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Smearing effects in small-angle scattering (SAS) measurements significantly

compromise data analysis, arising from the convolution of theoretical scattering

curves with the point spread function of the measurement system. This paper

presents a deep-learning-based desmearing network (DSNet) designed to

effectively mitigate smearing effects in SAS data. By integrating the processes

underlying scattering data smearing, DSNet necessitates only a limited simu-

lation dataset for pre-training. Both simulation and experimental results have

demonstrated that DSNet exhibits robust noise resilience and exceptional

generalization performance across diverse sample types, and achieves superior

desmearing capabilities compared with the classical Lake method and Wiener

filter.

1. Introduction

The small-angle scattering (SAS) technique, including small-

angle X-ray scattering (SAXS) and small-angle neutron scat-

tering, has become indispensable for investigating submicro-

metre structures and morphological features of materials (Orji

et al., 2018; Jeffries et al., 2021; Wu et al., 2023b). The theo-

retical scattering intensity distribution is obtained under ideal

conditions, which include high-energy point sources and high-

resolution detectors. However, practical experimental proce-

dures are susceptible to factors such as the wavelength spread

of the monochromator system, finite collimation and the

spatial resolution of the detector (Pedersen et al., 1990),

leading to deviations in the measured scattering intensity

distribution from theoretical expectation. These discrepancies

give rise to a smearing effect in the scattering spectra, char-

acterized by diminished peaks and elevated valleys, which

ultimately leads to a smoothed scattering intensity distribu-

tion. These smearing effects create significant disparities

between measured data and theoretical scattering cross-

sections, profoundly complicating the data analysis process.

Over the past few decades, researchers have explored

various methods for desmearing SAS data. The first approach,

proposed by Van Cittert (1931), employed an iterative algo-

rithm and was applied to 2D scattering patterns. Later, Lake

(1967) developed another iterative method for 1D scattering

curves, which later became a classical desmearing method due

to its ability to avoid restrictions on the weight function in

both width and height directions (Pilz et al., 1979). Other

desmearing methods similarly resolved the data-smearing

effects by analysing the underlying mathematical principles of

SAS, exemplified by spline interpolation (Taylor & Schmidt,

1967; Schelten & Hossfeld, 1971), deconvolution techniques
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(Chen et al., 2016; Hua et al., 2017), Fourier transform

(Glatter, 1977; Moore, 1980; Jaksch et al., 2021), the Wiener

filter (Le Flanchec et al., 1996) and central moment expansion

(Huang et al., 2023).

In recent years, deep learning has undergone rapid

advancements, leading to significant improvements across

various applications. Among these, addressing different types

of image blur has seen considerable progress. Image issues

such as motion blur, out-of-focus blur, Gaussian blur and

mixed blur have been effectively addressed through innova-

tive deep-learning techniques (Zhang et al., 2022). Within the

field of SAS, deep learning has also exhibited remarkable

efficacy. This has been evident in several critical applications,

including image inpainting, which is employed to fill in gaps

within detector images (Chavez et al., 2022). Additionally,

deep-learning methods have been utilized for denoising,

thereby enhancing the clarity of the data (Zhou et al., 2024),

and for filtering diffraction pattern images, which is crucial for

analysing complex scattering patterns (Dong et al., 2024).

Despite these advancements, to the best of our knowledge,

there is no report yet on the desmearing of SAS data using

deep learning. This represents a significant gap in the current

research landscape, suggesting that further exploration into

this area could yield valuable insights and advancements in the

field.

In this paper, we have proposed a deep-learning-based

desmearing network (DSNet) designed to address the

desmearing issue in SAS measurement data. Unlike tradi-

tional deep-learning approaches, DSNet requires only a

limited amount of simulation data for pre-training, thus

eliminating the need for a large number of labelled and

experimental datasets. Moreover, by incorporating the

smearing process in SAS, DSNet demonstrates excellent

generalization performance, effectively mitigating smearing

effects across a range of sample structures. When applied to

both simulated and experimental data, DSNet exhibits strong

noise resistance and achieves superior desmearing capabilities

compared with the Lake method and Wiener filter.

