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A B S T R A C T

Misalignment of the specimen-detector distance introduces perturbations in lensless ptychographic scanning 
coordinates, leading to reconstruction artifacts caused by discrepancies between the inversion algorithm and 
experimental uncertainties. Here, we propose an accurate and efficient autofocusing algorithm to calibrate the 
specimen-detector axial distance in lensless ptychography imaging online. The proposed algorithm leverages 
wavelet-domain multidimensional coefficients to quantify reconstruction clarities in virtual planes within the 
depth of field, which requires neither careful window searching nor parameter fine-tuning during the iteration 
process and can effectively escape from local optimums to avoid violent convergence oscillation and crosstalk. 
Simulations and experiments conducted on both amplitude and biological specimens demonstrate that the 
proposed algorithm achieves robust convergence in nearly hundred iterations, significantly removes recon-
struction artifacts, and delivers a several-fold to orders of magnitude improvement in convergence speed, cali-
bration accuracy and convergence uncertainty compared to conventional sharpness-based autofocusing. These 
advancements substantially broaden the potential applications, including other coherent diffractive imaging such 
as coded ptychography (coherent modulated imaging), in-line holography, and multi-plane phase retrieval.

1. Introduction

High-resolution imaging often demands precise focusing to capture 
intricate structures across different planes. Conventional methods typi-
cally depend on delicate mechanical systems or modulation templates to 
maintain focus or extend the depth of field, posing challenges in terms of 
time overhead, system complexity, as well as generalizability [1–5]. In 
contrast, lensless imaging eliminates the need for lenses and leverages 
iterative algorithm-based reconstruction to facilitate real-time refocus-
ing during the imaging process, ensuring high imaging fidelity. As a 
result, autofocus techniques have become critical for high-resolution 
reconstruction and calibration of system parameters for lensless imag-
ing [6–10].

More recently, spanning spatial domain [11–13] to frequency 
domain [14,15], lateral gradient [16,17] to axial gradient difference 
[18,19], edge extraction [20–22] to information statistics [23,24], 
considerable autofocusing strategies have been proposed for diverse 

types of specimens in lensless in-line holography. These methods typi-
cally aim to identify a single peak (unimodality) to evaluate recon-
struction clarity and minimize the single-peak range, ensuring sufficient 
sensitivity and accuracy in refocusing. However, the presence of con-
jugate twin-image artifacts in single-shot phase retrieval makes 
achieving a single-peak modality particularly challenging, especially 
when there are large deviations in the specimen-detector distance. This 
difficulty, combined with specimen variability, often results in focusing 
failures. To address these issues, Ren et al. [25] and Wu et al. [26] 
employed convolutional neural networks to establish a mapping be-
tween defocused holograms and focused reconstructed images, which 
effectively eliminated conjugate twin-image artifacts and enabled rapid 
autofocusing without requiring the reconstruction of an image stack, 
even with unknown or approximate initial distances. Despite these ad-
vances, deep learning-based methods [25–28] generally demand large 
training datasets and exhibit limited generalizability across different 
specimens.
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Diversity measurement phase retrieval techniques have addressed 
the major challenge of conjugate twin-image artifacts in the single-shot 
coherent diffractive imaging, enabling autofocus-based system param-
eter accurate calibration. Loetgering et al. [29] and Ma et al. [30] 
introduced sharpness evaluation functions based on total variation and 
edge detection operators to identify the optimal focal plane through 
angular spectrum propagation or axial traversals, respectively. Mean-
while, Dou et al. [31] and Cao et al. [32] proposed a statistical gradient 
optimization method (Tamura Coefficient) for calibrating the specimen- 
detector distance in ptychographic imaging. Unlike sharpness-based 
autofocusing strategies, this statistical approach leverages the entire 
spatial field of view without requiring window selection. However, both 
sharpness-based and statistics-based autofocusing methods rely on 
evaluation functions derived from image grey levels (contrast), making 
them highly susceptible to noise and prone to local optima or conver-
gence oscillations. Therefore, Ruan et al. [33] proposed a Lp-norm total 
variation autofocusing algorithm, which adaptively adjusts each pixel to 
enhance the signal-to-noise ratio in low grey-level regions, enabling 
more accurate specimen reconstructions and parameter calibration. 
Recently, Li et al. [34] developed an amplitude difference autofocusing 
method using fractional Fourier transform for multi-plane diversity 
measurement. This approach integrates spatial and Fourier domain in-
formation, offering greater noise robustness and improved parameter 
calibration accuracy compared to methods based solely on spatial in-
formation. Despite these advancements in axial distance refinement, 
limitations remain. Specifically, the information extraction dimensions 
in these methods are often too homogeneous (typically single or dual), 
and the weighting parameters between domains are not adaptive, 
making them highly sensitive to specimen type.

