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Problem in Integrated Optical Critical
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Xiuguo Chen , Hao Jiang , and Shiyuan Liu

Abstract— In sub-28-nm nodes, existing optical critical dimen-
sion (OCD) metrology tools are challenging to simultaneously and
thoroughly meet the metrology requirements of the wafer-level
nanostructures in terms of measurement precision, efficiency,
and robustness. To tackle the challenge, we propose a Mueller
matrix ellipsometry (MME)-based integrated OCD metrology
(IM OCD) technique to achieve fast, accurate, and robust in-line
metrology of wafer-level nanostructures at advanced nodes. The
MME probe is integrated into the integrated circuit (IC) process
platform via a polar-coordinate stage, allowing high-throughput
measurement of the geometrical parameters of nanostructures
with 144 wafers per hour. Meanwhile, we propose an ensem-
ble learning-fused regression (ELFR) approach to improve
the solution to the typical inverse problem in nanostructure
metrology, effectively addressing the fluctuations in measure-
ment sensitivity and precision caused by the measurement
azimuth variations in the IM OCD. The essential of the ELFR
approach is the weighted averaging of the respective results
from ridge regression (RR) based on the Levenberg–Marquardt
algorithm and from bagging-mode neural networks (BMNNs).
It improves the metrology results of wafer-level nanostructures
to an ultrahigh coefficient of determination better than 0.93,
an average deviation, and a maximum deviation less than 1.0 and
2.0 nm, respectively. Characterizations of wafer-level shallow
trench isolation (STI) and interconnect-layer nanostructures have
demonstrated the feasibility and effectiveness of the proposed
MME-based IM OCD method, especially the capability of the
ELFR approach to suppress azimuthal-dependent errors.
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I. INTRODUCTION

IN INTEGRATED circuit (IC) manufacturing, the size
deviations or contour errors of the nanostructures on the

patterned wafers can easily lead to final performance devia-
tions, yield degradation, or functional failure of IC devices or
chips [1], [2], [3]. Therefore, it is essential in IC manufacturing
to accurately monitor the magnitude and consistency of the
critical dimensions (CDs) of nanostructures in each die before
the subsequent process of the wafers. With the semiconductor
industry struggling to manufacture devices with increasingly
smaller sizes and complex shapes, optical scatterometry has
played an increasingly essential role in the inline metrology of
CDs in IC manufacturing due to its outstanding advantages of
high sensitivity, nondestructiveness, high efficiency, and ease
of integration [4], [5], [6], [7].

Shallow trench isolation (STI) is a critical process in chip
manufacturing at sub-250-nm nodes. It enables insulating
isolation between active areas in the Si substrate by form-
ing shallow trenches on the Si substrate and filling them
with oxide [8], [9], [10]. The geometric features of STI
structures [11], [12], [13], such as the trench height, the
surface flatness, and the even coating height, are the most
critical parameters that should be accurately inline monitored
during the chemical mechanical polishing (CMP) process.
However, the measurement throughput of existing stand-alone
optical CD (OCD) tools based on optical scatterometry can
only reach several wafers per hour, which cannot match the
productivity of hundreds of wafers per hour for the CMP
process. Therefore, it is of great significance to integrate
the OCD metrology module into the CMP platform to form
the integrated OCD metrology (IM OCD) tool, thereby well
matching the metrology efficiency with the manufacturing
productivity, for ensuring the full metrology of all STI
wafers.

Spectroscopic reflectometry (SR) [14], spectroscopic ellip-
sometry (SE) [15], and Mueller matrix ellipsometry (MME)
are three typical OCD metrology techniques [16], which all
have the potential to be integrated into the IC process platform
to form the IM OCD tool. The SR-based IM OCD tool has
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been widely used to monitor the geometric parameters of
typical nanostructure fabricated by CMP or other processes,
such as trench height, top CD (TCD), and sidewall angle
(SWA) [17]. However, it usually faces the challenge of limited
accuracy in characterizing the complex nanostructures con-
tained with multilayer stacks or irregular holes or steps, since
it only captures the normal-incidence reflectance of samples.
Since SE can measure the polarization change of probing light
under an oblique incidence [15], [18], the SE-based IM OCD
tool can theoretically achieve higher metrology sensitivity in
characterizing complex multilayer stacks. However, SE cannot
sufficiently consider the effects of the incidence-plane azimuth
variation and the depolarization effects [19], which obstruct
the actual integration of this technique into the IM OCD tool.
Due to the ability to capture richer polarization scattering
information in the form of a 4 × 4 Mueller matrix [16],
[19], the MME typically offers higher measurement sensitivity
and adaptability than SR and SE, allowing for more accurate
measurement of complex nanostructures, especially the STI
and metal interconnection layer nanostructures. This highlights
the great potential of integrating the MME into IM-OCD.