2. Methods

2.1. The smearing effect

Numerous studies have been conducted to explore resolu-

tion problems in SAS (Ramakrishnan, 1985; Wignall, 1991).

Pedersen et al. (1990) provided an analytical treatment of the

different resolution effects by the resolution function or the

point spread function (PSF) R(q, q0), where q is the scattering

vector magnitude corresponding to the setting of the instru-

ment and q0 is the average scattering vector magnitude. The

PSF R(q, q0) describes the distribution of the radiation with q0

contributing to the scattering for the setting q. According to

this, the smeared intensity at q is proportional to

ISðqÞ ¼

Z

Rðq; q0Þ
d�ðq0Þ

d�
dq0; ð1Þ

where d�(q0)/d� is the theoretical scattering cross-section and

IS(q) indicates the smeared scattering curve. For brevity, the

experimental scattering curve can be represented as the

convolution of a theoretical scattering curve with the instru-

mental PSF,

ISðqÞ ¼ I0ðqÞ � PSFðq; q0Þ; ð2Þ

where � represents the convolution operation and I0(q)

denotes the theoretical scattering curve. In an ideal high-

resolution scenario, the PSF can be approximated as a delta

function �(x), resulting in IS(q) being equal to I0(q). However,

in practical applications, the PSF typically exhibits broad-

ening, leading to deviations of the smeared scattering curve

from the theoretical scattering curve; this phenomenon is

referred to as the smearing effect. In the frequency domain,

the smearing effect can be expressed as follows:

F ISðqÞ
� �

¼ F I0ðqÞ
� �

F PSFðq; q0Þ
� �

; ð3Þ

where Ff�g represents the Fourier transform. In SAS, the PSF

is typically modelled as a Gaussian function (Pedersen et al.,

1990) and its Fourier transform, F {PSF(q, q0)}, retains a

Gaussian form. This serves as a low-pass filter, attenuating

high-frequency components in the theoretical scattering

curves. The loss of these high-frequency details limits the

desmearing process, preventing full recovery of the fine

features of the original scattering curve and leading to ill-

posed deconvolution problems. Specifically, the absence of

high-frequency information makes deconvolution unstable,

resulting in a non-unique solution that is highly sensitive to

noise.

2.2. Principle of DSNet

Fig. 1 presents the architecture of DSNet; our desmearing

method contains two procedures: a pre-training procedure

[Fig. 1(a)] and a fine-tuning procedure [Fig. 1(b)]. For the pre-

training procedure, the inputs are smeared curves [IS(q)]

which are logarithmically transformed to improve data

visualization and facilitate more effective analysis, and the

outputs are the corresponding desmeared curves [IDS(q)]. The

pre-training procedure is updated by minimizing the mean

squared error (MSE) between the desmeared curves IDS(q)

and the theoretical curves I0(q), as follows:

MSE ¼
1

N

XN

i¼1

IDSðqiÞ � I0ðqiÞ
� �2

; ð4Þ

where N represents the total number of data points for q.

For the fine-tuning procedure, the inputs include the loga-

rithmically transformed smeared curve IS(q) and the system

PSF; the output is the corresponding desmeared curve IDS(q).