To reduce sensitivity to specimen variability and enhance noise 
robustness for parameter calibration, an accurate and fast autofocusing 
algorithm based on the wavelet domain is proposed for lensless pty-
chographic specimen-detector distance calibration. The algorithm le-
verages wavelet-domain multidimensional information, including 
approximate, horizontal, vertical, and diagonal coefficients, to quantify 
reconstruction clarities in virtual planes within the depth of field. Unlike 
conventional autofocusing methods, the proposed algorithm does not 
require precise window searching or parameter fine-tuning during it-
erations. Moreover, it integrates spatial information (approximate co-
efficients) with multi-frequency domain details (horizontal, vertical, 
and diagonal coefficients), effectively escaping local optima caused by 
noise and mitigating convergence oscillations and crosstalk. Simulations 
and experiments on both amplitude and biological specimens, compared 
with conventional sharpness-based autofocusing algorithms [29,33], 
demonstrate that the proposed algorithm achieves robust convergence 
in nearly hundred iterations and significantly eliminates reconstruction 
artifacts. It delivers improvements in convergence speed, calibration 
accuracy and convergence uncertainty ranging from several-fold to an 
order of magnitude. These advancements greatly expand its potential 
applications to other coherent diffractive imaging techniques, including 
coded ptychography (coherent modulated imaging), in-line holography, 
and multi-plane phase retrieval.

2. Methodology

2.1. Ptychographic imaging algorithm

In real space, the focused probe P is driven by the displacement stage 
to make an overlapping grid (or other trajectories) scan on the specimen 
surface O. At the j-th scanning position, the exit-wave ψ j(r) on the 

specimen downstream can be expressed as 

ψ j(r) = P
(
r − Rj

)
× O(r). (1) 

Through the forward model, the exit-wave ψj(r) propagates into the 
reciprocal space captured by the detector. Therefore, the measurement 
diffraction field Ij(u) relative to the j-th scanning position can be 
expressed as 

Ij(u) =
⃦
⃦Fψ j(r)

⃦
⃦2

+ b, (2) 

where, u and r are coordinates in the reciprocal space and real space, 
respectively. Rj is the scanning position coordinate at the j-th scanning 
position. F is the forward model, including but not limited to angular 
spectral propagation, Fresnel diffraction, and Fraunhofer diffraction, 
and b is a positive offset matrix of the mixed noises. In fact, ptycho-
graphic phase retrieval is in pursuit of minimization of the Euclidean 
distance ε at all scanning positions 

ε = argmin
P(r− Rj), O(r)

∑

j
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2
. (3) 

Therefore, in the optimization of the reciprocal space, search for the 
optimal wave-field Ψ opt

j (u) that minimizes the distance between the 
measured diffraction field Ij(u) and the wave-field Ψ j(u) diffracted by 
exit-wave in the forward model of the Eq (2), 

Ψ opt
j (u) = G
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(4) 

The Wirtinger gradient [35] of the Ψ j(u) and the gradient descent 
operation can be expressed as 

∇G
(
Ψ j(u)

)
=

1
2

diag
(
Ψ j(u)

)
×

(

1 −

̅̅̅̅̅̅̅̅̅̅
Ij(u)

√

Ψ j(u)

)

,

Ψ ’
j(u) = Ψ j(u) − αΨ∇G

(
Ψ j(u)

)
,

(5) 

Note that for a particular update direction, the fidelity term can be 
regarded as a convex function with respect to αΨ, and thus the optimal 
step size can be computed by finding the extremes. After determining 
the optimal step size, the optimal wave-field Ψ opt

j (u) at the j-th scanning 
position can be expressed as 

Ψ opt
j (u) = Ψ j(u) ×

̅̅̅̅̅̅̅̅̅̅
Ij(u)

√

Ψ j(u)
, (6) 

and it represents the modulus constraint projection in the inverse 
reconstruction. After N scanning positions are traversed, the overlapping 
constraint projections are also alternately completed. This is the Step 1 
in Fig. 1.

