downward from the threshold 𝑝(−) are inside 
the contour, while those that deviate upward 𝑝(+) are outside. For the 
pattern in Fig.  8(b) with opposite polarity, the point selection strategy is 
reversed. Lastly, all simulation values on the CD gauges should remain 
within a constraint range. 

Specifically, we extract the simulated values based on the coordi-
nate positions determined from the actual measured contours or CD 
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Fig. 8. Constraint settings for test patterns of different polarities. Both (a) and (b) 
illustrate the same process: starting from the mask layout where the respective test 
pattern (line for (a), space for (b)) is selected, followed by resist image simulation, 
and finally cutline extraction with corresponding constraint settings applied to the resist 
image.

data. The optimization objective 𝑓(0) and constraint for the simulated 
values on the contours is defined as: 

min 𝑓(0) =
𝑀
∑

𝑚=1

(

𝑅(𝐼𝑝𝑚 ) − TH
)2

, s.t. 𝐿 ≤ 𝑅(𝐼𝑝𝑚 ) ≤ 𝑈 (13)

where, 𝑅(𝐼𝑝𝑚 ) represents the Wiener–Padé output at the point 𝑝𝑚, TH
is the model threshold, 𝐿 is the lower bound, 𝑈 is the upper bound. 
Additionally, we sample the simulated values from regions both interior 
and exterior to the contours. The optimization objectives for threshold-
boundary constrained areas, denoted as 𝑓(−) and 𝑓(+), are defined as 
follows: For regions where values should remain below the threshold 
TH (e.g., exterior points in Fig.  8(a) or interior points in Fig.  8(b)), we 
define 𝑓(−) to penalize values approaching or exceeding TH. Conversely, 
for regions requiring values to stay above TH (e.g., interior points in 
Fig.  8(a) or exterior points in Fig.  8(b)), we formulate 𝑓(+) to penalize 
values approaching or falling below TH. Specifically, these terms are 
expressed as follows: 

min 𝑓(−) =
𝑀 (−)
∑

𝑚(−)=1

(

𝑅(𝐼𝑝(−)𝑚
) − TH

)

, s.t. 𝐿 ≤ 𝑅(𝐼𝑝(−)𝑚
) ≤ TH (14)

min 𝑓(+) =
𝑀 (+)
∑

𝑚(+)=1

(

TH − 𝑅(𝐼𝑝(+)𝑚
)
)

, s.t. TH ≤ 𝑅(𝐼𝑝(+)𝑚
) ≤ 𝑈 (15)

where, 𝑅(𝐼𝑝(−)𝑚
) and 𝑅(𝐼𝑝(+)𝑚

) represent the Wiener–Padé outputs at the 
points 𝑝(−)𝑚  and 𝑝(+)𝑚 , respectively.

Given all WP terms, the resist model calibration essentially becomes 
a quadratic convex optimization problem: 

min 1
2
𝐱𝑇𝐏𝐱 + 𝐪𝑇 𝐱, s.t. 𝐥 ≤ 𝐂𝐱 ≤ 𝐮. (16)

where, 𝐱 is the parameter vector to be optimized, which is expressed 
as 𝐱 = [𝑤1, 𝑤2, 𝑤3,… , 𝑤𝑛,TH]𝑇 .

The quadratic term is therefore expressed as: 
min 𝜀𝑔 = 𝑓(0)

=
𝑀
∑

𝑚=1

(
∑𝑍

𝑖=1 𝑤𝑖WP𝑖(𝐼𝑝𝑚 )

1 +
∑𝑁

𝑗=𝑍+1 𝑤𝑗WP𝑗 (𝐼𝑝𝑚 )
− TH

)2

=
𝑀
∑

𝑚=1

(𝑁+1
∑

𝑛=1
𝑤𝑛WP𝑛(𝐼𝑝𝑚 )(𝟏𝑛≤𝑍 − TH(1 − 𝟏𝑛≤𝑍 ))

)2

=
𝑁+1
∑

𝑢,𝑣=1

[ 𝑀
∑

𝑚=1

(

WP𝑢(𝐼𝑝𝑚 )(𝟏𝑢≤𝑍 − TH(1 − 𝟏𝑢≤𝑍 ))
⋅WP𝑣(𝐼𝑝𝑚 )(𝟏𝑣≤𝑍 − TH(1 − 𝟏𝑣≤𝑍 ))