However, the polar-coordinate wafer stage has to be utilized
in the IM OCD tool due to the seriously restricted installation
space, which will lead to different measurement azimuth
angles of various pads over the whole wafer [20]. The varia-
tions among the azimuth angles cannot be identified by the IM
OCD tool [20], [21], which further leads to an azimuth-related
modeling error in the forward optical model [21]. Meanwhile,
the model-based inverse problem solution invoked in the IM
OCD technique usually leads to azimuth-dependent variation
of the metrology sensitivity and precision when characterizing
complex nanostructures [22], [23], [24], [25], [26]. Also, the
first-order error propagation theory and the sensitivity-based
configuration optimization theory have demonstrated the dis-
tinct dependency of the inverse problem solutions’ consistency
and accuracy on the azimuthal angle [27], [28], [29]. With
IC process nodes further shrinking to the sub-28-nm nodes,
the perturbations caused by the azimuth-dependent metrology
variations in the measurement repeatability, reproducibility,
and stability will be unacceptable. Correspondingly, some
studies have tried to use various machine-learning techniques
to extract structural parameters directly from the measured
spectra [30], [31], [32], [33], which suppressed the measure-
ment inconsistency caused by azimuth variations and improved
the stability of the reconstructed parameters to some extent.
However, it is still challenging to thoroughly eliminate the
negative impact of azimuth variation on the accuracy of
structural parameter reconstruction using these methods due
to the random errors that always exist in the training set.
Therefore, it is of great significance to improve the inverse
problem solutions to alleviate significantly the influence of
the azimuth-caused errors mentioned above, which ensures
the measurement precision of the IM OCD techniques in
nanostructure metrology.

To tackle the abovementioned issue, an MME-based IM
OCD technique has been self-built to achieve fast, accurate,
and robust in-line metrology of wafer-level nanostructures for
advanced IC manufacturing. The MME probe is integrated into

the IC process platform via an automated polar-coordinate
stage, enabling the precise metrology of the wafer-level
nanostructures at a high throughput matching the CMP’s
productivity. An ensemble learning fused regression (ELFR)
method has been proposed to improve the solution of the
typical inverse problem in the self-built MME-based IM OCD.
The essential of the ELFR approach is the weighted averaging
of the respective extraction results from ridge regression (RR)
[34], [35] based on the Levenberg–Marquardt (LMRR) [36]
algorithm and bagging-mode neural networks (BMNNs). It is
also a fusion model of multiple machine-learning algorithms,
which is the first attempt within our knowledge to improve the
metrology precision of the IM OCD technique over the whole
wafer’s nanostructures.

The ELFR method procedure includes three steps: 1) using
the Levenberg–Marquardt (LM) algorithm to extract the initial
structural parameters from the measured Mueller ellipsometric
spectra for each pad in the wafer, and establishing an RR-based
mapping model from the initial structural parameters to the
baseline values; 2) achieving five structural parameter sets
using the BMNNs with cross-validation function; and 3) deter-
mining the final output using the weighted averaging of the
respective extraction results of LMRR and BMNN. Besides,
the optimal weight set [37] has been searched to ensure the
optimal output results and the selectable configuration window.

The main contributions of this study are as follows.
1) To the best of our knowledge, the MME was first

introduced into the IM-OCD tool to thoroughly meet the
increasing inline metrology requirements for advanced
IC manufacturing regarding measurement precision, effi-
ciency, robustness, and adaptability.

2) The ELFR method has been proposed to improve the
solution to the typical inverse problem in nanostruc-
ture metrology, effectively addressing the fluctuations
in measurement sensitivity and precision caused by the
measurement azimuth variations in the IM OCD. The
proposed method improves the metrology results of
wafer-level nanostructures reported by the MME-based
IM OCD to an ultrahigh coefficient of determination
better than 0.93, an average deviation, and a maximum
deviation less than 1.0 and 2.0 nm, respectively.

3) It is feasible to achieve optimal metrology precision and
a selectable weight-setting window by optimizing the
critical systematic parameters such as the weights.

The rest of the article is organized as follows. The second
part introduces the implementation details of the method, the
results and discussions are shown in the third part, and the
conclusion is summarized in the fourth part.

II. METHODOLOGY

A. MME-Based IM OCD Technique

As shown in Fig. 1(a), an MME probe has been integrated
into the CMP process platform with a seriously restricted
installation space via an automated polar-coordinate wafer
stage, forming the first MME-based IM OCD tool to the best
of our knowledge. The polar-coordinate wafer can scan every
inspected site on the entire wafer using rotation and x-axis lin-
ear motions, leading to incident planes with different azimuthal
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Fig. 1. (a) Schematic of the Mueller matrix-based IM OCD tool. (b) Schematic of the MME probe used in the IM OCD tool. (c) Azimuthal angles to the
measurement plane at different probing sites.

angles for each probing site pad over the whole wafer. This
integration strategy allows for the high-throughput measure-
ment of wafer-scale nanostructures via the MME-based IM
OCD technique at 144 wafers per hour. The MME probe
consists of a light source, a polarization state generator (PSG)
with a rotating compensator, a polarization state analyzer
(PSA) with another rotating compensator, and a detector [38],
[39], [40], which can capture the Mueller matrix spectra
of every site via the modulation and demodulation of the
probe beam’s polarization state based on a double-rotating
compensator framework. Correspondingly, the systematic prin-
ciple is shown in Fig. 1(b). The captured Mueller matrix
spectra are retrieved from the time-harmonic changes of the
polarization state caused by the interaction between the probe
beam and the nanostructure [41]. It should be noted that the
Mueller matrix spectra measured by the self-built IM OCD
tool are manifested as a 4 × 4 matrix, which will be con-
verted into a k-dimensional vector Ymeas = [y1, y2, . . . , yk]T

to facilitate calculation. The dimensional number k satisfies
the relation k = 16 × nλ , where nλ represents the wave-
length number. Correspondingly, the structural parameters are
expressed as an n-dimensional vector P = [x1, x2, . . . , xn]T,
which can be extracted by fitting the measured Mueller
matrix spectra with the theoretical spectra [28]. The process
is essentially a numerical solution to the inverse problem
using the Levenberg–Marquardt (LM) nonlinear regression
algorithm [16], [22], [23], [42].