After exponentiation, the desmeared curve is convolved with

the PSF. Taking the logarithm of the convolution result yields

the reconstructed smeared curve IRS(q). The fine-tuning

procedure is updated by comparing the reconstructed smeared

curve with the original smeared curve until they align to an

acceptable degree. This indicates that the output of the

network represents the desmeared result of the original
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smeared curve within the given experimental condition. Here,

we also use the MSE as the loss function to evaluate the

difference between the reconstructed smeared curve IRS(q)

and the input smeared curve IS(q) as follows:

MSE ¼
1

N

XN

i¼1

IRSðqiÞ � ISðqiÞ
� �2

: ð5Þ

As the smeared scattering curve and the desmeared results

share the same dimensions, the same U-Net is employed in the

pre-training and fine-tuning procedures to fully exploit the

data features of the scattering curves. To extract deeper curve

features and enhance the expressiveness and robustness of the

network, the U-Net architecture [Fig. 1(a)] used in DSNet is

composed of three U-Net-type structures. The input smeared

curve ISðqÞ 2 R
M�N (the initial channel M = 1, and N = 501 is

the number of data points for the smeared curve) is fed into

the encoder. Following convolution and max-pooling opera-

tions, the data are passed into the decoder, where they

undergo max-unpooling and additional convolution steps,

ultimately yielding the output desmeared curve

IDSðqÞ 2 R
M�N .
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Figure 1
Overview of DSNet. The proposed desmearing method contains two procedures: (a) pre-training procedure and (b) fine-tuning procedure. During the
pre-training procedure, the inputs are logarithmically transformed smeared curves [IS(q)] and the outputs are the corresponding desmeared curves
[IDS(q)]. The pre-training procedure is updated by comparing the desmeared curves with the theoretical curves. During the fine-tuning procedure, the
inputs are the logarithmically transformed smeared curve [IS(q)] and the system PSF; the output is the corresponding desmeared curve [IDS(q)]. After
exponentiation, the desmeared curve is convolved with the PSF. Taking the logarithm of the convolution result yields the reconstructed smeared curve
IRS(q). The fine-tuning procedure is updated by comparing the reconstructed smeared curve with the original smeared curve. The upper presents the
architecture of the used concatenated U-Net. Three U-Net-type structures connected together are employed to extract deeper curve features and
enhance the expressiveness and robustness of the network. The U-Net architectures used in the pre-training and fine-tuning are the same.
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2.3. Network pre-training and fine-tuning

To avoid the ill-posed problems of deconvolution discussed

in Section 2.1, we first employ a pre-training procedure using

simulated data generated by the Sasview software (https://

www.sasview.org/). Specifically, we generate 100 theoretical

scattering curves for spheres with diameters ranging from 1 to

100 Å and select a Gaussian function with a standard devia-

tion of � = 2 � 10� 2 nm� 1 as the system PSF. The smeared

curves are obtained by convolving the theoretical curves with

the prescribed PSF in the absence of noise. We divide these

simulated data into a training set and a test set in a 9:1 ratio.

DSNet is pre-trained using the MSE loss from equation (4).

We utilize the Adam optimizer (Diederik & Jimmy, 2014) with

an initial learning rate of 0.0001 and a batch size of 90, training

the network for 500 epochs. During the pre-training, we

compute the accuracy on the test set after each epoch; if the

current accuracy exceeds the previously recorded highest

accuracy, we save the parameters of the network.

After pre-training on the simulated data, DSNet is fine-

tuned using experimental SAS data exhibiting smearing

effects. The saved network parameters during pre-training

serve as the starting point for fine-tuning on experimental

data, significantly improving the performance and reducing

training time. This fine-tuning process enables the network to

retain essential features learned during pre-training while

adapting to the specific nuances of the experimental data. For

fine-tuning, the Adam optimizer is employed with a reduced

learning rate of 0.00001 to facilitate more precise adjustments.

The loss function is defined by equation (5) and the network is

fine-tuned for an additional 500 epochs.

The pre-training procedure is performed on simulated data,

where theoretical scattering curves guide DSNet in learning

and understanding the physical features of scattering, rather

than simply serving as a mathematical parameter initialization.