)

]

𝑤𝑢𝑤𝑣

= 𝐱𝑇𝐏𝐱,

(17)

and 

𝟏𝑛≤𝑍 =

{

1, if 𝑛 ≤ 𝑍,
(18)
0, if 𝑛 > 𝑍.
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The matrix 𝐏 ∈ R(𝑁+1)×(𝑁+1) is a positive semidefinite matrix: 

[𝐏]𝑢𝑣 =
𝑀
∑

𝑚=1

(

WP𝑢(𝐼𝑝𝑚 )(𝟏𝑢≤𝑍 − TH(1 − 𝟏𝑢≤𝑍 ))

⋅WP𝑣(𝐼𝑝𝑚 )(𝟏𝑣≤𝑍 − TH(1 − 𝟏𝑣≤𝑍 ))

)

. (19)

We introduce the matrix 𝐖 ∈ R𝑀×(𝑁+1), and define it as: 

[𝐖]𝑚,𝑛 = WP𝑛(𝐼𝑝𝑚 )
(

𝟏𝑛≤𝑍 − TH(1 − 𝟏𝑛≤𝑍 )
)

. (20)

For each 𝑝, it holds that WP𝑛+1(𝐼𝑝𝑚 ) = −1. Thus, 𝐏 = 𝐖𝑇𝐖 and 
𝜀𝑞 = ‖𝐖𝐱‖2.

The linear term 𝐪𝑇 𝐱 is then formulated by combining the optimiza-
tion terms 𝑓(−) and 𝑓(+): 

min 𝜀𝑙 = 𝑓(−) + 𝑓(+)

=
𝑀 (−)
∑

𝑚(−)=1

⎛

⎜

⎜

⎝

∑𝑍
𝑖=1 𝑤𝑖WP𝑖(𝐼𝑝(−)𝑚

)

1 +
∑𝑁

𝑗=𝑍+1 𝑤𝑗WP𝑗 (𝐼𝑝(−)𝑚
)
− TH

⎞

⎟

⎟

⎠

+
𝑀 (+)
∑

𝑚(+)=1

⎛

⎜

⎜

⎝

TH −

∑𝑍
𝑖=1 𝑤𝑖WP𝑖(𝐼𝑝(+)𝑚

)

1 +
∑𝑁

𝑗=𝑍+1 𝑤𝑗WP𝑗 (𝐼𝑝(+)𝑚
)

⎞

⎟

⎟

⎠

=
𝑀 (−)
∑

𝑚(−)=1

(𝑁+1
∑

𝑛=1
𝑤𝑛WP𝑛(𝐼𝑝(−)𝑚

)(𝟏𝑛≤𝑍 − TH(1 − 𝟏𝑛≤𝑍 ))
)

+
𝑀 (+)
∑

𝑚(+)=1

(

−
𝑁+1
∑

𝑛=1
𝑤𝑛WP𝑛(𝐼𝑝(+)𝑛

)(𝟏𝑛≤𝑍 − TH(1 − 𝟏𝑛≤𝑍 ))
)

=
𝑁+1
∑

𝑛=1

[ 𝑀 (−)
∑

𝑚(−)=1

(

WP𝑛(𝐼𝑝(−)𝑚
)(𝟏𝑛≤𝑍 − TH(1 − 𝟏𝑛≤𝑍 ))

)

−
𝑀 (+)
∑

𝑚(+)=1

(

WP𝑛(𝐼𝑝(+)𝑚
)(𝟏𝑛≤𝑍 − TH(1 − 𝟏𝑛≤𝑍 ))

)

]

𝑤𝑛

= 𝐪𝑇 𝐱,

(21)

where, 𝐪 ∈ R(𝑁+1) is defined as a linear vector: 

[

𝐪
]

𝑛 =
𝑀 (−)
∑

𝑚(−)=1

(

WP𝑛(𝐼𝑝(−)𝑚
)(𝟏𝑛≤𝑍 − TH(1 − 𝟏𝑛≤𝑍 ))

)

−
𝑀 (+)
∑

𝑚(+)=1

(

WP𝑛(𝐼𝑝(+)𝑚
)(𝟏𝑛≤𝑍 − TH(1 − 𝟏𝑛≤𝑍 ))

)

.