Fig. 1(c) presents a schematic of detecting nominally identi-
cal STI nanostructures at different locations within the wafer.
Since the MME probe is fixed and stationary, each probing
site has to be moved into the detection light spot via the
rotation and translation operations of the polar-coordinate
wafer stage. Correspondingly, as shown in Fig. 1(c), nominally
identical nanostructures “A,” “B,” and “C” would correspond

to different incidence azimuthal angles, which cannot be
accurately identified by the IM OCD tool. That is the origin
of the azimuth-dependent error in the MME-based IM OCD
tool. In order to ensure the measurement consistency of the
instrument itself, the azimuthal angle-related error urgently
needs to be corrected and suppressed.

Without loss of generality, the Mueller matrix spectra cap-
tured by the IM OCD tool usually contain systematic and
random errors [42], leading to absolute bias and metrology
consistency bias in the extraction parameters. Herein, the
systematic error can be understood as the model error caused
by the variation in azimuth angle, while the random error
can be understood as the random noise in the light intensity.
According to the first-order error propagation model [28], [29],
[42], the impact of systematic errors µM and random errors σ M
in the Mueller matrix spectra on extraction parameters would
change with the azimuth angle of the incidence plane, which
can be expressed as the following formula [29]:

JT
PWJP1P = JT

PW1Y = JT
PW(µM + σ M) (1.a)

[JP]i j =
∂ f i (P, a)

∂x j
(1.b)

where JP represents the Jacobian matrix, in which each
element is the partial derivation of the forward optical model
f(P, a) with respect to P. Vectors 1P and 1Y = µM + σ M
are the errors in the extracted parameters and the measured
Mueller matrix, respectively. Vector a = [a1, a2, . . . , am]T

represents the measurement configuration, which contains the
azimuthal angle of the measurement plane. Diagonal matrix
W consists of a series of weighing factors wi , each of which
is the variance of the measured Mueller matrix element at the
i th wavelength.

Considering that other configuration parameters, except the
azimuth angle of the incidence plane, will not change in actual
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Fig. 2. Flow of ensemble learning-fused solution method for extracting the nanostructure parameters.

measurements, it can be easy to find that the Jacobian matrix
JP will show apparent dependence on the azimuth angle.
Thus, the error propagation coefficient (JT

PWJP)
−1JT

PW will
also exhibit significant distinction at different azimuth angles,
which serves as the theoretical basis for the azimuth-dependent
metrology error in the nanostructure metrology using self-built
IM OCD tool.

B. Ensemble Learning-Fused Regression Method for
Parameter Extraction

In conventional IM OCD technique-based characteriza-
tion of nanostructures, the parameter extracted by the LM
algorithm is usually regarded as the final result. However,
the LM algorithm often produces inaccurate results in the
IM OCD due to the local optimal searching strategy and the
strong dependence of extraction results on the azimuth angle.
Herein, an ELFR method is proposed to improve the solution
of the typical inverse problem in the self-built MME-based
IM OCD. The essential of the ELFR approach is the weighted
averaging of the respective extraction results from the LMRR
and BMNN algorithms. The corresponding algorithm prin-
ciple is shown in Fig. 2, and the detailed description is as
follows.

First, as shown in the left part of Fig. 2, the OCD structural
parameters are solved using the LM nonlinear regression
algorithm, and these parameters are then used as the dataset
Pfitting to train the mapping model to the baseline dataset Pbsl
using the RR method.

This RR method-based mapping model, combined with the
LM nonlinear regression algorithm, jointly generates structural
parameters from the measured Mueller matrix spectra, denoted
as P6. Unlike previous studies that map spectra to results [21],
this method directly maps results to results and is referred to
as the RR based on the LMRR. The detailed description of
the RR method can be found in [35] and [36].

Second, as shown in the right part of Fig. 2, the Mueller
matrix spectra are randomly divided into five datasets, and the
BMNN can train five different mapping models through both
the dataset segmentation and the cross-validation sampling,
which will produce five structural parameter sets Pi with
i = 1–5. In this process, the activation function used is the
Sigmoid function, and the corresponding results are denoted
as P1 to P5. The advantage of the BMNN-based models lies
in their ability to effectively integrate multisource data and
automatically learn complex features [43], thereby enhancing
the expressive capability and robustness of the five models.

The BMNN based on the multilayer perceptron strategy is
first constructed to realize the parameter extraction, in which
the mapping relationship P = f−1(Ymeas) from the measured
Mueller matrix spectra Ymeas to the structural parameter P
will be learned. In this multilayer perceptron neural network,
each component layer uses linear equations to calculate the
output, accompanied by using the sigmoid activation function
to quantify the nonlinear changes between adjacent layers.
Thus, the layer output function O can be estimated by the input
I, the neural weight w, the bias b, and the sigmoid activation
function σ(x)

o = σ(x) · [w · I + b] =
1

1 + e−x
· [w · I + b]. (2)

Then, the weighted averaging of the structural parameter
set P6 reported from the LMRR algorithm and the param-
eter sets P1–P5 determined by the BMNN algorithm will
output the ultimate results. Assigning a weight w1 to the
structural parameter set P6 and a weight w2 to the structural
parameter set P1–P5, the ultimate structural parameter can be
obtained

Pu = w1P6 + w2

5∑
1

Pi (3.a)

w1 + 5w2 = 1. (3.b)
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Fig. 3. Basic information about STI samples. (a) Schematic of STI nanostructure specimen. (b) Height distribution of the validation test specimen reported
by the OCD metrology golden tool. (c) Cross-sectional TEM view of the STI nanostructure. (d) Azimuthal angle distribution in the wafer reported by the IM
OCD tool.