This step provides a strong foundation for the subsequent fine-

tuning procedure. By relying on the scattering features it has

learned, DSNet can handle real data more effectively,

improving desmearing accuracy without solely depending on

data-driven matching. Compared with traditional random

initialization, pre-training allows the network to begin with a

more robust foundation, enabling it to focus on capturing fine

details and making precise adjustments, while avoiding over-

fitting, reducing sensitivity to noise and accelerating conver-

gence. During the fine-tuning procedure, the system PSF is

used to simulate the smearing process of the actual scattering

curves, further guiding the network’s learning and enhancing

its ability to address system-induced smearing, thus improving

the robustness and generalization capacity of DSNet. The

entire process was conducted on a computer workstation with

a central processing unit (Intel Xeon E5-2643v4 at 3.4 GHz),

128 GB of RAM and three graphics processing units (GeForce

RTX 2080 Ti).

3. Test with synthetic data

To assess the desmearing capabilities of DSNet on smeared

curves, we employ the Sasview software to generate theore-

tical scattering curves as the ground truth and apply a Gaus-

sian function with � = 4 � 10� 2 nm� 1 as the PSF. The smeared

curves are produced by convolving the theoretical scattering

curves with the PSF. In our simulations, we first evaluate the

robustness of DSNet to noise by introducing varying levels of

noise to the scattering spectra of a sphere. To further test its

generalization performance, we use scattering spectra from

different samples, including a cylinder, a simple cubic lattice

and polydisperse spheres. We also employ a PSF with a stan-

dard deviation different from that used in pre-training,

applying this PSF throughout the simulations. For comparison,

we evaluate the results obtained from DSNet against those

from the Lake method and Wiener filter. Note that due to the

sensitivity of the Lake method to noise, a smoothed version

(Vad & Sager, 2011) is used below.

3.1. Noise robustness

In practical SAS measurements, noise is a significant factor

that induces fluctuations in the scattering curves. As the noise
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Figure 2
Desmearing results with different levels of noise. The ground truth I(q) (blue curve), smeared I(q) (orange curve), Lake desmearing I(q) (green curve),
Wiener filter desmearing I(q) (purple dashed curve) and DSNet desmearing I(q) (red circles) using different levels of noise (n�), with (a) n� = 0, (b) n� =
0.025 and (c) n� = 0.050. The sample is a sphere with a uniform scattering length density and a radius of 30 Å.
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level increases, the signal-to-noise ratio of the scattering

curves decreases markedly, especially in the high-q region. We

utilize a noise model (Vad & Sager, 2011) to introduce noise to

the simulated smeared scattering curve IS(q) of a sphere with a

radius of 30 Å by

�ðqÞ ¼ �n�pISðqÞ; ð6Þ

where n� represents the maximum relative deviation and is

assigned values of 0.025 or 0.050, and p is a random number

indicating the proportion of n�IS(q) to be randomly added to

or subtracted from the smeared intensity value IS(q).

As shown in Fig. 2(a), in the absence of noise, the Lake

method, Wiener filter and DSNet produce relatively smooth

desmearing results. However, regarding recovery accuracy,

both the Lake method and the Wiener filter only partially

reconstruct the original curve’s features, whereas DSNet

nearly fully restores all characteristics, particularly at the

sharp minima. Once noise is introduced, as shown in Figs. 2(b)

and 2(c), the desmearing results of the Lake method exhibit

increasing fluctuations as noise levels rise, despite the

smoothing applied. In contrast, the Wiener filter and DSNet

effectively mitigate the impact of noise at lower levels. Even as

noise increases, the Wiener filter remains relatively stable.

However, the Wiener filter can only partially recover the

features of the scattering curve. Although DSNet exhibits only

minor fluctuations in the high-q region, the low-q region and

the peak characteristics of the original scattering curve are

largely preserved, demonstrating DSNet’s strong robustness

against noise. The MSE between the theoretical scattering

curves and the desmeared curves, as presented in Table 1,

indicates that both the Wiener filter and DSNet exhibit greater

stability against noise, with DSNet demonstrating the best

desmearing performance.