(22)

For each 𝑝, WP𝑁+1(𝐼𝑝(−) ) = 0, WP𝑁+1(𝐼𝑝(+) ) = 0. The number of points 
on the internal and external contours can differ, i.e., 𝑀 (+) ≠ 𝑀 (−).

In the constraint terms, we confine the simulated values [𝐂𝐱] at 
and around the target contour within the convex set [𝐥,𝐮], where the 
lower bound 𝐥 ∈ R𝑀∗ , the upper bound 𝐮 ∈ R𝑀∗ , the constraint matrix 
𝐂 ∈ R𝑀∗×(𝑁+1), with 𝑀∗ is the number of specific points. For example, 
𝑀∗ = 𝑀 for points on the contours, 𝑀 ′ =

[

𝑀 (−) +𝑀 (+)] for points 
around the contours, and 𝑀 ′ =

[

𝑀 (−) +𝑀 (+) +𝑀
] for all the points. 

Specifically, for 𝑝𝑚, 𝑝(−)𝑚  and 𝑝(+)𝑚 , we can set: 

𝐿 ≤
∑𝑍

𝑖=1 𝑤𝑖WP𝑖(𝐼𝑝𝑚 )

1 +
∑𝑁

𝑗=𝑍+1 𝑤𝑗WP𝑗 (𝐼𝑝𝑚 )
≤ 𝑈, (23)

𝐿 ≤

∑𝑍
𝑖=1 𝑤𝑖WP𝑖(𝐼𝑝(−)𝑚

)

1 +
∑𝑁

𝑗=𝑍+1 𝑤𝑗WP𝑗 (𝐼𝑝(−)𝑚
)
≤ TH, (24)

TH ≤

∑𝑍
𝑖=1 𝑤𝑖WP𝑖(𝐼𝑝(+)𝑚

)

1 +
∑𝑁

𝑗=𝑍+1 𝑤𝑗WP𝑗 (𝐼𝑝(+)𝑚
)
≤ 𝑈, (25)

respectively. By applying the Alternating Direction Method of Multipli-
ers (ADMM) algorithm [30,31], this stage can quickly find a globally 
approximate optimal solution in high-dimensional parameter spaces 
and effectively prevent overfitting.
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A.2. The quantitative calibration stage

Based on the initial values obtained through the qualitative cal-
ibration algorithm in Appendix  A.1, we further refine the solution 
through iterative optimization in the quantitative calibration process. 
We search for the optimal perturbation {𝛿𝑤(𝑘)

𝑛 }𝑁𝑛=0 at the 𝑘th iteration to 
minimize the difference between the simulation values by the Wiener–
Padé model and the actual measurement data. Therefore, we define the 
following objective function: 

min
𝑀
∑

𝑚=1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑁
∑

𝑛=1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑅(𝑘)
𝑛

(

𝑥𝑚, 𝑦𝑚
)

𝜕𝑤(𝑘) ⋅ SL(𝑘) (𝑥𝑚, 𝑦𝑚
)

+
𝜕𝑅(𝑘)

𝑛

(

𝑥′
𝑚, 𝑦

′
𝑚

)

𝜕𝑤(𝑘) ⋅ SL(𝑘) (𝑥′
𝑚, 𝑦

′
𝑚
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝛿𝑤(𝑘)
𝑛 + 𝛥CD𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2

def
=

𝑀
∑

𝑚=1

( 𝑁
∑

𝑛=1
𝐴(𝑘)
𝑚𝑛𝛿𝑤

(𝑘)
𝑛 + 𝛥CD𝑚

)2

= ‖

‖

‖

𝐀(𝑘)𝛿𝐰(𝑘) + 𝐞(𝑘)‖‖
‖

2
,

(26)

where, 𝑀 is the number of measured CDs, 𝛥CD𝑚 is the difference 
between the simulated CD and the measured CD for the 𝑚th mea-
surement. 𝐞(𝑘) = [𝛥CD1, 𝛥CD2,… , 𝛥CD𝑀 ]𝑇  is a column vector of 𝛥CD, 
𝛿𝐖(𝑘) =

[

𝛿𝑤(𝑘)
1 , 𝛿𝑤(𝑘)