In the optimization of the real space, when the optimal wave-field 
Ψ opt

j (u) is updated, an appropriate error metric function is applied to 

retrieve the specimen surface optimal exit-wave Ψ opt
j (r) as 

E =

⃦
⃦
⃦ψopt

j (r) − P
(
r − Rj

)
O(r)

⃦
⃦
⃦

2
,

ψopt
j (r) = F− 1Ψ opt

j (u).
(7) 

Similarly, the Wirtinger gradient of the P(r − Rj) and O(r) as well as the 
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gradient descent operation can be expressed as follows 

∇EP=
(
P
(
r− Rj

))∗
×
(
P
(
r− Rj

)
O(r)− ψ j(r)

)
,Pʹ( r− Rj

)
=P
(
r− Rj

)
− βP∇EP,

∇EO=O*(r)×
(
P
(
r− Rj

)
O(r)− ψ j(r)

)
,Oʹ(r)=O(r)− βO∇EO.

(8) 

To avoid iterative instability, the least squares method is employed to 
search for the optimal step size [36]. If the update directions are 
regarded as being orthogonal to each other, the computational overhead 
is significantly reduced. In this scenario, the non-diagonal entries of the 
matrix are zero and the optimal step size can be estimated as  

where, τ is a small regularization constant, and ℝ is the real number 
constraint of the step size. After determining the optimal step size, the 
optimal P(r − Rj) and O(r) at the j-th scanning position can be recon-
structed in Eq. (8). This is the Step 2 in Fig. 1.

2.2. Wavelet-domain autofocusing for specimen-detector distance error

If the specimen-detector distance error occurs, extremely minimal 
distance deviation dz will lead to perturbations in the ptychographic 
scanning coordinate, destroying the consistency of the reconstruction 
algorithm and the physical experiment in terms of the overlapping 
constraints as, 

Rj =

〈
cjL

λ(z ± dz)

〉

≈

〈

Rj ∓
cjL
λz2 dz

〉

(10) 

where, Rj and Rj are the precise and perturbative scanning coordinate at 
the j-th scanning position, respectively. cj is the experimental scanning 
trajectory of the displacement stage. L is the detector size and λ is the 
illumination coherent wavelength. z is the specimen-detector distance, 

and < •> represents a rounding operator. It is obvious to realize that the 
axial misalignments make the scanning trajectory appear to expand or 
shrink in the inversion algorithm, which in turn causes reconstruction 
artifacts due to inconsistencies between the inversion algorithm and 
physical experiment.

Indeed, scanning trajectories with axial distance errors can be 
thought of as resulting from propagation from the correct distance to the 
wrong distance. If the error distance is propagated “backwards” to the 
correct distance, it is possible to eliminate reconstruction artifacts by 
obtaining scanning coordinates consistent with physical experiments, 
and thus reconstructed high-fidelity specimens [29,37]. Therefore, we 

performed N discrete slice propagations for the O(r) estimation spec-
imen of Eq. (8) around the reconstruction plane, and total propagation 
distance is limited to orders of depth of field (DOF), 

O(r, z+nΔz) = I
− 1HnΔz

(
ux, uy

)
IO(r, z),

HnΔz
(
ux, uy

)
= exp

[

i2π/
(

λnΔz
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (ux)
2
−
(
uy
)2

√ )]

.
(11) 

where, ℑ represents the angular spectrum propagation, and Δz is the 
propagation interval of discrete slices. In the paraxial approximation, it 
can be obtained as 

Δz = λ(2z/L)2 (12) 

After discrete slice propagation, the discrete wavelet transforms of 
the estimated specimen On i at n different slice planes can be expressed 
as 
[
cAn

i , cHn
i , cVn

i , cDn
i
]
= dwt2

(
On

i
)
, (13) 

where, cAn
i , cHn

i , cVn
i and cDn

i are the approximation coefficient, hori-
zontal coefficient, vertical coefficient and diagonal coefficient, respec-
tively. dwt2() is the two-dimensional discrete wavelet transform, and i is 