The superior performance of DSNet in handling noise can

be attributed to its deep-learning architecture, which allows it

to better capture and generalize the underlying patterns in the

scattering curves. In contrast to the Lake method, which relies

on iterative deconvolution, DSNet learns the complex rela-

tionships between smeared and desmeared data through its

pre-training and fine-tuning procedures. This capability allows

DSNet to distinguish between genuine scattering features and

noise. For the Wiener filter, the introduction of the power

spectral densities of the signal and noise can help suppress the

impact of noise to some extent.

3.2. Generalization

A critical aspect of any deep-learning method is its ability to

generalize effectively. To assess the generalization perfor-

mance of DSNet, we evaluate samples that were not seen

during pre-training, including a right circular cylinder with

uniform scattering length density, a simple cubic lattice with

paracrystalline distortion and polydisperse spheres. These

structures differ significantly from the pre-training data,

facilitating a comprehensive evaluation of the adaptability of

DSNet to previously unseen scattering spectra.
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Table 1
Performance comparison of different desmearing methods with varying
noise levels.

The values in the table represent the MSE between the theoretical scattering
curves and the desmeared curves. The sample is a sphere with a uniform
scattering length density and a radius of 30 Å.

Desmearing methods Lake method Wiener filter DSNet

n� = 0 0.0495 0.0928 0.0178
n� = 0.025 0.0527 0.0916 0.0284

n� = 0.050 0.0588 0.0903 0.0216

Figure 3
Desmearing results of different sample types. The ground truth I(q) (blue curve), smeared I(q) (orange curve), Lake desmearing I(q) (green curve),
Wiener filter desmearing I(q) (purple dashed curve) and DSNet desmearing I(q) (red circles) using different sample types: (a) right circular cylinder with
a uniform scattering length density and (b) simple cubic lattice with paracrystalline distortion.
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As illustrated in Fig. 3(a), the scattering curve of the

cylinder differs significantly from that of the sphere, displaying

less variation between peaks and valleys and exhibiting a more

rugged appearance. The desmearing results obtained using the

Lake method are consistent with those presented in Section

3.1, wherein only partial features of the curve are restored.

This method struggles with sharp minima and is unable to

recover certain smaller peak features. The desmearing result

of the Wiener filter is similar to that of the Lake method, with

some peak features lost in the high-q region. In contrast,

DSNet effectively addresses these challenges, nearly fully

recovering the original information of the scattering curve.

When examining the simple cubic lattice sample, which

presents a more complex scattering curve as shown in Fig.

3(b), the Lake method exhibits oscillations in the low-q region,

causing the desmeared results to deviate significantly from the

theoretical scattering curves. The performance of the Wiener

method on this sample is inferior to that of the Lake method.

In addition to losing peak features in the high-q region,

significant oscillations appear in the low-q region, disrupting

the desmeared scattering curve. Conversely, DSNet does not

encounter this issue, demonstrating its robust generalization

to handle complex scattering curves.

Table 2 presents the MSE between the desmeared curves

and the theoretical scattering curves for different methods.

DSNet demonstrates the best performance in desmearing for

both sample types, followed by the Lake method. The Wiener

filter exhibits significantly higher MSE, particularly for the

simple cubic lattice sample, due to the oscillations observed in

the results. Since the scattering curves in this test differ

significantly from those used during pre-training, it is inter-

esting to evaluate the performance of the pre-trained model

without any fine-tuning. As shown in the last column of Table

2, the results of DSNet without fine-tuning demonstrate poor

performance for both the cylinder and the simple cubic lattice,

which underscores the importance of the fine-tuning process.

These results confirm that DSNet demonstrates excellent

generalization performance, effectively desmearing SAS data

from different sample structures with minimal accuracy loss.

