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Abstract: Computational lithography is an important technology to improve the image resolution
and fidelity of the optical lithography process. Recently, information theoretical models were
introduced to explore the physical limit of image fidelity that can be achieved by different
computational lithography methods. However, the existing models were derived based on a
simple and idealized assumption of uniform pattern density, thus rendering a loose lower bound
on the lithography imaging error. This work improves the accuracy of the information theoretical
model by introducing a statistical approach of pattern density. In particular, a density classification
rule (DCR) of mask and print image is established based on a number of randomly generated
layout samples. The information transfer function between the mask and print image is formulated
under the DCR constraint. Then, the optimal information transfer (OIT) and the theoretical
limit of lithography image fidelity are derived using a numerical optimization algorithm with
mask manufacturing regularization. It has been proved analytically and experimentally that our
proposed model provides a much more accurate theoretical limit of lithography image fidelity
than the conventional approach.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical lithography is one of the most important processes in semiconductor manufacturing
[1]. As shown in Fig. 1(a), the lithography system uses an ultraviolet light source to expose a
transmissive mask carrying the integrated circuit layout, and then the aerial image of the mask
pattern is conveyed onto the wafer surface through a bandlimited optical projection system [2].
After that, a series of complex processes are conducted including the photoresist development,
etching, ion implanting and so on. As the critical dimension (CD) of integrated circuits step
into the deep sub-wavelength realm, the lithography image of mask will be severely distorted by
the optical proximity effect [3]. Thus, the computational lithography approaches must be used
in advanced technology nodes to preserve the process window and the yield of high volume
manufacturing [3].

Inverse lithography technique (ILT) is a leading-edge computational lithography approach that
precisely compensates the lithography image distortion [4–11], where the image distortion refers
to the unexpected deviation or variation compared to the target layout. As shown in Fig. 1(b),
the mask pattern is represented by a binary pixelated image, where each mask pixel can be
transparent (white pixel) or opaque (black pixel). In the ILT approaches, the mask pattern is
inversely optimized based on the lithography process models, making the wafer image as close
to the target layout as possible. Compared to the traditional mask optimization methods, ILT
notably increases the degrees of optimization freedom by operating the mask pattern at pixel
level, thus it may effectively enhance the lithography resolution and image fidelity.
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Fig. 1. (a) The sketch of DUV lithography system (for detailed descriptions of the system,
please refer to Ref. [2]), and (b) the information transmission of the ILT layout from mask to
wafer (revised from Fig. 1 in Ref. [12]).

An extensively used metric of lithography image fidelity is pattern error (PE) that is defined as
the Frobenius norm of the difference between the actual print image on wafer and the target layout.
Since the image fidelity is highly relevant to the electronic characteristics of semiconductor
devices, it is natural to ask: What is the best image fidelity that ILT can reach? Indeed, it is a
challenging task to find out the theoretical bound governing the attainable image fidelity, since
the lithography imaging models are defined by complex nonlinear functions and the mask pattern
may encompass diverse structures.

Over the past few years, researchers developed an unconventional approach by reimagining the
lithography process from an information theoretical perspective [12,13]. As shown in Fig. 1(b),
the lithography system can be regarded as an information channel, where the mask pattern and
the wafer print image are regarded as the input signal and the output signal, respectively. Those
information theoretical methods facilitate the in-depth investigation of the mask information
transmission mechanisms and the theoretical limit of lithography image fidelity.

In 2017, Ma et al. pioneered an analytical information channel model that facilitates the analysis
of the layout information transmission and image fidelity limit within the coherent lithography
system [13]. Subsequently, this model was extended to the partially coherent lithography systems
at 45 nm technology node and below, and the lower bound of PE achievable with ILT was derived
[12]. Recently, the information theoretical approaches were applied to other computational
lithography techniques such as the source mask co-optimization [14,15] and the phase-shifting
mask optimization [16], where the information channel models were incorporated to further
improve the lithography image performance.

However, the existing information theoretical models of lithography systems relied on an
idealized assumption of uniform pattern density (AUPD) for simplifying the mathematical
derivations. It assumes that the mask pattern and the print image on wafer can have arbitrary
geometric features. Thus, for a given mask (or print image) area including a fixed number of
valid pixels, the AUPD states that all kinds of distribution patterns have the equal probability.
Although this simple assumption can somehow render some useful results, it does not align
with the realistic situations. Practical mask patterns (or print images) always include similar
geometric features as the target layouts. That means the blocked (or unblocked) pixels often
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cluster together, while the isolated pixels are not common. Since the AUPD is inadequate to
describe the discrimination among different pixel distribution patterns, the derived theoretical
limit of lithography image fidelity is not accurate enough.