Further optimizing the weights w1 and w2 under the con-
straint can improve the accuracy of Pu, which will be explained
in the subsequent discussion. The specific steps of weight
optimization are as follows.

1) Traversing w1 in the range of [0, 1] with an inter-
val of 0.05. Correspondingly, w2 can be calculated
through (3.b).

2) Calculating the covariance R2 and the absolute deviation
εbias between the metrology and benchmark results under
every weight set (w1, w2). The covariance R2 is also
referred to as the coefficient of determination, which
not only characterizes the overall error between the
measurement result Pu and the benchmark result Pbsl
but also quantifies the measurement consistency

R2
= 1 −

∑n
i=1

[
pu(ri ) − pbsl(ri )

]2∑n
i=1

[
pu(ri ) −

∑n
i=1 pu(ri )

/
n
]2 (4)

where pu symbolizes any component element in Pu,
while pbsl represents any component element in Pbsl.
Position vector ri with i = 1–n scans measurement sites
over the entire wafer. The maximum value of R2 can
reach one, and the larger the value of R2, the smaller the
overall error. The deviation εbias characterizes the abso-
lute error between the measurement and the benchmark
results, implying that the smaller the deviation εbias, the
higher the accuracy of the measurement results

εbias = Pu − Pbsl. (5)

3) Using R2
≥ 0.93, mean{|εbias|} < 1 nm, and

max{|εbias|} < 2 nm as criteria for judgment, and select
the optimal range of w1.

Furthermore, the proposed method will train these two
LMRR- and BMNN-based models using the Mueller matrix
spectra and the corresponding structural parameter sets from
standard wafer specimens. Subsequently, the metrology results
obtained from validation test wafers will be employed to
validate the effectiveness of the proposed method.

TABLE I
DETAILED MEASUREMENT CONFIGURATIONS

III. PROTOTYPE IMPLEMENTATION

The parameter extraction results of the ELFR method have
been compared to those reported by the LM nonlinear regres-
sion, the LMRR method, and the BMNN method in the manner
of the ablation study, highlighting the improved effect of the
proposed method on the inverse extraction of the structural
parameter. In the measurement experiment, a typical 1-D
periodic multilayer grating reflecting the STI nanostructure
feature was used as the measured specimen, which consisted
of a Si grating layer, a SiO2 film layer, and a Si3N4 grating
layer, as shown in Fig. 3(a). In the metrology experiment, only
the TCD, the Si3N4 grating height (HSi3N4), the trench height
(HTrench), and the SWA were set as floating parameters, which
were the key parameters of the STI structure. Other structural
parameters, such as SiO2 film thickness (HTHK), are fixed as
constants due to their minimal impact on the measured Mueller
matrix spectra.

The detailed configurations for characterizing the wafer
specimens are shown in Table I. These simplified treatments
can significantly reduce the complexity and ill-posedness of
solving inverse problems [44], ensuring the effectiveness and
expedience of structural parameter extraction. Moreover, these
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simplifying are even more in line with the requirement of
monitoring the STI process, which primarily focuses on trench
height HTrench.

It needs to be emphasized again that the MME probe
(ME-L, Wuhan Eoptics Technology Company, China) of the
IM OCD tool is responsible for capturing the Mueller matrix
spectra covering a wavelength range of 210–800 nm, and the
polar-coordinate wafer stage realizes the scanning of each
measurement site over the entire wafer. Four 12-in wafers
with 83 test sites were used as experimental measurement
specimens, three of which served as standard specimens
to train the extracted model and analysis method, and the
remaining of which served as the validation test specimen
to verify the proposed method. The trench height distribution
of the validation test specimen was characterized using the
OCD metrology golden tool (SpectralShapeTM 10k, KLA
Corporation, USA) [45], whose measurement results have been
extensively validated by global users through high-resolution
scanning electron microscope (SEM) or transmission electron
microscope (TEM) cross-sectional observations [45], [46],
[47]. The corresponding results are shown in Fig. 3(b). From
the contour map presented in Fig. 3(b), it can be easily
found that the trench height HTrench of 83 probing sites on
the validation test specimen is distributed between 280 and
287 nm, mainly concentrated around 282.55 nm. The trench
height HTrench of several sites in the validation test specimen
has been randomly verified using cross-sectional TEM obser-
vation (Tecnai G2 F30 S-TWIN, FEI Company, Netherlands),
in which the representative characterization result at the sixth
site in the second row on the specimen is presented in Fig. 3(c).
It can be easily noticed that the trench height at this site is
285.9 nm, which is highly consistent with the observation
results of 285.7 nm, as shown in Fig. 3(b). Given the OCD
metrology golden tool’s de facto benchmark capability and the
high consistency demonstrated by our sampling testing based
on the cross-sectional TEM viewing, the metrology results
shown in Fig. 3(b) would serve as a benchmark to verify the
feasibility and accuracy of the proposed method. Meanwhile,
the geometrical profile of the STI nanostructure presented
by cross-sectional TEM viewing also confirms the rationality
of the geometric description of the nanostructure shown in
Fig. 3(a) for the forward optical modeling [48]. Fig. 3(d)
shows the azimuthal angle distribution of the validation test
specimen, namely the angle between the incidence plane
and the grating periodic orientation at each site, which is
determined by the notch sensor attached to the self-built IM
OCD tool. The azimuthal angles of each measurement site are
dispersed in the range of −90◦ to 90◦, which will make the
measurement precision of the IM OCD tool strong azimuth
dependence. Moreover, the azimuthal angle distribution will
introduce apparent errors in the measurement consistency of
the trench height HTrench.