2 ,… , 𝛿𝑤(𝑘)
𝑁

]𝑇
 is a column vector of adjustments to 

the Wiener–Padé coefficients, and 𝐀(𝑘) is a linear operator represented 
in a matrix form 𝐀(𝑘) =

[

𝐴(𝑘)
𝑚𝑛

]

𝑚𝑛
 with 

𝐴(𝑘)
𝑚𝑛 =

𝜕𝑅(𝑘)
𝑛 (𝐼𝑝𝑚 )

𝜕𝑤(𝑘) ⋅ SL(𝑘)(𝐼𝑝𝑚 )
+

𝜕𝑅(𝑘)
𝑛 (𝐼𝑝′𝑚 )

𝜕𝑤(𝑘) ⋅ SL(𝑘)(𝐼𝑝′𝑚 )
, (27)

where

𝜕𝑅(𝑘)
𝑛 (𝐼𝑝𝑚 )

𝜕𝑤(𝑘)

= WP𝑛(𝐼𝑝𝑚 )

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟏𝑛≤𝑍
1+

∑𝑁
𝑗=𝑍+1 𝑤

(𝑘)
𝑗 WP𝑗 (𝐼𝑝𝑚 )

+
(1−𝟏𝑛≤𝑍 )⋅

(

∑𝑍
𝑖=1 𝑤

(𝑘)
𝑖 WP𝑖(𝐼𝑝𝑚 )

)

(

𝟏+
∑𝑁

𝑗=𝑍+1 𝑤
(𝑘)
𝑗 WP𝑗 (𝐼𝑝𝑚 )

)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (28)

The spatial slopes 

SL(𝑘)(𝐼𝑝𝑚 ) =
1

2𝛥𝑥

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑𝑍
𝑖=1 𝑤

(𝑘)
𝑖 WP𝑖(𝐼𝑝𝑚+𝛥𝑝)

1 +
∑𝑁

𝑗=𝑍+1 𝑤
(𝑘)
𝑗 WP𝑗 (𝐼𝑝𝑚+𝛥𝑝)

−
∑𝑍

𝑖=1 𝑤
(𝑘)
𝑖 WP𝑖(𝐼𝑝𝑚−𝛥𝑝)

1 +
∑𝑁

𝑗=𝑍+1 𝑤
(𝑘)
𝑗 WP𝑗 (𝐼𝑝𝑚−𝛥𝑝)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(29)

SL(𝑘) (𝑥′𝑚, 𝑦
′
𝑚
) and 𝛥CD𝑚 are computed based on the Wiener–Padé co-

efficients {𝑤(𝑘)
𝑛 }𝑁𝑛=0 at the beginning and treated as constants for the 

remaining of the 𝑘th iteration. Note that the slope directions of the end 
points are opposite.

Based on the objective functions in Eq.  (26), we can construct a 
constrained convex optimization function to directly solve for 𝛿𝐰(𝑘): 

min ‖‖
‖

𝐀(𝑘)𝛿𝐰(𝑘) + 𝐞(𝑘)‖‖
‖

2

= 𝛿𝐰(𝑘)𝑇
(

𝐀(𝑘)𝑇 𝐀(𝑘)
)

𝛿𝐰(𝑘) + 2𝐞(𝑘)𝑇 𝐀(𝑘)𝛿𝐰(𝑘) + 𝐞(𝑘)𝑇 𝐞(𝑘)

= 1
2
𝛿𝐰(𝑘)𝑇

(

𝐀(𝑘)𝑇 𝐀(𝑘)
)

𝛿𝐰(𝑘) + 𝐞(𝑘)𝑇 𝐀(𝑘)𝛿𝐰(𝑘)

= 1
2
𝐱𝑇𝐏𝐱 + 𝐪𝑇 𝐱,

(30)

where 𝐱 = 𝛿𝐰(𝑘), 𝐏 = 𝐀(𝑘)𝑇 𝐀(𝑘), and 𝐪𝑇 = 𝐞(𝑘)𝑇 𝐀(𝑘). To ensure 
consistency and effectiveness of the overall algorithm’s constraints, we 
can set the constraints of the quantitative calibration algorithm to be 
9 
the same as those in the qualitative calibration. By setting appropriate 
iteration termination conditions, and using the ADMM algorithm, this 
stage can quickly approximate the final optimal value by solving for 
𝛿𝐰.

Data availability

Data will be made available on request.
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