Fig. 1. The detailed workflow of the proposed ptychographic autofocusing algorithm.
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⎞
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the iteration number. To enhance the unimodality and minimize the 
single peak range [38,39], according to the wavelet coefficients, the 
reconstructed sharpness Sn

i of the specimens from different slice planes 
are quantified as 

Sn
i =

∑

M
γM‖M − μM‖

2
F/
⃦
⃦cAn

i

⃦
⃦2

F , M ∈
{
cHn

i , cVn
i , cDn

i
}

(14) 

where, γM is the weighting parameter of the direction coefficients of the 
matrix M, and μM is the mean value of each element of matrix M. ‖ • ‖2

F 
represents the F-norm operator. By considering the reconstructed 
sharpness at each sampling distance, the search direction for the axial 
distance and the corresponding autofocusing update can be expressed as 
follows 

δzi = ηzδzi− 1 + γz

(
∑

n
nΔz × Sn

i

)/(
∑

n
Sn

i

)

,

zi = zi− 1 + δzi.

(15) 

where, δzi is the axial distance update step of the i-th iteration. ηz and γz 
are the damping factor and feedback factor, respectively. The combi-
nation updating of feedback and damping terms is more conducive to 
accelerate convergence and avoid violent oscillations of the autofocus-
ing algorithm. After completing the update of the axial distance, the 
ptychographic scanning trajectory in Eq. (10) needs to be updated once 
again for ptychographic inversion. This is the Steps 3 and 4 in Fig. 1.

By performing steps 1 to 4 until the specimen-detector distance 
converges and no longer oscillates, the DWT-zPIE autofocusing algo-
rithm will provide the axial distance z, the amplitude-phase recon-
struction results of the specimen and the probe. Note that it is preferable 
to choose alternating iterations between the autofocusing and the po-
sition self-calibration [40] to avoid crosstalk between the scanning po-
sition errors and the specimen-detector distance error. The detailed 
workflow of the proposed autofocusing algorithm is shown Algorithm 1 
in and Fig. 1.

Fig. 2. Numerical simulations: (a) zPIE convergence curve. (b) adaTV-zPIE convergence curve (c) DWT- zPIE convergence curve. (d) Reconstruction results of the 
varying autofocusing algorithms. (e) Line traces of the region of interest.
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3. Numerical simulations

To verify the effectiveness of the proposed algorithm, various auto-
focusing strategies, including zPIE, adaTV-zPIE, and DWT-zPIE, were 
compared through numerical simulations. In these simulations, a 632.8 
nm coherent beam was focused by a 25 mm lens to form an illuminated 
probe with a resolution of 256 × 256 pixels in a 2 × focal plane. The 
specimen, “resChart,” was mounted at the 2 × focal plane of the lens and 
driven by a two-dimensional displacement stage for grid scanning. The 
detector was positioned downstream, 50 mm away from the specimen, 
to capture coherent diffraction signals at all scanning positions. The 
scanning step size was set to approximately 24 pixels to ensure a suffi-
cient scanning overlap rate for ptychographic reconstruction. Addi-
tionally, an offset of ~10 % was applied to the scanning coordinates to 
eliminate periodic artifacts in the ptychographic reconstruction. To 
simulate a realistic experimental environment, 35 dB mixed noise [41] 
was added to the ideal coherent diffraction signals.