This study focuses on understanding the regularities of pixel distributions in the mask and
print image, and then introduces a statistical approach regarding the pattern distribution density
for improving the accuracy of the information theoretical model. The innovation of this work
comes from the insight that the transferred information along the lithography system is not only
carried on the number of pixels, but also carried on the distribution of pixels. The concept of
pixel density (PD) is introduced to measure the clustering degrees of different pixel distribution
patterns. In order to calculate the value of PD, the density classification rule (DCR) is proposed
based on the Monte Carlo method. In particular, we generate a large number of random pixelated
patterns. For each pattern, the average distance from each valid pixel to the clustering center is
calculated. Then, all of the average distances are arranged in the ascending order, and the interval
of each density class is determined according to the proportional sequence. After that, given any
new region on the mask (or print image), we can firstly calculate the average distance of valid
pixels to the clustering center, and then map it to a certain density class and obtain the PD value.

Based on the PD and DCR, the probability mass vectors of mask pattern and print image are
defined, which address not only the pixel numbers, but also the pixel distribution densities. Then,
this paper derives the information transfer function and the mutual information between mask
and print image under the constraint of DCR. In addition, the PE of print image is expressed as
a function of the mutual information. We subsequently apply a gradient-based algorithm with
manufacturing regularization [17,18] to solve for the optimal information transfer (OIT). The
OIT represents the best mutual information to achieve the theoretical limit of image fidelity. The
proposed methods are verified by a set of ILT experiments. We demonstrate that the image fidelity
limit derived from the new model is much more accurate than the conventional model. Based on
the proposed information theoretical model, we can also refine the mask pattern obtained by the
traditional ILT algorithm, and further reduce the lithography image error.

2. Traditional information model based on AUPD

According to the Abbe’s imaging theory, the aerial image of the lithography system is [3]:

I(r) =
∑︂
m
Γm |hm(r) ⊗ M(r)|2, (1)

where M(r) represents the mask pattern, r is the spatial coordinate, ⊗ represents the convolution
operation, hm(r) is the point spread function of the lithography system associated with the source
point m, and Γm represents the intensity of the source point. For the advanced lithography
technology nodes, the imaging model in Eq. (1) can be readily modified to incorporate the mask
three-dimensional (3D) effects by replacing the M in Eq. (1) with the diffraction near-field of the
thick mask. Considering the photoresist effect, the print image on the wafer is given by:

Z = sig{I, tr} = 1/{1 + exp[−ar(I − tr)]}, (2)

where tr is the threshold of photoresist, ar dictates the steepness of the sigmoid function.
In [12], we proposed an information theoretical lithography model. The lithography system

is regarded as an information transmission channel, and ILT is analogous to a signal encoding
procedure, which facilitates the information transfer of the pre-warped mask pattern through
the lithography system under the limited channel capacity. The channel capacity is essentially
confined by the diffraction-limited optical system that cuts off the high frequency components
of mask pattern and introduces the distortion of print image. This phenomenon is depicted by
the optical proximity effect. In other words, the print image of one mask pixel is influenced by
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several neighboring mask pixels. The influence range of optical proximity effect is determined
by the coverage area of hm(r), which is a circular area denoted as CP. Similarly, any pixel on
the print image is correlated with several neighboring pixels covered by CP. Consequently, the
layout information is not transferred by independent pixels, but jointly transferred by a cluster of
pixels from mask to wafer.

Assume the circle CP includes K pixels, as shown in Figs. 2(a) and 2(d). Let vector
x⃗ = (x1, x2, . . . xK)

T represent the mask pixels covered by CP, and let vector y⃗ = (y1, y2, . . . yK)
T

represent the K pixels on print image covered by CP, corresponding to x⃗. Let Nx and Ny represent
the numbers of one-valued pixels in x⃗ and y⃗, respectively. Assume px represents the probability of
x⃗ containing m one-valued pixels, and qy represents the probability of y⃗ containing n one-valued
pixels, i.e.,

px = Pr{Nx = m}, qy = Pr{Ny = n}. (3)

In our previous works, the information entropy of y⃗ was derived based on the AUPD, which
assumes that the pixels on the mask and print image have random distributions, and the probability
of any distribution is equal. Specifically, for n one-valued pixels covered by CP, there are a
total of Cn

K possible distributions. Then, the probability of each distribution is Pr{Ny = n}/Cn
K .