This study explicitly verifies the metrology accuracy of
the proposed method in characterizing HTrench, which is one
of the most critical parameters of the CMP-processed STI
structures. The primary experimental goal is to improve the
coefficient of determination R2 between the prediction result
of the test set and the target result to make it better than
0.93, which is set by introducing an additional tolerance

threshold into the conventional requirement of R2
= 0.90 used

for IC inline metrology. The second goal is to ensure the
small magnitude of mean and maximum absolute deviations,
requiring them to be less than 1 and 2 nm, respectively.
Emphasizing again, by drawing on the ablation study strategy
widely used in machine learning and comparing the coefficient
of determination R2, the mean and maximum values of εbias
of the results obtained by the ELFR, the LM, the RR, and the
BMNN, it can be more objective to evaluate and reveal the
mechanism of the ELFR method in improving measurement
results.

IV. EXPERIMENTS AND RESULTS

A. Influence of Measurement Azimuth Angle on
Reconstruction Precision by MME

A typical simulation experiment for the metrology process
based on the IM OCD tool also proved the influence of the
measurement azimuth angle on the extracted trench height
HTrench. The simulation flow is shown in Fig. 4(a), in which
both the forward optical model and the ellipsometry system
model are derived from previous research work [19], [23],
[28], [48]. Given the nanostructure and its geometrical param-
eters shown in Fig. 3(a), the theoretical Mueller matrix can
be calculated using the forward optical model under different
measurement configurations dominated by the azimuth angle.
The essence of this process is the simulation of the interaction
between the probe beam and the nanostructure. Subsequently,
with the given systematic parameters of the PSG and PSA,
different Hadamard components can be calculated using the
ellipsometry system model [48], [49], which essentially simu-
lates the MME probe’s measurement function. By introducing
a system error of 1% into a typical system parameter of the
PSA, such as the phase retardance, the ellipsometry system
model can be used to generate the “measured” Mueller matrix
for the given nanostructure. Then, the LM nonlinear regression
algorithm is used to solve the corresponding inverse problem
to obtain the “measured” geometrical parameters, which will
be compared with the previously input parameters to evaluate
the “measurement bias.” At this time, the measurement bias
distribution under different azimuth angles will intuitively
reveal the tool’s artifacts caused by the azimuth angle in the
measurement consistency of the IM OCD tool, which is what
the proposed method strives to suppress or eliminate.

In the simulation experiment, the trench heights were set
to 60 random values in the range of [273, 286 nm], and the
azimuth angles were set to 60 random values at an interval
of [−90◦, 90◦]. In contrast, other input parameters were
assigned to the fixed values, as shown in Table I. The trench
heights and azimuth angles were combined in pairs to form
60 sets of input conditions for the simulation flow shown in
Fig. 4(a), which would output 60 “measured” trench heights.
The correlation between the output values Hout and the input
values Hin of the trench height is exhibited in Fig. 4(b). The
linear regression result y = 0.756x + 66.87, accompanied by
a coefficient of determination R2

= 0.142, indicates fragile
consistency between the input and output values, which can
be attributed to the azimuth angle-dependent measurement
error. The azimuth angle-dependent measurement biases with
large magnitudes shown in Fig. 4(c) also confirm the above
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Fig. 4. Simulation flow and corresponding results for the IM OCD-based metrology experiment. (a) Simulation flow. (b) Consistency estimation of input
and extracted HTrench. (c) Azimuthal angle dependency of absolute bias εbias.

Fig. 5. Illustration of the fitting results of calculated and measured Mueller matrix spectra.

inference, in which the coefficient of determination R2
=

0.956 shows extremely high credibility for the inference.
The above observation suggests that the IM OCD tools will
exhibit significant artifacts in the measurement consistency
when measuring nanostructures at different sites, which cannot
be thoroughly eliminated using measurement configuration
optimization. Besides, it can be noticed that large deviation
εbias mainly appears at the azimuth angles of −90◦ and 90◦

because of the sharply decreased metrology sensitivity at the
two azimuthal angles. Moreover, the off-diagonal elements
in the Mueller matrix also gradually disappear at the two
azimuthal angles, which will undoubtedly reduce the effective
scattering signal. Similar phenomena will also be observed in
the actual metrology results of the validation test specimen,
which will be explained in Sections IV-B and IV-F.

B. LM Nonlinear Regression Results
It is straightforward to determine the trench height HTrench

using the LM nonlinear regression method to fit the measured
Mueller matrix spectra of the validation test specimen. The
corresponding fitting result is shown in Fig. 5, with the trench
height HTrench determined as 283.55 nm. It is easy to notice
that the match between the calculated and experimental spectra
is satisfied, demonstrating the reasonability of the extracted
structural parameters and the forward optical model describing
the STI nanostructure.

Similar to the fitting results shown in Fig. 5, the Mueller
matrix spectra measured at the other 82 probing sites can also
be well-fit. Fig. 6(a) exhibits the mean squared error (MSE)
values for all 83 probing sites on the validation test specimen
clearly, showing a range of 21–32 and a mean value of 26.92.
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Fig. 6. Extraction results of LM nonlinear regression analysis. (a) MSE values
for all 83 probing sites reported by the LM nonlinear regression analysis.
(b) Comparison between the extraction and benchmark results. (c) Azimuth
dependency of the absolute deviations εbias.

