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A B S T R A C T

Optical proximity correction (OPC) is currently a crucial technique for improving photolithographic image
quality, with its correctness and efficiency relying heavily on resist modeling. The resist exposure and
development processes involve various complex nonlinear physicochemical reactions, which impose a great
challenge to model in a fast and accurate manner that meets the requirements of OPC. In this paper, we
propose a set of solutions for nonlinear resist modeling, including a multi-stage cascaded quadratic Wiener
model network, a simulation acceleration method using eigendecomposition, and an efficient method of
model calibration utilizing the projected Landweber method. Various experiments are conducted for validation,
which demonstrate that a single-stage Wiener model may already meet the usual requirements for production
worthiness, while a multi-stage model achieves even better performance in terms of model accuracy, generality,
and speed. The proposed resist modeling method holds great potential in advancing photolithography modeling
and OPC for modern semiconductor manufacturing.
1. Introduction

Optical proximity correction (OPC) stands as a crucial technique
for mask optimization in photolithography, employing an iterative
approach where its efficacy is fundamentally linked to the accuracy
of the lithography model. Currently, advanced full-chip simulation
technologies primarily adopt separate optical, mask, and resist models
to achieve computational efficiency, accuracy, and applicability [1].
Among them, the resist model describes the intricate interplay between
light and materials coupled with the nonlinear physicochemical pro-
cesses, which plays a pivotal role in photolithography process analysis
and directly determines the efficiency and performance of mask opti-
mization. As shown in Fig. 1, the key resist-related steps in lithography
generally include soft bake, exposure, post-exposure bake (PEB), and
development. In these processes, there are diffusion, neutralization,
decomposition, and polymerization involved and should be efficiently
and accurately characterized [2]. Therefore, the resist model can be
regarded as a complex nonlinear system modeling that transforms
the input aerial image into the resist profile, which often encounters
several challenges due to their inherent properties [3–5]. For instance,
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Fig. 1. Illustration of resist process: (a) post apply bake, also called soft bake, (b)
alignment and exposure, (c) PEB, (d) development.

the separation of the coupling of complex physicochemical reactions
with simple linear equations, the time-consuming and labor-intensive
model calibration and verification with extensive data, and the high-
dimensional models induced extra computational costs, may limit their
practical applications.
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data mining, AI training, and similar technologies. 
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The earliest widely used photoresist calibration methods are the
hreshold models, including the constant threshold resist (CTR) model
nd the variable threshold resist (VTR) model. These models are usu-
lly computationally efficient and are typically specific to a single
ithography process under particular conditions. Since their calibration
esults may not be readily transferable to different substrates or process
ariations, their applications are limited [6,7]. Additionally, due to
he simplicity, they fail to accurately simulate the post-development
orphology of resists [8,9].

In contrast, the rigorous physical resist models employing differ-
ential equation solving techniques, finite difference methods, or other
approaches can precisely describe the three-dimensional morphology
for resists after a series of complex physicochemical changes during
the lithography process. However, the complexity of these models
poses significant challenges [10–12]. Additionally, extensive critical
dimension data and numerous complex physicochemical parameters
that are difficult to directly measure are required in their model cali-
bration [13]. Most importantly, these models are typically only suitable
for small area predictions due to their slow computation speed.

The compact models such as CM1 express lithography results as
a linear combination of convolutions between different aerial images
nd Laguerre–Gaussian kernels. By selecting aerial images of differ-
nt powers, derivatives, and biases, the model effectively describes
arious nonlinear effects during the post-exposure and development
rocesses [14–16]. The CM1 model achieves a good balance between

accuracy and computational efficiency, making it one of the most
idely used models in the field of full-chip simulations and OPC.

Benefiting from the capability of capturing the difficult-to-describe
hysicochemical effects and unknown effects not included in the rig-
rous physical models [17–19], AI models may achieve higher OPC

accuracy than traditional models and therefore have attracted com-
prehensive attention during recent years. AI models employ machine
earning or deep learning algorithms to automatically learn the behav-

ior of resist from a vast dataset of CD-SEM images. However, AI models
lack physical interpretability and require extensive highly empirical
hyperparameter tuning. Additionally, the training and calibration ac-
curacy of an AI model strongly depends on the input aerial image
precision, i.e. AI model is highly sensitive to the input data, where
minor perturbations may lead to significantly different results [20,21].

In this paper, we propose a comprehensive nonlinear resist model-
ing solution based on a multi-stage cascaded Wiener model network.
In Section 2, we present the construction of this resist model, and cor-
responding acceleration techniques based on linear superposition and
igenvalue decomposition, along with a calibration method utilizing
he projected Landweber method. In Section 3, we show the experimen-

tal results for validation and the results show that both the single-stage
and multi-stage Wiener models can meet industry standards, while
he multistage Wiener model outperforms the single-stage model in all
espects. And then conclusions are drawn in Section 4.