However, note that in both Figs. 3(a) and 3(b) the desmeared

curves produced by DSNet exhibit minor fluctuations. This

may be attributed to the significant differences between the

scattering curve features and those learned by the network

during pre-training. Therefore, incorporating a greater variety

of sample structures and amount of data during pre-training

may enable the network to learn additional feature informa-

tion, potentially enhancing desmearing capabilities.

In SAS, nanoparticle size polydispersity can distort the

peaks and valleys of scattering curves (Wu et al., 2023a). As

shown in Fig. 4, we used the Sasview software to generate the

scattering curves for both a monodisperse sphere with a radius

of 50 Å and the corresponding polydisperse spheres with a

log-normal size distribution. The scattering curve of the

polydisperse spheres is then convolved with a Gaussian PSF of

� = 4 � 10� 2 nm� 1 to obtain the smeared scattering curve.

Subsequently, we apply DSNet to desmear this curve. The

results demonstrate that DSNet effectively corrects the

smearing induced by the system PSF, restoring the minima in

the low-q region of the polydisperse spheres while preserving

the high-q region without introducing artificial minima.

4. Experimental results

While the simulation results provide a solid foundation,

practical applications introduce complexities such as noise and

variations in sample characteristics that must be addressed. To

assess the robustness of DSNet and its generalization perfor-

mance across different sample structures and instruments, we

selected two samples and two instruments for experimenta-

tion. Specifically, a silver behenate (AgBeh) powder sample

was tested using the Xeuss 3.0 UHR (Xenocs, France) SAXS

instrument, equipped with a Cu K� X-ray source that emits

X-rays with a 0.154 nm wavelength. A 1D grating structure

sample was tested with an in-house laboratory SAXS (Lab-

SAXS) instrument, equipped with an In K� X-ray source

(Excillum, Sweden) emitting 0.051 nm X-rays. During the

experiment, the slit configuration is first adjusted. Then,

without the sample and beamstop, a 1 s exposure is performed

to capture the 2D direct beam profile, which is integrated to
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Table 2
Performance comparison of different desmearing methods using different
sample types.

The values in the table represent the MSE between the theoretical scattering
curves and the desmeared curves.

Desmearing
methods

Lake
method

Wiener
filter

DSNet
(with fine-tuning)

DSNet
(without fine-tuning)

Cylinder 0.0185 0.0362 0.0155 0.0484
Simple cubic lattice 0.0866 0.1699 0.0360 0.2388

Figure 4
Desmearing results of polydisperse spheres. The blue curve represents
the scattering curve of a monodisperse sphere with a radius of 50 Å, the
black curve represents the scattering curve of the corresponding poly-
disperse spheres with a log-normal size distribution, the green curve
represents the effect of system smearing on the polydisperse spheres and
the red circles represent the desmeared scattering curve obtained using
DSNet.
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obtain the 1D PSF of the instrument under the slit config-

uration. Finally, the beamstop and sample are placed, and

exposure measurements are conducted.

4.1. AgBeh powder

The AgBeh powder sample was measured under different

slit sizes. To maintain consistent scattering intensity across

configurations, the exposure time for each slit setting was

calculated on the basis of the photon flux, as detailed in Table

3. Since the AgBeh powder was tested on the same instru-

ment, the degree of curve recovery after desmearing should be

the same.

For each slit configuration, we first measured the direct

beam profile in a vacuum environment to obtain the 1D PSF.

Next, the AgBeh powder was exposed and 2D scattering

patterns were collected. These patterns were azimuthally

averaged to produce 1D scattering curves. The experimental

results for the four slit configurations are shown in Fig. 5(a).

As the slit opening increases, the peak height of the scattering

curve decreases, while its width broadens, reflecting a more

pronounced smearing effect. Then we input the 1D scattering

curves and corresponding PSFs into DSNet, loaded the pre-

trained network parameters, and performed the fine-tuning

procedure to desmear. The desmearing results, displayed in

Fig. 5(b), show that, despite some minor fluctuations, the

desmeared curves remain largely consistent across different

slit configurations. We select the curves of slit configuration (4)

as the reference and calculated the MSE between the

experimental and desmeared scattering curves for the other

three configurations and the curves for slit configuration (4).