With the benchmark data reported by the OCD golden tool
shown in Fig. 3(b) and the trench height HTrench determined
by the LM nonlinear regression used as the independent
and dependent variables, respectively, the correlation between
these two variables could be checked thoroughly. It would
facilitate for revealing the measurement accuracy of the LM
regression analysis based on the MME-based IM OCD tool.

Correspondingly, the correlation analysis results are shown
in Fig. 6(b), in which their linear regression analysis result
has also been presented. The dispersed distribution of dis-
crete points and the coefficient of determination R2

=

0.587 simultaneously reveal the weak linear correlation
between the independent and the dependent variables, indi-
cating insufficient accuracy of the trench depth extracted by
LM nonlinear regression. Moreover, the linear regression result
y = 0.9097x + 25.24 deviates from the straight-line equation
y = x , especially involving the slopes of these two linear
equations, which intuitively shows non-negligible deviations
between the extracted results and the benchmark results.
Ideally, the correlation between the extracted value and the
baseline value should be approximately described by y = x
or y = x + c, in which the slope value of 1 accompanied by
a calibratable constant intercept c corresponds to satisfactory
consistency. This rule of thumb has been widely adopted for
OCD inline metrology in the IC production lines. The linear
equation y = 0.9097x + 25.24 suggests that the LM nonlin-
ear regression results have not yet reached the OCD online

measurement accuracy requirements of the CMP process seg-
ment used for the STI nanostructure.

Furthermore, the measurement deviations εbias between the
extraction and benchmark results at each probing site, as a
function of the measurement azimuth angle, are shown in
Fig. 6(c). All deviations εbias are dispersedly distributed in
the range of −3 to 2 nm, among which the overall mean
and maximum values are 0.970 and 3.005 nm, respectively,
as shown in Table II. This result shows that the maximum
absolute error exceeds the preset threshold for ensuring the
accurate metrology of the trench height. Meanwhile, Fig. 6(c)
also shows the parabolic function fitting results of the devia-
tion changing with the azimuthal angle, where the parabolic
equation is y = 0.00042x2

− 0.00024x − 1.406. The corre-
sponding coefficient of determination R2

= 0.7661 indicates
that the parabolic dependence of the absolute deviation εbias on
the azimuthal angle is reasonable to a certain extent. Namely,
the parameter extraction error of the LM nonlinear regression
varies with the measurement azimuth angle. Similar to the
simulation result shown in Fig. 4(c), the absolute deviation
εbias reaches the maximum values at the azimuthal angles
of ±90◦ and 0◦. The deviation εbias reaches a minimum
value close to 0, as the measurement azimuth angle is ±58◦.
Thus, it can be inferred that the sharply decreased metrology
sensitivity at the azimuthal angles of ±90◦ and 0◦, combined
with the gradual disappearance of the off-diagonal elements
in the Mueller matrix, jointly explains why the LM nonlinear
regression would introduce artifact errors in the measurement
consistency of the trench depth.

C. LMRR Method Results

Fig. 7(a) exhibits the trench height extracted by the LMRR
method, in which each discrete point implies the consistency
between the extracted and benchmark results. Most points
are distributed near the empirical equation y = 0.9853x −

4.70 produced by the linear regression, which presents high
consistency between the extracted and benchmark values of
trench depth. Both the slope of 0.9853 and the corresponding
coefficient of determination R2

= 0.9178 are better than the
values determined by the LM nonlinear regression analysis,
indicating significant improvement in the measurement pre-
cision. The absolute deviation εbias shown in Fig. 7(b) are
primarily concentrated in the range of 0.5418 ± 0.4410, where
0.5418 and 0.4410 represent the mean value and standard devi-
ation of the overall absolute deviations, respectively, as shown
in Table II. It can also be noted that the maximum absolute
error is only 1.29 nm, which is approximately 57.07% smaller
than the corresponding value determined by LM nonlinear
regression analysis.

Moreover, the deviation no longer exhibits apparent depen-
dence on the measurement azimuthal angle, which shows
that the RR method can effectively eliminate the artifact
error in the measurement consistency of the trench height
mentioned above. However, the coefficient of determination
R2

= 0.9178 has not yet reached the preset threshold R2
=

0.93, which means that the LMRR method needs to be
further improved to improve the selectivity of the measurement
configuration for the IM OCD tool. Compared with the results
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TABLE II
ABLATION STUDY OF EXTRACTION RESULTS FROM THE ELFR, THE LM, THE LMRR, AND THE BMNN ALGORITHMS

Fig. 7. Extraction results of the LMRR method. (a) Comparison between
the extraction and benchmark results. (b) Deviation distribution. (c) Azimuth
dependency of the absolute deviations εbias.

shown in Fig. 6(c), Fig. 7(c) indicates that the LMRR method
narrows down the range of deviation εbias. Besides, at azimuth
angles of ±90◦ and 0◦, slightly larger deviation εbias close to
±1 can be still noticeable.

D. BMNN Method Results

The measured Mueller matrix spectral data of all probing
points on the above three standard wafers were randomly
divided into five subsets, four of which were used for training
the neural network, and the remaining of which was used for
testing the neural network. Such a post-processing strategy
will produce five neural network models for cross-validation
with each other. By applying these five neural network models
to the extraction of trench height HTrench of the validation test
specimen, the corresponding analysis results can be obtained,
as shown in Table II. According to the ablation study results
shown in Table II, the coefficient of determination R2 deter-
mined by each cross-validation neural network model is mostly
around 0.86–0.89, and the maximum absolute deviation is
always greater than 2 nm, which indicates that a single neural
network-based extraction method cannot ensure the desired
metrology accuracy of HTrench. Besides, the five coefficients
of determinations R2 are highly consistent, as are the five
maximum absolute deviations and the five average absolute
deviations. This reveals that the cross-validated neural network
is highly immune to random noise in the measured spectra.