Therefore, the information entropy of y⃗ is expressed as [12]:

E(y⃗) = −

K∑︂
n=0

[︃
Pr{Ny = n}

Cn
K

· log2

(︃
Pr{Ny = n}

Cn
K

)︃
· Cn

K

]︃
. (4)

Fig. 2. The imaging model and information channel model of partially coherent lithography
system, where (a) and (d) show the mask pattern and print image serving as the input and
output signals; (b) and (c) illustrate the analysis method of pixel distributions based on the
clustering centers.

3. Improved information model based on pattern density statistics

Based on the simplified model mentioned above, some useful conclusions were drawn in [12].
However, the AUPD is not accurate in many cases. On one hand, the pixel distributions in
both mask and print image are not disorderly. Instead, the practical mask patterns (or print
images) always have the similar geometric features with the target layouts. Thus, the blocked (or
unblocked) pixels are likely cluster together, while the isolated and scattered pixels are unusual.
In addition, considering the manufacturability of the real masks, the distribution of mask pixels
should follow some regularities. On the other hand, from the information theoretical perspective,
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the pixel distribution should not be completely random either, since the pixel distribution also
carries information during the lithography imaging process. The AUPD only considers the
pixel count information, but ignores the pixel arrangement information, thus leading to a loose
lower-bound of PE for optical lithography system.

In order to overcome these drawbacks, this work proposes an improved information theoretical
model that assigns varying probabilities for different pixel distribution patterns. In particular, a
statistical approach is developed to depict the discrimination of pixel distributions. First, let’s
consider a circle CP including n one-valued pixels (please refer to Fig. S1 in Section 1 of
Supplement 1). The size of CP is determined by the influence range of optical proximity effect.
Then, we define a quantitative indicator called PD to measure the aggregation degrees of the
pixels on mask pattern or print image. This analysis introduces a parameter E, the predefined
maximum value of PD, corresponding to the E + 1 intervals for its statistical calculation. The PD
metric takes the integeral values from 0 to E. The smaller PD indicates a denser distribution,
while the larger PD indicates a sparser distribution. In order to calculate the value of PD, we
establish the DCR based on the Monte Carlo method. The detailed descriptions of PD and DCR
are provided in Section 1 of Supplement 1.

Next, let pma denote the probability of the event that x⃗ includes m one-valued pixels and the
pixel density of x⃗ is PDx = a. Let qnb denote the probability of the event that y⃗ includes n
one-valued pixels and the pixel density of y⃗ is PDy = b, that is

pma = Pr{Nx = m, PDx = a}, pnb = Pr{Ny = n, PDy = b}, (5)

where m, n = 0, 1 . . .K and a, b = 0, 1 . . .E. Define the vectors of probability masses for mask
and print image as p⃗ = (p00, . . . p0E, p10, p11, . . . pKE)

T and q⃗ = (q00, . . . q0E, q10, q11, . . . qKE)
T ,

respectively. Suppose T ∈ R[(K+1)∗(E+1)]×[(K+1)∗(E+1)] is the probability transfer matrix between p⃗
and q⃗, that is

q⃗ = T · p⃗, (6)

where the element of T located in the [(E + 1)n + b + 1] th row and the [(E + 1)m + a + 1] th
column is defined as Pr

{︁
Ny = n, PDy = b | Nx = m, PDx = a

}︁
, which indicates the conditional

probability of
{︁
Ny = n, PDy = b

}︁
given {Nx = m, PDx = a}. Similar to the method in [12], we

can use several sets of ILT masks and their corresponding print images as the training samples.
Based on those training samples, the matrix T can be calculated using a statistical approach. The
details to calculate matrix T are given in Section 2 of Supplement 1.

Next, we proceed to derive the information entropy and mutual information between the mask
and print image. Given a circular region CP on the print image with {Ny = n, PDy = b}, we assume
that the probabilities of all distribution patterns with n one-valued pixels are the same under the
condition of PDy = b, and their probability can be calculated as: Pr{Ny = n, PDy = b}/{αbCn

K},
where αb represents the proportion of the distribution patterns with {Ny = n, PDy = b} among
all possible distribution patterns with {Ny = n}. Thus, the value of αb can be computed based on
the mapping relationship Gn(·) of Eq. (S3) in Section 1 of Supplement 1.