To mitigate the influence of non-converged outcomes during the 
initial iterations on the autofocusing algorithm, a momentum- 
accelerated ptychographical iterative engine (mPIE) was employed for 
pre-iterations. After 500 mPIE iterations achieved convergence, various 
autofocusing strategies were applied to calibrate the axial distance with 
different initial values. Apart from the differences in autofocusing stra-
tegies, the reconstruction parameters and initial conditions remained 
identical. Fig. 2(a)-(c) illustrate a series of axial distance convergence 
curves for the different autofocusing algorithms. As shown in Fig. 2(a), 
the zPIE autofocusing algorithm is highly sensitive to the initial dis-
tance. When the true axial distance significantly deviates from the initial 
value, the zPIE algorithm fails to converge. In contrast, Fig. 2(b) dem-
onstrates that the adaTV-zPIE algorithm, enhanced by the inclusion of 
the Lp-norm total variation for each pixel, offers a broader initial search 
range compared to zPIE. Additionally, the adaTV-zPIE algorithm ex-
hibits superior parameter calibration accuracy and convergence uncer-
tainty, even under 35 dB mixed noise conditions. Finally, as shown in 
Fig. 2(c), the proposed DWT-zPIE autofocusing algorithm achieves the 
highest performance, with a minimum calibration error of 0.001 mm 
and convergence uncertainty of 0.002 mm. Compared to the spatial- 
domain sharpness-based strategies of zPIE and adaTV-zPIE, the DWT- 
zPIE algorithm integrates multi-dimensional information from both 
spatial and frequency domains, effectively minimizing noise crosstalk. 
This integration results in a two-order-of-magnitude improvement in 
calibration accuracy and convergence uncertainty. A detailed compari-
son of axial distance calibration results across different autofocusing 
algorithms is presented in Table 1.

Fig. 2(d) presents the reconstruction results of different autofocusing 
algorithms. Compared to the zPIE reconstruction results, both the 
adaTV-zPIE and DWT-zPIE algorithms significantly reduce reconstruc-
tion artifacts. Among the smallest line pair features, the DWT-zPIE 
reconstruction results clearly exhibit the highest clarity, with better 

background uniformity. Quantitative image quality assessment metrics, 
including peak signal-to-noise ratio (PSNR) and structural similarity 
(SSIM), further validate the superiority of the proposed method over 
conventional autofocusing algorithms, as shown in Fig. 2(d). Fig. 2(e) 
illustrates the line trace results for the minimum line pair feature in the 
region of interest, obtained using different autofocusing algorithms. It is 
evident that the proposed algorithm outperforms the others in terms of 
imaging clarity, uniformity, and contrast. In addition to improvements 
in calibration accuracy and imaging resolution, the proposed algorithm 
also demonstrates a significant increase in reconstruction speed. 
Compared to the zPIE and adaTV-zPIE autofocusing algorithms, the 
proposed method achieves convergence in nearly hundred iterations, 
resulting in a several-fold improvement in convergence speed.

4. Experiments

To validate the correctness of the numerical results, a prototype 
system for ptychographic imaging with transmission geometry was 
constructed. In this transmission geometry, as shown in Fig. 3(a), a 
632.8 nm laser (N-STP-912, Newport) passed through filter F1 (NE20A- 
A, Thorlabs), pinhole P1 (ID25Z, Thorlabs), and mirrors M1 and M2 
(BB1-E02, Thorlabs) for beam shaping. The shaped beam was then 
expanded and collimated by lenses L1 and L2 (GBE05-B, Thorlabs). After 
focusing through a 50 mm lens L3 (KPX049AR.14, Newport), an illu-
minated probe was formed. The specimen to be measured was posi-
tioned at the back focal plane of lens L3 and was scanned transversely by 
a two-dimensional displacement stage (L-836.511212, Physik Instru-
mente). After the illuminated probe interacted with the specimen, the 
exit waves propagated a distance z to the far-field detector (QHY268M, 
QHYCCD, pixel size 3.76 μm) to collect the corresponding diffracted 
signals. The scanning step size was set to 20 μm to ensure more than 80 
% overlap with the approximately 200 μm beam diameter. In Extend 
Fullwell 2CMSIT mode, the central 4096 × 4096 pixel area was cropped 
to collect 441 raw data points. To enhance computational efficiency, an 
8 × binning operation was performed, downsampling to 512 × 512 
pixels for the original diffraction fields. The diffraction signals at 
different scanning positions are shown in Fig. 3(b).