Fig. 8 illustrates the deviation distribution with azimuthal
angle obtained by the BMNN method across five different
datasets. The results suggest that the consistency and accuracy
of the extracted parameters are not significantly affected by the
dataset selection. Furthermore, a comparison with the results
presented in Fig. 6(c) reveals significant differences in the
azimuthal distribution of the deviation εbias determined by the
BMNN and LMRR methods. Notably, when the azimuthal
angles are around ±90◦ and 0◦, the deviation range (−1.0,
2.5 nm) determined by the BMNN method is smaller than
that range (−3, 2 nm) determined by the LM algorithm, but
is larger than the range (−1.0, 1.0 nm) determined by the
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Fig. 8. Azimuthal dependent deviation εbias determined by the BMNN
method.

Fig. 9. Extraction results of ensemble learning-fused nonlinear regression.
(a) Consistency comparison, (b) bias distribution εbias, and (c) azimuth
dependency of deviation εbias.

LMRR method. Particularly near the azimuth angle of 0◦,
the absolute deviations determined by the LMRR and BMNN
methods exhibit an opposite sign. These observations provide
a rationale for optimizing the weighted average algorithm.

E. ELFR Method Results
Introducing a weighted summation strategy, that is, a weight

factor w1 = 0.5 is assigned to the extraction result of the
LMRR method, and a weight factor w2 = 0.1 is assigned to
each of the five results from the BMNNs, the final extraction
value of the trench height HTrench can be determined. This
is the extraction result determined by the proposed ELFR
method, which will have the advantages of both the LMRR
method and the BMNN model, such as high accuracy and
robustness. The corresponding coefficient of determination R2

and the bias distribution εbias are shown in Fig. 9(a) and (b),

respectively. The R2, mean{|εbias|}, and max{|εbias|} are
0.937, 0.631 nm, and 1.592 nm, respectively, all of which
satisfy the target requirements for the metrology of trench
height of the STI nanostructure. It is easy to notice that
the coefficient of determination and absolute deviations are
significantly better than the results extracted by both LM
nonlinear regression analysis (labeled as “LM” in Table II)
and single neural network model (labeled as “Neural Network
1” to “Neural Network 5” in Table II). Compared with the
LMRR analysis results (labeled as “LMRR” in Table II), the
coefficient of determination R2 and maximum absolute devi-
ation of the trench height extracted by the ELFR method are
significantly better than the results determined by the former,
while the mean absolute deviation is roughly equivalent to the
results determined by the former. These comparative results
reveal that the ELFR method has more excellent parameter
extraction capabilities than the LMRR and BMNN analysis.
Moreover, by adapting the number of cross-validated neural
networks in the BMNN algorithm, we can obtain other types
of ELFR methods via the combination of the LMRR and
the adapted BMNN algorithms. The corresponding ablation
experimental results are presented in Table II. The proposed
ELFR method (labeled as “LMRR + BMNN5” in Table II)
has the highest coefficient of determination R2

= 0.937, which
implies that the optimal number of cross-validated neural
networks is five. This might be attributed to the limited-sized
dataset.

Furthermore, the self-consistency check of the ELFR
method has been carried out. The trench heights of the
83 probing sites on the validation test specimen extracted
by the proposed method are all within the range of [280.98,
288.16 nm], and most of them are distributed near the fitting
straight-line function y = 1.084x − 23.13. The average trench
height is 283.16 nm, highly consistent with the average value
of the given benchmark results with a relative deviation of
0.22%. Moreover, the absolute deviation between the average
height and the reference value of 285.9 nm determined by
the TEM observation is only 2.74 nm, meaning that the
relative deviation is less than 1%. This result also indicates
the accuracy of the parameter extraction of the proposed ELFR
method. The sites with slight significant differences between
the extraction and the benchmark results are mainly distributed
at the edge of the validation test wafer, possibly due to the low
positioning accuracy of the R-theta stage at the border.

Fig. 9(c) shows the distribution of the deviation εbias of
the trench height at 83 probing sites as the function of the
measurement azimuth angle. The dispersed distribution of εbias
shown in Fig. 9(c) indicates no clear correlation between εbias
and the azimuth angles. The result suggests that the ELFR
method can effectively eliminate the artifacts caused by the
azimuthal angle distribution in the extracted parameters, which
ensures the performance of the MME-based IM OCD tool
regarding measurement consistency.

Meanwhile, the trench heights extracted by the ELFR
method can be input into the forward optical model of the
nanostructure at each site, accompanied by floating the other
four parameters listed in Table I, which leads to the matching
result between the calculated and measured Mueller matrix
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Fig. 10. (a) Coefficient of determination R2 and (b) maximum absolute
deviation determined by the ELFR method under different weight vector [w1,
w2]T of STI sample.

spectra. The matching degree between the measured and
calculated spectra of each element in the Mueller matrix within
the entire wavelength range of [320, 800 nm] is satisfactory,
which undoubtedly reveals that the fixed trench height HTrench
is physically reliable and accurate.

Furthermore, the influence of weighting factors on the mea-
surement accuracy of the ELFR method has been investigated
using the traversing method. Under the constraint condition
w1 + 5w2 = 1, by traversing the value of weight w1 in the
range of [0, 1] with a step size of 0.05, the trench height
HTrench and their coefficient of determination R2 and maximum
absolute deviation under each weight vector [w1, w2]T can be
calculated using the ELFR method. The calculated coefficient
of determination R2 and maximum absolute deviation are
presented in Fig. 10(a) and (b), respectively.