Based on the analysis above, we can calculate the mutual information between x⃗ and y⃗, denoted
by I(x⃗; y⃗), as follows:

I(x⃗; y⃗) = −

K∑︂
n=0

K∑︂
m=0

E∑︂
b=0

E∑︂
a=0

Tnbma · pma

[︄
log2

(︄
K∑︂

u=0

E∑︂
v=0

Tnbuv · puv

)︄
− log2Tnbma

]︄
, (7)

where pma and puv represent the [(E + 1)m + a + 1]th element and the [(E + 1)u + v + 1]th
element in p⃗, respectively; Tnbma is the element of T in the [(E + 1)n + b + 1]th row and the
[(E + 1)m + a + 1]th column; and Tnbuv is the element of T in the [(E + 1)n + b + 1]th row and
the [(E + 1)u + v + 1]th column. The detailed derivation of Eq. (7) can be found in Section 3 of
Supplement 1.
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It is shown that I(x⃗; y⃗) can be expressed as a function solely related to the probability mass
vector p⃗ of mask pattern. The mutual information represents the rate at which the information
can be faithfully transmitted from mask to wafer through the lithography system.

Compared to Eq. (12) in Ref. [12], we can prove that the modified information model in this
paper aligns with the actual lithography process more closely. In Supplement 1, we provide
the mathematical proof in details. By considering the discrimination of pixel distribution
densities, the modified model achieves a lower mutual information in contrast to the result in
[12]. Consequently, the rate of error-free information transmission through lithography system is
reduced, which leads to a more compact theoretical lower bound of lithography image error.

4. Relationship between PE and mutual information

In computational lithography, PE is one of the critical metrics for assessing the image fidelity
of lithography systems. A commonly used definition of PE is PE =

∑︁N
m−1

∑︁N
n−1 (Ẑmn − Zmn)

2,
where Z is the predicted print image obtained by the simulation model, Ẑ is the target layout,
N is the pixel number on each edge of the layout pattern [19,20]. In this work, we utilize the
information theoretical model to determine the OIT of lithography system. By solving for the OIT,
we can then derive the theoretical lower bound of PE and the corresponding optimal probability
distribution of mask pattern. It is noted that the proposed information theoretical model can be
further extended to involve other metrics considered in the actual lithography production. Due to
the length limit of the paper, this topic will be studied in the future work.

In Ref. [12], we have derived the relationship between the minimum value of PE and the
mutual information, which is formulated as:

PEmin =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(c∗ mod c) · Ht/(2 · c2)

[c − (c∗ mod c)] · Ht/(2 · c2)

min{(c∗ − CD) · Ht/(2 · c2), At/c2}

if c∗ ≤ CD and (c∗ mod c)<c/2

if c∗ ≤ CD and (c∗ mod c) ≥ c/2

if c∗>CD

, (8)

where c is the side length of a single pixel, c∗ = c ·
√︁

K/I(x⃗; y⃗), K is the number of pixels covered
by CP, “mod” is the congruence symbol, Ht and At respectively represent the perimeter and
area of the target layout, CD is the critical dimension, and min{·, ·} is the operation taking the
minimum value. It is noted that the mutual information I(x⃗; y⃗) is included in c∗, and thus PEmin
is a function of I(x⃗; y⃗). The derivation of Eq. (8) can be found in [12].

Our goal is to derive the image fidelity limit of the lithography system, which is equivalent
to find out the lower bound of PEmin. According to Eq. (8), the geometric interpretation of
PEmin is the minimum coverage error of covering the target layout by the macro-pixels with side
length c∗ [12]. It was proved that in order to reach the theoretical lower bound of PE, the side
length of macro-pixel (c∗) should be the integral multiple of the side length of single pixel (c).
Since c∗ = c ·

√︁
K/I(x⃗; y⃗), we should keep I(x⃗; y⃗) ≈ K/Π2 [12], where Π is an integer as large as

possible. Based on this condition, we can construct the following cost function:

F =
[︃
I(x⃗; y⃗) −

K
Π2

]︃2
. (9)

I(x⃗; y⃗) was described in Eq. (7). By minimizing the cost function in Eq. (9), we can obtain the
optimal mask probability distribution and the OIT.