2. Theory and methods

2.1. General Wiener system modeling for nonlinear resist processes

The Stone–Weierstrass theorem states that any continuous func-
ional on a compact domain can be uniformly approximated by a
equence of functionals of integer order. Therefore, the system response

of the resist model can be expressed with Volterra series [22,23] as:

𝑅𝑛[𝐼(𝑥)]=
∞
∑

𝑛=0

[

∫⋯∫ ℎ
(

𝑥1, 𝑥2,…, 𝑥𝑛
)

𝑛
∏

𝑖=1
𝐼
(

𝑥−𝑥𝑖
)

𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛

]

, (1)

where, the 𝑛th order nonlinear system response function and
(

𝑥1, 𝑥2,… , 𝑥𝑛
)

represents the resist’s response to the 𝑛th input optical
ntensity distribution. While this expression provides an analytical and
igorous mathematical representation, it is worth noting that in the
rocess of system response characterization and modeling, particularly
2 
for the nonlinear parts represented by multi-dimensional high-order
Volterra kernels, calibration requires a significant amount of mea-
surement data. Given the high storage costs and the complexity of
computations involved, this becomes impractical.

To address these issues, we utilize the normalized orthogonal func-
tions and finite-dimensional approximation theories to achieve a
reduced-dimensional representation of the high-order Volterra kernel
functions [24]. Specifically, within a compact domain, it is possible to
represent any function within that domain using a set of orthogonal
normalized functions with a given error tolerance [25–27]. Therefore,
for the Stone–Wiener theorem based 𝑛th order nonlinear resist model,
it can be expressed by the following closed-form,

𝑅
[

𝐼
]

≈
𝑁
∑

𝑛=1

[ 𝐾
∑

{𝑘𝑖}=1
𝑤𝑘1𝑘2…𝑘𝑛

(

𝐻𝑘1⊗ 𝐼
)(

𝐻𝑘2⊗ 𝐼
)

⋯
(

𝐻𝑘𝑛⊗ 𝐼
)

]

, (2)

where, the orthonormal functions 𝐻𝑘𝑛 are Wiener kernels, and 𝑤𝑘1𝑘2…𝑘𝑛
are Wiener coefficients.

It is important to emphasize that, in order to reduce the simulation
rrors introduced by geometric transformations, we need to select
 set of orthogonal basis functions that possess circular symmetry,

rotational, and translational invariance. In this paper, we choose the
aguerre-Gaussian basis functions as the Wiener kernel functions [28–

30]:

𝐻𝑠,𝑚,𝑛(𝑥, 𝑦) = 1
𝜋 𝑠2 𝐿

𝑚
𝑛

(

2 𝑟
2

𝑠2

)

exp
(

− 𝑟2

𝑠2

)

exp (𝑖𝑚𝜙) ,

2 = 𝑥2 + 𝑦2, 𝜙 = t an−1 (𝑦∕𝑥)
(3)

where 𝑠 represents the continuous diffusion length, and 𝐿𝑚
𝑛 (𝑥) repre-

ents the associated Laguerre polynomial, which can be expressed with
Rodrigues representation:

𝐿𝑚
𝑛 (𝑥) = 𝑒𝑥𝑥−𝑚

𝑛!
𝑑𝑛

𝑑 𝑥𝑛
(

𝑒−𝑥𝑥𝑛+𝑚
)

. (4)

We utilize the following recursive formula for numerical computation:

𝐿𝑚
𝑛+1(𝑥) =

1
𝑛+ 1

[

(2𝑛+𝑚+ 1 −𝑥)𝐿𝑚
𝑛 (𝑥) − (𝑛+𝑚)𝐿𝑚

𝑛−1(𝑥)
]

, (5)

where 𝐿𝑚
0 (𝑥) = 1 and 𝐿𝑚

0 (𝑥) = −𝑥 + 𝑚 + 1.
Fig. 2 illustrates the intensity distribution of the Laguerre-Gaussian

kernel function with varying 𝑛 and 𝑚. When both 𝑛 and 𝑚 are zeros,
the figure represents the simplest form of the Gaussian kernel func-
tion, characterized by its highest symmetry and peak intensity. As 𝑚
increases while 𝑛 remains constant, the initially circularly symmetric
kernel function splits into one or even two sets of patterns with 𝑚-fold
rotational symmetry, composed of positive and negative intensities.
When 𝑛 increases and 𝑚 remains constant, the kernel function’s in-
fluence expands, spreading outward. By selecting appropriate model
parameters, we can build efficient and accurate models of different
ypes of resists.