The first experiment was conducted using the benchmark target 
USAF-1951 specimen (RES-1, Newport) to verify the effectiveness of the 
proposed autofocusing algorithm. In this experimental setup, the axial 
distance between the detector and the benchmark target was approxi-
mately 26 mm. After 500 mPIE iterations to eliminate initial blurring 
and crosstalk, various autofocusing algorithms were applied in ptycho-
graphic reconstructions. It is important to note that the ptychographic 
autofocusing algorithm primarily corrects perturbations in the scanning 
trajectory caused by deviations in axial distance. Thus, the positioning 
accuracy of the displacement stage also influences the accuracy of axial 
distance correction. In numerical simulations, the scanning position is 
precisely known, whereas in physical experiments, the scanning position 
is often uncertain. Therefore, scanning position errors are typically 
addressed using a parallel cross-correlation strategy [40] to reduce 
calibration crosstalk in system parameters by alternating iterations 
during the autofocusing process. After 500 autofocusing iterations, the 
convergence results of different algorithms are shown in Fig. 4(a)-(c). 
The convergence distance of the zPIE autofocusing algorithm exhibits 
significant variability with different initial values, as seen in Fig. 4(a). In 
contrast, the adaTV-zPIE algorithm significantly reduces axial distance 
calibration uncertainty, as shown in Fig. 4(b). The proposed DWT-zPIE 
autofocusing algorithm further reduces axial distance uncertainty to 
0.02 mm, providing an order of magnitude improvement compared to 
the zPIE algorithm. Since the real axial distance could not be directly 
measured in the experiment, the results indicated that the imaging 
quality of the sample was highest when the axial distance was close to 
26.45 mm. Fig. 4(e) displays the reconstruction quality of the bench-
mark target USAF-1951 at different convergence distances. The adaTV- 
zPIE algorithm significantly reduces ptychographic reconstruction 

Table 1 
The comparison results of axial distance calibration.

Iteration initial 
value (mm)

Convergence results (mm)

zPIE adaTV- 
zPIE

DWT- 
zPIE

Varying initial 
distance z0

55.000 50.775 50.124 50.002
52.500 50.098 50.051 50.001
51.000 50.122 50.054 50.001
49.000 49.913 49.974 50.002
47.500 50.190 50.043 49.998
45.000 49.767 50.032 50.001

Specimen-detector 
distance

/ 50.123 50.046 50.001

Calibration error / 0.123 0.046 0.001
Convergence 

uncertainty
/ 0.334 0.048 0.002
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artifacts, particularly in the series of line pairs of Group (6), compared to 
the zPIE algorithm. Among all algorithms, the proposed DWT-zPIE al-
gorithm shows superior reconstruction quality compared to both zPIE 
and adaTV-zPIE. As observed in numerical simulations, the proposed 
algorithm demonstrates optimal performance in terms of imaging 
clarity, uniformity, and contrast. Regardless of the autofocusing algo-
rithm used, the final imaging quality is always superior to the uncali-
brated result shown in Fig. 4(e). The quantitative line trace results for 
the region of interest in Group (7)/Element 6 (full-pitch resolution: 
4.384 μm) further confirm these findings, with the proposed algorithm 
offering the best clarity and contrast, while the other algorithms suffer 
from reconstruction artifacts.

The second experiment was conducted with a biological specimen to 
verify the applicability of the proposed autofocusing algorithm. In this 
experimental setup, the axial distance was reduced to approximately 14 
mm (numerical aperture: 0.482 NA) to further enhance the imaging 
resolution of ptychography. In the meantime, for the weakly scattering 
red blood cells, a diffraction signal preprocessing with high dynamic 
range image fusion [41] was also employed to improve the high-order 
signal-to-noise ratio. In the convergence results of the adaTV-zPIE al-
gorithms shown in Fig. 5(a) and (b), the biological specimen is signifi-
cantly more sensitive to initial distance deviations compared to the 
amplitude-only USAF-1951. In contrast, the proposed DWT-zPIE auto-
focusing algorithm, as shown in Fig. 5(c), demonstrates strong conver-
gence robustness across various initial distances. According to 