5. Theoretical limit of image fidelity and refinement of ILT solution

In this section, we will derive the OIT of lithography system and the theoretical lower bound of
PE achievable by ILT. To achieve this goal, a gradient-based algorithm is used to minimize the

https://doi.org/10.6084/m9.figshare.28685189
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cost function in Eq. (9), where four constraints regarding p⃗ are considered. Those constraints are
proposed based on the physical properties of p⃗ and the mask design rules:

• Constraint I: All elements in p⃗ represent probabilities, and should satisfy 0 ≤ pma ≤ 1.

• Constraint II: According to the total probability formula, the sum of all elements in p⃗ should
equal to 1, i.e.

∑︁K
m=0

∑︁E
a=0 pma = 1.

• Constraint III: The print image associated to the optimized p⃗ should be close to the target
layout. Thus, the probability distribution (q⃗) of the print image should be approximate to
the probability distribution (˜⃗q) of the target pattern, which can be expressed as ˜⃗q ≈ T · p⃗.

• Constraint IV: This constraint considers the mask manufacturability. It is noted that ILT often
introduces numerous sub-resolution assist features (SRAFs) around the main features of
mask pattern to improve the image fidelity [21]. The SRAFs with small physical sizes
increase the mask complexity and pose a significant challenge in manufacturing, governed
by rules such as minimum size requirement. To satisfy the rule of minimum SRAF size,
one-valued pixels or zero-valued pixels should be respectively aggregated to form the
single-valued clusters, while isolated pixels should be removed. In terms of PD, this
implies that dense distribution patterns should occur with higher probabilities than the
sparse distribution patterns. In other words, the generated SRAFs should have a greater
likelihood of containing larger and continuous pixel groups, ensuring that their minimum
dimensions obey the mask manufacturing rules. Thus, we design a manufacturability
constraint as following:

pm0 ≥ pm1 ≥ . . . ≥ pmE for ∀m. (10)

We replace the I(x⃗; y⃗) in Eq. (9) with Eq. (7), and transfer the above constraints to the penalty
terms in the cost function. Then, Eq. (9) can be modified as:

F(p⃗) =

{︄
K∑︂

n=0

K∑︂
m=0

E∑︂
b=0

E∑︂
a=0

Tnbma · pma ·

[︄
log2

(︄
K∑︂

u=0

E∑︂
v=0

Tnbuv · puv

)︄
− log2Tnbma

]︄
+

K
Π2

}︄2

+ η1

(︄
K∑︂

m=0

E∑︂
a=0

pma − 1

)︄2

+ η2 | | ˜⃗q − T · p⃗| |22 + η3

[︄
K∑︂

m=0

E∑︂
a=0

max(0, pma − pma+1)

]︄
,

(11)

where η1, η2, η3 are the weight coefficients of the penalty terms. The first, second and third
penalty terms correspond to the Constraint II, Constraint III, and Constraint IV, respectively.
Especially, in the third penalty term, if Eq. (10) holds, then pma<pma+1 and the penalty is 0,
otherwise the penalty will be a positive number.

Considering the Constraint I, each element in p⃗ should be limited within [0, 1], thus we apply
a parameter transform of pma = (1 + cosΘma)/2, where the probability pma ∈ [0, 1] is relaxed
to the auxiliary parameter Θma ∈ (−∞,+∞). Considering all indexes, we have a dummy vector
Θ⃗ = (Θ00,Θ01, . . .Θma)

T , where m = 0, 1 . . .K and a = 0, 1 . . . E. The traditional ILT algorithm
can effectively reduce the PE of print image. Therefore, we first use the optimized mask obtained
by the traditional ILT algorithm to initialize the dummy vector Θ⃗, so as to achieve a better initial
guess of the mask probability distribution. Then, the steepest descent algorithm is used to solve
the optimal ˆ⃗p by minimizing Eq. (11). For the detailed gradient derivation of Eq. (11), please
refer to Section 4 of Supplement 1. Substitute ˆ⃗p into Eq. (7), we can get the OIT denoted as
Î(x⃗, y⃗). Finally, substituting Î(x⃗, y⃗) into Eq. (8), the lower bound of PE can be calculated, which
represents the theoretical limit of lithography image fidelity.