2.2. Formulation of multi-stage cascaded quadratic Wiener model network

Theoretically, the Wiener model described in Eq. (2) should be able
to simulate the actual resist responses. However, all its terms and op-
erations are coupled at a single stage, leading to significantly increased

odeling complexity and calibration difficulty. To reduce the system
omplexity and enhance flexibility, fault tolerance, and scalability,
e design a multi-stage network that chains multiple Wiener models

ogether, limiting the nonlinearity of the Wiener model at each stage to
at most quadratic terms. Through a cascading series of quadratic terms,
this model can accurately reconstruct the overall higher-order resist
responses with the simplicity of sub-models. The basic workflow is illus-
trated in Fig. 3. The aerial images are sequentially propagated through
a cascaded Wiener model network, stage by stage, transforming into
the final resist image.
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Fig. 2. Illustration of the intensity distribution of the Laguerre-Gaussian kernel function
in relation to changes in its parameter 𝑛 and 𝑚.

As depicted in Fig. 3(a), in the first stage, the input is the aerial
image intensity distribution projected onto the resist surface. By con-
volving it with several custom Wiener kernels, which are based on the
Laguerre–Gaussian functions described in Eq. (3), we obtain the Wiener
bases, which also serve as the linear terms. Then, we construct the
quadratic terms from element-wise multiplication of the Wiener bases.
All linear and quadratic terms are collectively referred to as Wiener
products (WPs). The output of this stage is the sum of the Wiener
products weighted with calibrated Wiener coefficients:

𝑅
(

𝑥, 𝑦) =
∑

𝑖
𝑤𝑖WP𝑖

(

𝑥, 𝑦). (6)

As shown in Fig. 3(b), we adjust the number of Wiener kernels and
combinations of linear and quadratic terms, then carry out the same
operations before passing the output to the next stage. This process
continues, until we obtain the resist contours by truncating the image
with a calibrated resist threshold. Overall, we minimize the use of resist
terms, which reduces computational complexity and runtime, while
maintaining flexibility in model calibration. Compared to calibrating
all terms at once, this staged approach helps avoid overfitting by
progressively adjusting the model’s complexity.

2.3. Efficient Wiener model construction method

For Wiener systems described by Eq. (6), we can reorganize its terms
to reduce the computational complexity.

We can first combine all linear terms into a single convolution
operation using a single accumulated Wiener kernel:

𝐑𝐿 =
∑

𝑖
𝑤𝑖

(

𝐇𝑖 ⊗ 𝐈
)

=

(

∑

𝑖
𝑤𝑖𝐇𝑖

)

⊗ 𝐈 = 𝐆⊗ 𝐈. (7)

By using just one kernel 𝐆 =
∑

𝑖 𝑤𝑖𝐇𝑖, we can reduce the computation
time for 𝑛− 1 convolution operations during the OPC forward modeling
process.

For quadratic terms, we first perform an eigendecomposition on
the Wiener coefficients to decrease the complexity of computation
from 𝑂

(

𝑛2
)

to 𝑂
(

𝑛
)

. Assuming symmetrical coefficients 𝑤𝑖𝑗 = 𝑤𝑗 𝑖, the
quadratic output can be expressed as

𝐑 =
∑

𝑖𝑗
𝑤𝑖𝑗

(

𝐇𝑖 ⊗ 𝐈
)(

𝐇𝑗 ⊗ 𝐈
)

. (8)

If we precompute all the convolutional outputs, the computational
complexity is 𝑂

(

𝑛2
)

. We can simplify Eq. (8) by utilizing the quadratic
3 
structure. We first convert the coefficient matrix 𝑤𝑖𝑗 into a diagonal
matrix, denoted by 𝐖 = 𝐔†𝐃𝐔, where 𝐖 is the matrix with elements
𝑤𝑖𝑗 , 𝐔 is a unitary matrix, and 𝐃 is a diagonal matrix with eigenvalues
𝜆1, 𝜆2,… , 𝜆𝑛. We define block matrices as

𝐇
def
=

⎡

⎢

⎢

⎢

⎢

⎣

𝐻1
𝐻2
⋮
𝐻𝑛

⎤

⎥

⎥

⎥

⎥

⎦

,𝐏
def
= 𝐇⊗ 𝐈 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑅1
𝑅2
⋮
𝑅𝑛

⎤

⎥

⎥

⎥

⎥

⎦

,𝐆
def
= 𝐔𝐇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐺1
𝐺2
⋮
𝐺𝑛

⎤

⎥

⎥

⎥

⎥

⎦

.

Following this, Eq. (8) is transformed into:
𝐑𝑄 =

∑

𝑖,𝑗
𝑤𝑖𝑗𝐏𝑖𝐏𝑗

= 𝐏T𝐖𝐏
= (𝐈⊗𝐇𝐔)⊤𝐃(𝐔𝐇⊗ 𝐈)
= (𝐈⊗𝐆)⊤𝐃(𝐆⊗ 𝐈)

=
∑

𝑖
𝜆𝑖(𝐆𝑖 ⊗ 𝐈)2.