uncertainty metrics for axial distance calibration, the proposed algo-
rithm exhibits a several-fold improvement in convergence uncertainty 
compared to conventional sharpness-based autofocusing algorithms. 
Fig. 5(e) presents the entire field of view (FOV) reconstruction results of 
the proposed algorithms at their corresponding convergence distances. 
In different regions of interest, noticeable differences in imaging fidelity 
are observed between the zPIE and adaTV-zPIE autofocus algorithms, 
including both amplitude and phase reconstructions shown in Fig. 5(f) 
and (g). In contrast, there is virtually no difference in imaging quality 
across different regions when using the proposed algorithms. The un-
derlying reason for such a phenomenon can be attributed to the fact that 
zPIE and adaTV-zPIE algorithms often rely on fine iterative parameter 
optimization and window selection, whereas the proposed algorithm 
eliminates these constraints and determines the optimal focus across the 
entire field of view. Meanwhile, the zPIE and adaTV-zPIE algorithms 
only rely on extracting the grey levels (contrast) of the amplitude-only 
image. Instead, the algorithm proposed utilizes wavelet transform to 
process the complex field image (amplitude-phase image), and its 
multidimensional information extraction greatly reduces the noise 
crosstalk in the convergence process. However, when the thickness of 
the biological sample exceeds the “thin sample approximation” in pty-
chography, the reconstruction of three-dimensional biological samples 
must rely on slicing modeling to determine the optimal axial distances 
for different thicknesses [29].

Although the axial distance could not be determined in actual 

Fig. 3. Experimental setup: (a) Optical schematic. (b) Measured diffraction fields.

Fig. 4. Experimental results of the USAF-1951: (a) zPIE convergence curve. (b) adaTV-zPIE autofocusing convergence curve (c) DWT- zPIE autofocusing convergence 
curve. (d) Line traces of the region of interest. (e) Reconstruction results of the varying autofocusing.
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experiments, it is clear that the system will have a higher imaging res-
olution if the axial distance is fully calibrated. Fig. 5(d) illustrates the 
reconstructed resolutions using Fourier ring correlation for different 
autofocusing algorithms. After the axial distance calibrating, the zPIE 
autofocusing algorithm achieves a full-pitch resolution of 2.12 µm pty-
chographic imaging (NA = 0.487). In comparison, the adaTV-zPIE al-
gorithm achieves a full-pitch resolution of 1.66 µm ptychographic 
imaging, where the NA of the system is 0.483. However, under identical 
conditions, the proposed DWT-zPIE autofocusing algorithm can achieve 
a 1.32 µm full-pitch resolution in the 0.476NA, delivering nearly a two- 
fold improvement in imaging resolution.

5. Conclusion

In this paper, we propose an accurate and fast autofocusing algo-
rithm for calibrating the specimen-detector axial distance in lensless 
ptychography imaging. First, we utilize wavelet-domain multidimen-
sional coefficients to quantify reconstruction clarity in virtual planes 
within the depth of field. Then, the perturbations in the scanning co-
ordinates, which lead to axial distance deviations, are corrected through 
alternating iterations of the proposed autofocusing algorithm and a 
position self-calibration algorithm. During the iteration process, the 
proposed algorithm does not require careful window searching or 
parameter fine-tuning, effectively avoiding local optima, violent 
convergence oscillations, and crosstalk. Simulations and experiments on 
both amplitude and complex specimens were performed and compared 
with conventional sharpness-based autofocusing algorithms. The results 
demonstrate that the proposed algorithm achieves robust convergence 
in nearly hundred iterations and significantly removes reconstruction 
artifacts, providing a several-fold to orders of magnitude improvement 
in convergence speed, calibration accuracy, and uncertainty. More 
importantly, after axial distance calibration, the proposed algorithm 
enables the ptychographic imaging system to reach an optimal perfor-
mance, delivering a nearly two-fold improvement in imaging resolution. 
These substantial advancements significantly broaden its potential 

applications, including in other coherent diffractive imaging techniques 
such as coded ptychography (coherent modulated imaging), in-line 
holography, and multi-plane phase retrieval.

In fact, the proposed algorithm typically performs well in scenarios 
with sufficient exposure. However, when the noise intensity exceeds 
normal levels, particularly in low-dose, weakly scattering situations, the 
algorithm tends to suffer from noise crosstalks, which can negatively 
affect calibration accuracy, convergence speed, and convergence un-
certainty, and may even lead to convergence failure. In such cases, po-
tential strategies, such as noise separation or modeling [36,42], could be 
considered during the reconstruction process in future work.
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