Similar to Ref. [12], based on the proposed information theoretical model, we can refine
the optimized mask patten obtained by the traditional ILT algorithm, and further improve the

https://doi.org/10.6084/m9.figshare.28685189
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lithography image fidelity. Additionally, we discuss methods for SRAF generation within this
framework. The details of this method are provided in Supplement 1.

6. Numerical experiments

This section provides some numerical experiments to verify the proposed model and method. In
the experiments, we use a lithography system with annular illumination, whose wavelength is
193 nm, and the inner and outer partial coherence factors are 0.8 and 0.975, respectively. The
numerical aperture (NA) of the lithography system is 1.25. The CD of the target layout on wafer
scale is 45 nm. The photoresist threshold in Eq. (2) is set to tr = 0.19.

We select two layouts, namely “Layout 1” and “Layout 2” in Fig. 3, as the testing layouts to
perform the experiments. Figures 3(a) and 3(e) show the target layouts. Using the lithography
imaging models in Eqs. (1) and (2), we can calculate the print images of the target layouts, as
shown in Figs. 3(c) and 3(g). It is observed that the target layouts without optimization will result
in inferior print images and large PEs (1128 for Layout 1 and 2808 for Layout 2).

Fig. 3. Simulation results of traditional ILT algorithm for Layout 1 and Layout 2. From top
to bottom, it shows the target layout, the ILT masks and their corresponding print images.

Then, we use a traditional ILT method proposed in [20] to optimize the masks. This ILT
method is implemented based on the gradient-based algorithm. In order to get the best ILT
solutions, we repetitively conduct the optimization simulations to explore various parameter
combinations. In particular, we use the same method provided in [12] to traverse the important
parameters in the algorithm. Ultimately, we choose the best ILT results with the minimum PEs.
As the results, the best ILT masks are shown in Figs. 3(b) and 3(f). The corresponding print
images are shown in Figs. 3(d) and 3(h). The minimum PEs achieved by the traditional ILT
algorithm for these two layouts are 54 and 630, respectively.

Next, we follow the proposed method in this paper to compute the OIT and the lower bounds
of PEs for the testing layouts. We take Layout 1 as an example (similarly for Layout 2) to explain
this process. According to Section 5, the OIT can be calculated based on the optimal mask
probability distribution ˆ⃗p, and ˆ⃗p is obtained by minimizing Eq. (11) through a gradient-based
algorithm. In order to accelerate the optimization convergence speed, we set the initial probability

https://doi.org/10.6084/m9.figshare.28685189
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p⃗0 as the probability distribution of the ILT mask with the minimum PE. That is, for Layout 1
and Layout 2, we initialize the p⃗0 according to the ILT masks in Fig. 3(b) and 3(f), respectively.

In Section 1 of Supplement 1, we describe how to use the Monte Carlo method to determine
the DCR, and then calculate the PD. Combining the counts of one-valued pixels and the PD
information for all Cp, the initial mask probability distribution p⃗0 can be determined based on
Eq. (5). Figures 4 (a) and 4(b) show the p⃗0’s for Layout 1 and Layout 2, respectively. In these
figures, the x-axis represents the sequential index of each component in p⃗0, while the y-axis (in
logarithmic scale) represents the probability value corresponding to each index.

Fig. 4. The initiasl mask probability distributions p⃗0 for (a) Layout 1 and (b) Layout 2, and
the optimal mask probability distributions ˆ⃗p for (c) Layout 1 and (d) Layout 2.

Given the matrix T and p⃗0, we use the steepest descent algorithm to minimize the cost function
in Eq. (11), and obtain the optimal mask probability distribution ˆ⃗p. The optimization parameters
are set as follows. In Eq. (11), η1 = 1, η2 = 150 and η3 = 0.01. The step size of the steepest
descent algorithm is 0.1, and the iteration number is 100. Those parameters are determined
through multiple experiments to achieve the promising convergence results.

Figures 4(c) and 4(d) display the optimal distributions ˆ⃗p for Layout 1 and Layout 2, respectively.
Substituting ˆ⃗p into Eq. (7) and Eq. (8), we can calculate the OIT and the lower bound of PE.
Table 1 lists the lower bounds of PEs, OITs and the minimum PEs that can be achieved by ILT
methods for both Layout 1 and Layout 2. The second column and the third column respectively
present the lower bounds of PEs and OITs calculated by the proposed method in this paper.
The fourth column and the fifth column respectively present the lower bounds of PEs and OITs
calculated by the traditional information theoretical method in [12], where the simple assumption
of AUPD is used. The sixth column shows the minimum PEs achievable by the traditional ILT
algorithm for both layouts, which are consistent with the simulation results in Fig. 4.