(9)

The complexity is reduced to 𝑂
(

𝑛
)

.

2.4. Wiener model calibration method based on the projected Landweber
method

The proposed multi-stage cascaded quadratic Wiener model net-
work offers considerable flexibility, allowing for its calibration process
to be conducted stage-by-stage. If the calibration result at any stage
meets the requirements, the Wiener model network can be truncated at
that point. In practice, OPC models are calibrated using the CD lengths.
For the Wiener model, resist model calibration can be regarded as a
parameter estimation problem, where the objective is to find the pa-
rameters that make the model predicted CD lengths fit the best with the
actual measured values. Given the multitude of parameters in the resist
model, finding the optimal solution in a high-dimensional parameter
space is challenging [31–33]. For the Wiener model calibration of each
stage, we employ the projected Landweber method [34] to optimize the
Wiener coefficients by gradually adjusting the coefficients to reduce CD
error. This method has the advantage of being computationally efficient
and memory-friendly, making it particularly suitable for handling large,
high-dimensional matrices often encountered in resist model calibra-
tion. We search for the optimal perturbation {𝛿 𝑤(𝑘)

𝑛 }𝑁𝑛=0 at the 𝑘th
iteration by defining and minimizing the following objective function:

min ∥𝐀(𝑘)𝛿𝐰(𝑘)+𝐞(𝑘) ∥2=
𝑀
∑

𝑚=1

( 𝑁
∑

𝑛=0
𝐴(𝑘)
𝑚𝑛𝛿 𝑤(𝑘)

𝑛 +𝛥CD𝑚

)2
, (10)

where, 𝑀 means the number of measured CDs, 𝛥CD𝑚 is the difference
between the simulated CD by the Wiener model and the actual mea-
sured CD for the 𝑚th measurement. 𝐞(𝑘)=

[

𝛥CD1, 𝛥CD2,… , 𝛥CD𝑀
]𝑇 is a

column vector of CD simulation errors, 𝛿𝐰(𝑘)=
[

𝛿 𝑤(𝑘)
0 , 𝛿 𝑤(𝑘)

1 ,… , 𝛿 𝑤(𝑘)
𝑁

]𝑇

is a column vector of adjustments to the Wiener coefficients, and 𝐀(𝑘)

is a linear operator represented in a matrix form 𝐀(𝑘)=
[

𝐴(𝑘)
𝑚𝑛

]

𝑚𝑛
with

𝐴(𝑘)
𝑚𝑚=

WP𝑛
(

𝑥𝑚, 𝑦𝑚
)

SL(𝑘) (𝑥𝑚, 𝑦𝑚
)
+
WP𝑛

(

𝑥′𝑚, 𝑦′𝑚
)

SL(𝑘) (𝑥′𝑚, 𝑦′𝑚
)
,

∀𝑚 ∈ [1, 𝑀] ,∀𝑛 ∈ [0, 𝑁] .

(11)

WP𝑛
(

𝑥𝑚, 𝑦𝑚
)

and WP𝑛
(

𝑥′𝑚, 𝑦′𝑚
)

are the Wiener products at the start
and end points. The spatial slopes

SL(𝑘)(𝑥, 𝑦) =
𝑁
∑

𝑛=0
𝑤(𝑘)

𝑛 SL𝑛
(

𝑥, 𝑦) , (12)

SL(𝑘)(𝑥′𝑚, 𝑦′𝑚
)

and 𝛥CD𝑚 are computed based on the Wiener coefficients
{𝑤(𝑘)}𝑁 at the beginning and treated as constants for the remaining
𝑛 𝑛=0
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Fig. 3. Illustration of the multi-stage cascaded quadratic Wiener model network: (a) the image propagation mechanism within a single-stage network, (b) similar image propagation
mechanism based on custom-defined parameters in the subsequent stage.
of the 𝑘th iteration. Note that the slope directions of the endpoints are
different:

SL𝑛
(

𝑥𝑚, 𝑦𝑚
)

=
WP𝑛

(

𝑥𝑚+𝛥𝑥, 𝑦𝑚
)

− WP𝑛
(

𝑥𝑚−𝛥𝑥, 𝑦𝑚
)

2𝛥𝑥
,

SL𝑛
(

𝑥′𝑚, 𝑦′𝑚
)

=
WP𝑛

(

𝑥′𝑚−𝛥𝑥, 𝑦′𝑚
)

− WP𝑛
(

𝑥′𝑚+𝛥𝑥, 𝑦′𝑚
)

2𝛥𝑥
.