As shown in Table 4, once the slit size decreases, the MSE

between the experimental curve and the reference config-

uration’s experimental curve decreases, indicating a reduction

in the smearing effect. After desmearing with DSNet, the

MSE between the desmeared curve and the reference

configuration’s desmeared curve shows minimal difference,

demonstrating the consistency of the desmearing results.

4.2. 1D grating structure

The 1D grating structure consists of trapezoidal nano-

structures with a periodicity of 125 nm. Due to the weak

scattering signal from this sample, a higher-energy X-ray

source was employed. The experimental setup included

1.2 mm � 0.5 mm slit sizes and a 7500 s exposure time. Firstly,

the direct beam was measured to obtain the 1D PSF. The

experiment was then performed on the 1D grating structure

sample. We also measured the 1D grating structure at the

BL16B beamline of the Shanghai Synchrotron Radiation

Facility (SSRF) with an exposure time of 15 s, using it as a

reference, as shown in Fig. 6(a). Fig. 6(b) shows the SAXS

pattern using Lab-SAXS, which indicates that the long expo-

sure time resulted in significant noise interference, rendering

the last few scattering orders nearly indistinguishable. By

integrating the scattering signals within the red rectangles in

Figs. 6(a) and 6(b), the 1D scattering curves in Fig. 6(c) were

derived. Similarly to the 2D pattern, when q > 0.4 nm� 1, the
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Figure 5
Experimental and desmearing results of AgBeh powder. (a) Experimental SAXS data of AgBeh powder with different slit sizes. (b) Desmeared curves of
the experimental data of AgBeh powder in (a) using DSNet.

Table 3
Exposure times for different slit sizes (two slits with square cross-
sections).

Slit configuration (1) (2) (3) (4)

Slit size (mm � mm)† 4.0 � 2.5 2.5 � 1.4 1.6 � 0.9 0.8 � 0.5
Photon flux (counts s� 1) 1 � 108 0.6 � 108 0.24 � 108 0.024 � 108

Exposure time (s) 60 100 250 2500

† The slit size A� B means that the side lengths of the first and second square slits are A

and B, respectively.

Table 4
MSE comparison of experimental and desmeared scattering curves for
different slit configurations with slit configuration (4).

Slit configuration (1) (2) (3)

Experimental curve 278.2676 134.3475 50.4785
Desmeared curve 28.5563 26.2302 25.2406
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noise of the scattering curve measured by Lab-SAXS becomes

comparable to the scattering intensity, significantly degrading

the signal quality.

Notably, the 1D curve obtained from Lab-SAXS contains

only 100 data points, which is inconsistent with the dataset

used during pre-training. To align the scattering curve for

processing in DSNet, the tail of the 1D scattering curve must

be extended with a constant value until it reaches 501 data

points. This allows the scattering curve, along with the PSF, to

be input into DSNet for fine-tuning. As shown in Fig. 6(c), the

Wiener filter primarily smooths the scattering curve, partially

recovering the valley features. The Lake method exhibits

similar results to the Wiener filter, but with larger distur-

bances. In contrast, DSNet restores sharper peaks, bringing

the curve closer to the scattering data measured at SSRF (as

shown in Table 5).

The experiments on AgBeh powder and the 1D grating

structure thus demonstrated the efficacy of DSNet in miti-

gating the smearing effect in SAS measurement data. The

results highlight the robustness of DSNet to noise and its

strong generalization performance. Note that for the 1D

grating structure, while our desmearing result is promising,

some differences persist when compared with the SSRF

measurement. This discrepancy stems from the fact that our

current approach considers only the PSF induced by the

structure of the instrument. In practice, other factors, such as

the wavelength distribution of the light source and the spatial

resolution of the detector, also contribute to the overall

smearing effect. Addressing these additional factors will be a

key focus of future improvements to DSNet.