According to Table 1, we find that the proposed method in this paper provides much better
theoretical limit of image fidelity than the traditional method in [12]. The evidence is obvious
that the lower bounds of PEs calculated by the proposed method are closer to the actual minimum
PEs obtained by the real ILT algorithm. This demonstrates the merit of this work, since
the involvement of pattern density statistics, instead of using simple AUPD assumption, will
effectively improve the accuracy of the information theoretical model. Moreover, the theoretical
lower bounds of PEs are always less than the minimum PEs of ILT algorithm. This indicates that
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Table 1. Theoretical lower bounds of PEs, OITs, and minimum PEs obtained by traditional and
refined ILT methods

Layout Lower bound
of PE for
proposed
method

OIT for
proposed
method

Lower bound
of PE for
method in

[12]

OIT for
method in

[12]

Minimum
PE for

traditional
ILT

Improved PE
for refined
ILT in [12]

Layout 1 26.18 3.8635 3.05 4.5982 54 46

Layout 2 174.22 3.7881 17.50 4.5900 630 599

no matter how to optimize the masks, it cannot reach better print images over the theoretical
limits. This once again demonstrates the correctness of the proposed information theoretical
model.

Next, we consider how to improve the results of traditional ILT algorithm using the proposed
information theoretical model. Comparing the initial and optimal mask probability distributions
in Fig. 4, we can get the following observations. First, the distribution of p⃗0 is less uniform than
that of ˆ⃗p. Especially, when the number of one-valued pixels is 0 (corresponding to the opaque
regions on the mask), p⃗0 has the largest probability. When the number of one-valued pixels is
large, p⃗0 has very small or even zero probability. In contrast, the distribution of ˆ⃗p is much more
uniform. Therefore, to make the mask distribution closer to the optimal one, we need to add
one-valued pixels on the mask, so that the probability of opaque regions is reduced, and the
probability of opening regions is increased.

The analysis mentioned above indicates that the solution of the traditional ILT method can
be further improved by inserting additional SRAFs on the mask. The SRAFs refer to the small
opening areas that modulate the geometrical environments of the mask pattern, which can improve
lithography image fidelity [22]. Additionally, the inserted SRAFs should make the mask have
more uniform probability distribution, similar to Fig. 4(c) and Fig. 4(d). Therefore, the positions
of SRAFs should be carefully arranged to maintain this uniformity across different mask regions.
Based on these findings, we can refine the solutions of the traditional ILT method to push the
image fidelity towards the theoretical limit.

Here, we apply the method proposed in [12] to refine the traditional ILT masks, where the
information theoretical model is used to insert SRAFs in the mask pattern. The details of this
refined ILT method can be found in [12] and Supplement 1. The seventh column in Table 1
presents the improved PEs for both layouts obtained by the refined ILT method, which are
lower than the PEs directly obtained by the traditional ILT method. It shows that the proposed
information theoretical model can help to further optimize the mask patterns, thus improving the
image fidelity of lithography system. In terms of computational efficiency, incorporating the DCR
will increase the computational time compared to the traditional AUPD model. It is noted that
different modules in the proposed model can be handled and calculated independently, making
them well-suited for the GPU-based parallel computing. By leveraging the GPU acceleration,
the computational time can be significantly reduced for the simulation of large-scale integrated
circuit designs. However, this topic is out of the scope of this paper, and will be studied in our
future work.

7. Conclusion

This paper proposed an improved information theoretical model for advanced lithography system,
and explored the theoretical limit of image fidelity for computational lithography approach.
By introducing the DCR, we derived the mutual information between mask and print image,
thus successfully considering the extra information transfer capacity of pixel distributions.
Subsequently, the relationship between mutual information and lithography image error was
discussed, and a gradient-based algorithm was used to pursue the OIT and the lower bound
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of PE achievable by the ILT methods. Both mathematical proof and numerical experiments
were provided to verify the proposed information theoretical approaches. It shows that the
proposed methods in this work can achieve much more accurate theoretical limit of lithography
image fidelity compared to the existing methods. In future work, we will further improve this
information theoretical model to consider the systematical errors and random variations in the
real lithography process.
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