(13)

Wiener coefficients {𝑤𝑛}𝑁𝑛=0 are updated at the 𝑘th iteration accord-
ing to the following formula:

𝛿𝐰(𝑘) = 𝐰(𝑘+1) − 𝐰(𝑘) = −𝜏[𝐀(𝑘)]†𝐞(𝑘),∀𝑘 ≥ 0, (14)

that is,
𝐰(𝑘+1) = 𝐰(𝑘) − 𝜏

[

𝐀(𝑘)]†𝐞(𝑘),∀𝑘 ≥ 0 (15)

where
[

𝐀(𝑘)]† is the conjugate matrix of 𝐀(𝑘), and 𝜏 is a critical tun-
ing parameter in the projected Landweber method, impacting how
the Wiener model coefficients converge during calibration to achieve
optimal accuracy.

3. Experimental results

We have conducted a series of experiments in a DUV immersion
lithography system with an illumination wavelength of 193 nm, an
NA of 1.2, a 6% attenuated phase shift mask with bright field, and
a PTD resist. The simulations were carried out on a real poly layer
with feature sizes ranging from 40 nm to 500 nm. Our comprehensive
dataset comprises more than 3000 patterns, featuring 1D, 1.5D, and 2D
structures. Within these, over 100 patterns are designed for verification,
while the remainder are utilized for calibration. Key characteristic
structures within this collection are depicted in Fig. 4. The 1D patterns
are variations of dense and isolated bars, both in standard and inverse
4 
Fig. 4. The training patterns for model calibration: (a) 1D, (b) 1.5D, (c) 2D.

formats, including short bars and periodic structures. There are also
some patterns, such as pads with one to three bars, designed to examine
the interaction between isolated and dense features. While these are
essentially 1D patterns, we classify them as 1.5D with higher error
tolerance based on the actual process requirements. The 2D category
captures the complex interactions with patterns such as dense and
inverse dense line ends, and line ends to line, vital for assessing the
fidelity of the resist model. Notably, these patterns are marked with
red lines to denote measurement locations for model calibration.

We made a comprehensive comparison between the single-stage
and the multi-stage Wiener models, with a specific focus on assessing
their simulation outcomes in terms of accuracy, applicability, and
computational efficiency. For the single-stage Wiener model, we added
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Table 1
Comparative number of Wiener terms.

Model Stage0 Stage1 Total

Linear
terms

Quadratic
terms

Linear
terms

Quadratic
terms

Single-stage 1 12 0 0 13
Multi-stage 1 4 1 4 10

a limited number of terms in a single stage to calibrate the resist
model, while ensuring that the accuracy of this model was sufficient to
reach the industry level. For the multi-stage Wiener model, we added
terms across multiple stages to calibrate the resist model. In this paper,
the single-stage Wiener model consists of a combination of 1 linear
term and 12 quadratic terms within one stage, while the multi-stage
Wiener model has 1 linear term and 4 quadratic terms in each of its
two stages, as shown in Table 1. Experimental results indicate that
the single-stage Wiener model can achieve industry standards in model
accuracy, applicability, and computational efficiency. Meanwhile, the
multi-stage model performs even better, with a more efficient modeling
and calibration process.

3.1. Accuracy evaluation of the single-stage and the multi-stage Wiener
model based on CD and contour simulation

In terms of model accuracy, we conducted a comparative analysis
between the single-stage and the multi-stage Wiener model, focusing
specifically on the simulation errors, which were the differences be-
tween the measured and simulated CDs. This evaluation encompassed
three different structural patterns: 1D, 1.5D, and 2D. For each, we cal-
culated parameters such as the overall Root Mean Square (RMS) and the
range of errors, providing a comprehensive and quantifiable measure
of performance, effectively reflecting the discrepancies between the
predicted values of the two models and the actual values.

Upon a detailed comparison of the performance metrics for model
calibration and verification from Table 2, it is evident that the multi-
stage Wiener model exhibits superior performance when compared to
the single-stage Wiener model across multiple dimensions.

Specifically, for 1D, 2D, and all patterns, the multi-stage Wiener
model achieves RMS errors of 0.8375 nm, 2.0858 nm, and 0.9371 nm
compared to 0.8389 nm, 2.1878 nm, and 0.9523 nm by the single-
stage Wiener model, showing a slightly better fit to the data. The
trend of the improved performance with the multi-stage Wiener model
is more pronounced in the 1.5D patterns, where its RMS error drops
significantly from 1.1831 nm to 0.8821 nm, indicating a substantially
better predictive accuracy. Although the multi-stage Wiener model and
the single-stage Wiener model perform differently in error range within
the three intervals, in the overall range, the multi-stage model presents
a narrower error range of 16.9900 nm, compared to 17.5470 nm
achieved by the single-stage model, suggesting the better consistency in
the predictive capability of models. The mean error is a critical metric
for determining the systematic bias in the models. Ideally, this value
should be as close to zero as possible. The multi-stage Wiener model
outperforms in the 1.5D calibration, where its mean error drops from
−1.1774 nm to −0.7366 nm. For the rest parts, the differences of the
mean simulation errors between the 2 models are not obvious.