5. Discussion

Although DSNet has demonstrated promising efficacy in

mitigating the smearing effect in SAS measurements, it is

essential to recognize the limitations of this approach.

Firstly, the performance of DSNet is not equally effective

across all levels of smearing. As shown in Fig. 7, when a

Gaussian PSF with � = 8 � 10� 2 nm� 1 and noise level n� =

0.050 are applied to a 30 Å sphere, the smearing is too severe,

leading to peak overlap that DSNet cannot adequately

resolve.

Secondly, for a dataset of 100 curves, the pre-training time

for DSNet is approximately 25 s. During the fine-tuning

procedure, each iteration takes about 0.023 s. Reliable results

are typically achieved in fewer than 500 iterations, completing

the desmearing process in approximately 12 s. While the fine-

tuning time is acceptable in our current experiments, further

optimization is possible. Potential improvements include

increasing the diversity and quantity of the training set,

simplifying model parameters, or fixing certain parameters

during fine-tuning. These enhancements could enable inte-

gration of the method for online analysis of SAS data in future

work.
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Table 5
Performance comparison of different desmearing methods for the 1D
grating structure.

The values represent the MSE between the SSRF scattering curves and the
desmeared curves.

Desmearing methods Lake method Wiener filter DSNet

MSE 3.0769 3.3592 2.8517

Figure 6
Experimental and desmearing results of the 1D grating structure. (a)
Experimental 2D SAXS pattern using the SSRF SAXS instrument. (b)
Experimental 2D SAXS pattern using the Lab-SAXS instrument. (c) 1D
SAXS curve: SSRF I(q) (blue curve), Lab-SAXS I(q) (black curve), Lake
desmearing I(q) (green curve), Wiener filter desmearing I(q) (purple
dashed curve) and DSNet desmearing I(q) (red curve).

Figure 7
Desmearing results of the sphere with an extremely severe smearing
effect. The sample is a sphere with a uniform scattering length density and
a radius of 30 Å.
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Thirdly, although the current method enables rapid

generation of a desmeared scattering curve, it sacrifices

uncertainty information, which may impact subsequent

analyses that depend on precise error estimation. With the

ongoing advancement of deep learning, networks designed for

uncertainty analysis have also gained attention. For instance,

the Bayesian convolutional neural network based framework

(Xue et al., 2019) effectively addresses phase prediction and

uncertainty assessment during the imaging process, offering a

promising direction for future improvements in our work.

Finally, our current method still requires a system PSF as the

input for the desmearing process. However, the determination

of the PSF involves considering various factors, which could

impact the desmearing results. In future work, we will explore

a blind desmearing approach for SAS data that does not rely

on the PSF.

6. Conclusions

We have presented DSNet, the first deep-learning-based

desmearing method specifically designed for SAS measure-

ments. DSNet effectively integrates the processes associated

with the smearing of theoretical scattering spectra, minimizing

data requirements during pre-training prior to the fine-tuning

procedure. Through simulations, we have validated the effi-

cacy of DSNet in mitigating smearing effects. Moreover, our

method can be applied across different instruments and

samples without necessitating retraining. Both simulation and

experimental results demonstrate that DSNet achieves

superior desmearing capabilities, enhanced noise robustness

and excellent generalization performance, significantly

outperforming the classical Lake method and Wiener filter.

Though DSNet yields promising results, some minor oscilla-

tions were observed in the desmeared curves, likely due to

differences between the features of the pre-training data and

those of the experimental samples. Incorporating a wider

variety of sample structures during pre-training and refining

the network’s loss function may lead to improved desmearing

results. Future research will focus on further exploring the

application of deep-learning techniques in SAS desmearing,

aiming to reduce reliance on pre-training while enhancing the

smoothness and accuracy of desmearing results.
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