The most telling case is the verification part, where models were
tested against unused data. Here, the multi-stage Wiener model ex-
hibits a notably lower RMS value of 0.7774 nm compared to the
single-stage Wiener model’s RMS of 1.0505 nm, indicating a more
accurate prediction capability. Furthermore, the multi-stage model has
a significantly narrower error range of 4.0480 nm, compared to the
single-stage model’s error range of 6.9559 nm, indicating that the
multi-stage model’s predictions are less variable and more reliable.
The mean error for the multi-stage model is 0.0789 nm, showing a
slight positive bias, yet it is markedly better than the single-stage
5 
Fig. 5. Distribution of simulation errors for the single-stage Wiener model.

Fig. 6. Distribution of simulation errors for the multi-stage Wiener model.

model’s mean error of 0.3867 nm, which indicates a stronger tendency
towards overestimation in the single-stage model’s predictions during
verification.

To visualize the simulation error trends across different patterns,
scatter plots of the simulation error distributions achieved by the single-
stage and multi-stage Wiener model are provided in Figs. 5 and 6,
respectively. The blue cross markers represent the CD error between
simulation and measurement for 1D patterns, the red cross markers for
1.5D patterns, the green cross markers for 2D patterns, and the orange
triangle markers for the verification gauge set. As shown in Fig. 5, when
the single-stage Wiener model is applied, the simulation errors for 1D
calibration patterns are densely clustered around the zero line, indicat-
ing a relatively small variance in errors. It is noteworthy that the errors
corresponding to some patterns are much larger than those of most
other patterns, even reaching about ±5 nm. These patterns are con-
sidered sub-rule patterns, included specifically to enhance the model
prediction ability for smaller feature sizes. Given their purpose, larger
errors in such cases are expected and acceptable. For the 1.5D patterns,
while fewer in number, they also cluster near the zero line. Due to
the structure being more prone to deformation, the simulation errors
of 2D patterns show larger dispersion, suggesting that the model’s
predictions vary more in this interval. Taking the production line’s
reference standards for model calibration results, which are ±2.5 nm
for 1D patterns, ±4 nm for 1.5D patterns, and ±6 nm for 2D patterns,
into account, the simulation error for 3174 out of 3271 CDs falls within
the reference range. This accounts for 97.03% of the total calibrated
patterns, satisfying the requirement of the production line that the
calibration results must be within the reference range for over 95% of
the cases. In the verification part, the distribution of the errors is within
the acceptable range, and the bulk of the errors are clustered around the
zero line, which suggests that while the model may have variability in
its predictions, it does not consistently overestimate or underestimate.
Also, the spread of errors does not appear to be biased towards positive
or negative values, implying that the single-stage model verification
errors are not systematically skewed in one direction.

A comparison of Figs. 5 and 6 reveals that the multi-stage Wiener
model consistently produced a more concentrated clustering of error
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Table 2
Comparative performance metrics for model calibration and verification.

Type Model RMS (nm) Error range
(nm)

Mean error
(nm)

Reference
range (nm)

Within range

Calibration

1D Single-stage 0.8389 11.0100 −0.0856 ±2.5 96.89%
Multi-stage 0.8375 8.2393 −0.0848 ±2.5 97.29%

1.5D Single-stage 1.1831 2.0119 −1.1774 ±4 100%
Multi-stage 0.8821 2.3909 −0.7366 ±4 100%

2D Single-stage 2.1878 16.2454 −0.1639 ±6 96.97%
Multi-stage 2.0858 16.9900 −0.1989 ±6 97.06%

ALL Single-stage 0.9523 17.5470 −0.1230 – 97.03%
Multi-stage 0.9371 16.9900 −0.1314 – 97.31%

Verification Single-stage 1.0505 6.9559 0.3867 – –
Multi-stage 0.7774 4.0480 0.0789 – –
c
i
p
a

C
C

M

b
b
o
n
t
(
a

o

points near the zero line across all calibration pattern types, signaling
more accurate predictions. Compared with the single-stage model, the
multi-stage model further increases the number of simulated CDs within
the reference range, achieving 97.31%. Additionally, the multi-stage
model tends to have fewer outliers during the 1D pattern verification.
Overall, the multi-stage model’s errors are more symmetrically dis-
tributed around the zero line, implying a balanced, unbiased prediction
capability, especially in the context of data not previously encountered
during training.

To evaluate the accuracy of simulated contours beyond the mea-
surement points, we conducted simulations for the 18 different patterns

entioned in Fig. 4 and overlay the simulation-derived contours of two
models with Scanning Electron Microscope (SEM) images in Fig. 7. The
reen and red contours in Fig. 7 respectively represent the simulation
esults of the single-stage and multi-stage Wiener Model, and the CD
easurement points used for model calibration are located at the center

f each image. From a quick visual evaluation, it seems that both
odels produce contours that generally align with the SEM images,
articularly in areas of the image where the types of measurement
oints differ. Specifically, in the line end areas of 1D patterns and the
ong edge CD areas of 2D patterns, the contours simulated by both
odels align tightly with the actual structures.

3.2. Applicability evaluation of the single-stage and the multi-stage Wiener
odel based on process window and MEEF analysis

Process window in photolithographic manufacturing refers to the
range of parameters, such as defocus and exposure dose, within which
accurate micro-patterns can be produced. To assess the generality and
applicability of the Wiener model, we conducted a process window
analysis for 202 gauges. We selected 12 patterns, including six dense
ars, two inverse dense bars, two line ends, and two dense line ends.
pecifically, these patterns are: (a) 64 nm lines with 260 nm pitch, (b)
4 nm lines with 1500 nm pitch, (c) 58 nm lines with 116 nm pitch,
d) 80 nm spaces with 160 nm pitch, (e) 74 nm lines with 340 nm

pitch, (f) 74 nm lines with 1000 nm pitch, (g) 140 nm lines with
280 nm pitch, (h) 160 nm spaces with 320 nm pitch, (i) 80 nm line

ith a 60 nm space between line ends, (j) 100 nm line with a 70 nm
pace between line ends, (k) 60 nm line with 126 nm pitch and a

150 space nm between line ends, and (l) 70 nm line with 200 nm
itch and a 150 nm space between line ends. Based on the existing
easured Focus Exposure Matrix (FEM) data, we conducted simulations

or these 12 patterns under different defocus conditions and plotted
he Bossung curves. The defocus range in Fig. 8 spans from −60 nm

to +60 nm, with a 20 nm interval. Although the measurement data
trends for the last four 2D gauges are unclear due to the measurement
error, the simulated CD trends for both models exhibit parabolic-like
shapes, which is reasonable. Relatively, the multi-stage Wiener model
shows a trend closer to the actual measurement data than the single-
stage Wiener model. In addition, we also simulated these 12 patterns

nder different dose conditions, with a range from 0.9 to 1.1 and

6 
Table 3
Comparative modeling time.

Simulation area (μm2) Model Before
accelerating
(s)

After
accelerating
(s)

5.12*5.12 Single-stage 0.06 0.01
Multi-stage 0.04 0.01

10.24*10.24 Single-stage 0.26 0.03
Multi-stage 0.16 0.02

20.48*20.48 Single-stage 1.84 0.12
Multi-stage 1.32 0.09

40.96*40.96 Single-stage 10.97 0.71
Multi-stage 6.92 0.54

an interval of 0.05. Although the measurement data under different
dose conditions were not provided, both models exhibit similar and
reasonable trends in Fig. 9.

Mask Error Enhancement Factor (MEEF) is also an important indi-
ator for assessing model applicability in OPC. A higher MEEF value
ndicates that errors on the mask have a greater impact on the wafer
atterns, resulting in lower tolerance for imaging quality. Conversely,
 lower MEEF value suggests that mask errors have a smaller influence

on wafer imaging. We conducted MEEF comparison experiments for
both the single-stage and multi-stage models. We expanded and shrank
the test patterns on the mask by 1 nm, and calculated the simulated

D for all gauges. We defined MEEF as the average of the simulated
D changes from the two experiments. The MEEF error is calculated

as the difference between the MEEF of the single-stage model and the
EEF of the multi-stage model. As shown in Fig. 10(a) and (b), the

MEEF for each pattern type reaches its maximum at the minimum CD
and decreases as the measured CD increases. The variation range of
MEEF for 2D patterns is greater than that for 1D and 1.5D patterns.
Both models exhibit a similar and reasonable overall trend in MEEF.
From the results in Fig. 10(c), we can see the difference in MEEF
etween the two models. Overall, the multi-stage model demonstrates
etter MEEF performance than the single-stage model for 2249 out
f 3271 gauges, accounting for approximately 68.8%. Specifically, the
umber of gauges where the multi-stage model’s MEEF is smaller than
hat of the single-stage model is as follows: 1D: 1398 out of 1960
71.3%), 1.5D: 22 out of 26 (84.6%), 2D: 692 out of 1121 (61.7%),
nd Verification: 137 out of 164 (83.5%).

3.3. Efficiency evaluation of the single-stage and the multi-stage Wiener
model based on modeling time comparison

In terms of computational efficiency, based on the performance
ptimization methods mentioned in Section 2.3, we varied the image

size and recorded the resist modeling duration of the single-stage
and the multi-stage Wiener model before and after implementing the
strategy, and the results are reported in Table 3.
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Fig. 7. Overlay of the green single-stage and red multi-stage Wiener model simulation contours on SEM images.
According to the Nyquist sampling theorem, we calculated the
length of each pixel to be 40 nm. As the image size of the clip
varies from 128 to 1024, the simulation area of each clip changes
accordingly. The simulation experiments were conducted on hardware
equipped with an Intel Core i7-10700 CPU, which features 8 cores
and 16 threads, a base frequency of 2.90 GHz, and a maximum turbo
boost of 4.80 GHz. Table 3 indicates that the multi-stage Wiener model
consistently outperforms the single-stage Wiener model in terms of
modeling time across different simulation area sizes. Before accel-
eration, the multi-stage model is marginally faster at smaller sizes
and significantly quicker at larger sizes. After applying acceleration
techniques, both models exhibit substantial improvements in speed, but
the multi-stage model benefits more, maintaining a clear advantage
over the single-stage model at every simulation area size.
7 
4. Conclusion

We have reported and demonstrated a comprehensive nonlinear
resist modeling solution based on a multi-stage cascaded Wiener model
network. Using the proposed methods, single-stage and multi-stage
Wiener models were calibrated and compared with over 3000 differ-
ent test patterns. Various performance metrics and experiment results
indicated that the single-stage Wiener model could already achieve
production-worthy performance, while the multi-stage model would
further enhance model accuracy, improve model applicability, and
better computational efficiency.

In terms of model accuracy, with respect to the industrial stan-
dard that 95% of model CDs need to fall within the reference range,
the multi-stage Wiener model’s performance at 97.52% surpassed the
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Fig. 8. Bossung plots of the single-stage and multi-stage Wiener Model under different
defocus conditions for patterns (a) 64 nm lines with 260 nm pitch, (b) 64 nm lines
with 1500 nm pitch, (c) 58 nm lines with 116 nm pitch, (d) 80 nm spaces with 160 nm
pitch, (e) 74 nm lines with 340 nm pitch, (f) 74 nm lines with 1000 nm pitch, (g)
140 nm lines with 280 nm pitch, (h) 160 nm spaces with 320 nm pitch, (i) 80 nm line
with a 60 nm space between line ends, (j) 100 nm line with a 70 nm space between
line ends, (k) 60 nm line with 126 nm pitch and a 150 space nm between line ends,
and (l) 70 nm line with 200 nm pitch and a 150 nm space between line ends.

Fig. 9. Bossung plots of the single-stage and multi-stage Wiener Model under different
dose conditions for patterns (a) 64 nm lines with 260 nm pitch, (b) 64 nm lines with
1500 nm pitch, (c) 58 nm lines with 116 nm pitch, (d) 80 nm spaces with 160 nm
pitch, (e) 74 nm lines with 340 nm pitch, (f) 74 nm lines with 1000 nm pitch, (g)
140 nm lines with 280 nm pitch, (h) 160 nm spaces with 320 nm pitch, (i) 80 nm line
with a 60 nm space between line ends, (j) 100 nm line with a 70 nm space between
line ends, (k) 60 nm line with 126 nm pitch and a 150 space nm between line ends,
and (l) 70 nm line with 200 nm pitch and a 150 nm space between line ends.

single-stage model’s 97.13%. The multi-stage model consistently
showed lower RMS and tighter error ranges across all calibration and
verification categories. Additionally, the contours simulated beyond the
measurement points aligned well with the structural features presented
in SEM images. This not only underscored its superior accuracy and
consistency but also indicated its predictions were less likely to experi-
ence extreme variances, making it a more reliable choice for practical
applications.

Regarding model applicability in the process window analysis exper-
iments, the trend of Bossung curves simulated under different defocus
conditions from −60 nm to +60 nm by the single-stage Wiener model
was similar to the measured curve trends, while the multi-stage Wiener
model’s curves were even closer. As for the performance under different
dose conditions from 0.9 to 1.1, both models exhibited similar and
8 
Fig. 10. (a) Measured CD, (b) MEEF and (c) MEEF error plots of the single-stage and
multi-stage Wiener model.

reasonable trends in the Bossung plots. In addition, the multi-stage
model generally showed better MEEF performance than the single-stage
model across 68.8% of gauges, with particularly strong results in 1D
(71.3%), 1.5D (84.6%), and verification data (83.5%).

In terms of computational efficiency, the proposed acceleration
methods effectively reduced the resist terms for both the single-stage
and multi-stage Wiener models. Due to the inherently fewer total
number of terms, the multi-stage Wiener model consumed about 25%
less time in forward resist modeling during mask optimization, both
before and after acceleration.
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