According to the results shown in Fig. 10(a), as the weight
factor w1 increases from 0 to 1, the coefficient of determination
R2 will continue to increase from 0.879 and reach a peak of
0.945 at w1 = 0.65 and then decrease to 0.918. With parabolic
function-based regression analysis, the empirical function y =

−0.1658x2
+ 0.2116x + 0.8753 with a coefficient of deter-

mination of 0.9924 can be obtained, which will describe the
dependence between the coefficient of determination R2 and
the weight w1 more accurately. By solving the parabolic
equation −0.1658x2

+ 0.2116x + 0.8753 = 0.93, it can
be found that when the weight w1 takes a value within the
range of [0.3601, 0.9161], the coefficient of determination will
always satisfy the target condition R2

≥ 0.93. Moreover, as the
weight w1 reaches 0.6381, the coefficient of determination R2

will get the maximum peak of 0.9428.
As for the maximum absolute deviation shown in Fig. 10(b),

it first decreases to the minimum value and then slowly grows,
with the weight w1 increasing. The empirical function y =

1.524x2 – 3.0x + 2.7 with a coefficient of determination of
0.9862 can be determined using the parabolic function-based
regression analysis, describing the weight dependency of the

maximum absolute deviation reliably. Moreover, as the weight
w1 becomes larger than 0.2705, the maximum absolute devia-
tion will always satisfy the target condition max(εbias) ≤ 2 nm.

Due to the fitting error of the parabolic function-based
regression analysis, this empirical equation indicates that the
maximum absolute deviation will reach the minimum value of
1.2236 nm at the weight w1 = 0.9843. At the same time, the
actual test shows the weight w1 = 0.65 to get the minimum
value of the maximum absolute deviation. By calculating
the intersection between the selectable weights revealed in
Fig. 10(a) and (b), it can be straightforward to determine
the weight range as the [0.3601, 0.9161], which enables
the coefficient of determination R2 and the maximum abso-
lute deviation simultaneously satisfying the target threshold
requirements. Namely, by configuring the weight w1 within the
range of [0.3601, 0.9161], the ELFR method can extract more
accurate trench height HTrench than the original LM nonlinear
regression method and the LMRR method. Meanwhile, the
weights vector [w1, w2]T

= [0.65, 0.07]T is the optimal
solution for reaching the peak value of R2 and the valley
value of the maximum absolute deviation, respectively, which
implies the most satisfactory measurement precision of the IM
OCD tool. It should be emphasized that the selectable range
and optimal configuration of the above weight factors are of
guiding significance to ensure the best performance of the IM
OCD tool in the CMP process section of STI nanostructure and
the adaptability to complex working conditions of advanced
IC manufacturing.

F. Another Experimental Results
To assess the robustness of the ELFR method, a sample

structure from the metal interconnection layer process, denoted
as Metal 2 (M2), is chosen for validation. The structure of the
M2 sample consists of an oxide layer deposited on the Si
substrate, followed by a SiNx layer, and then another thicker
oxide film layer. Voids are etched into this oxide layer to create
a specific shape, after which metal tungsten (W) is filled into
these voids to prepare the nanostructure. The structural details
of the M2 sample are depicted in Fig. 11. To simplify the
forward optical model and enhance the parameter extraction
effectiveness, specific structural parameters that minimally
affect the spectrum are set as fixed values. The primary
variables include the TCD, bottom CD (BCD), height of the
tungsten metal layer (HW), and total height of silicon dioxide
(HAll). Among these parameters, particular focus is placed on
the structural parameter HW. The detailed measurement con-
figurations for characterizing specimens are shown in Table III.

The metrology process of the M2 experiment is the same
as that of the STI structure. First, the HW result is extracted
using the LM method, and another HW result is obtained using
the ELFR method. Finally, the results are compared, which is
shown in Fig. 12.

Fig. 12(a) illustrates the coefficient of determination R2

of the results extracted by the LM algorithm, yielding
an R2 value of 0.4076, accompanied by more significant
azimuth-dependent errors shown in Fig. 12(b). In contrast,
the extracted results of the ELFR method have a coefficient
of determination R2

= 0.929 and a suppressed azimuth
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TABLE III
DETAILED MEASUREMENT CONFIGURATIONS OF M2

Fig. 11. Structural information of M2 samples. (a) Schematic of M2 nanos-
tructure specimen. (b) Cross-sectional SEM view of the M2 nanostructure.

dependency of the deviation εbias, as shown in Fig. 12(c)
and (d). And the range of the deviation εbias shrinks from (−13,
−4 nm) to (−2.0, 1.2 nm). The output range of HW determined
by the ELFR method is [62.25, 71.57 nm], with an average
value of 67.24 nm, similar to the SEM characterization result
of 67.74 nm. Optimization results of the weight factors are
depicted in Fig. 13(a) and (b). It can be observed that the range
of w1, ensuring R2

≥ 0.93 and max(εbias) ≤ 2 nm, is [0.55,
0.9]. Remarkably, when the weight w1 approaches 0.7, R2

reaches the maximum value of 0.94, with the maximum
deviation εbias being only 1.9 nm. These experimental results
highlight the scalability of the ELFR method.

G. Discussion
The conventional IM-OCD tool primarily integrates the

SR and SE probing module to characterize the geometrical
parameters of nanostructures, such as linewidth, line height,
and SWA. As for complex nanostructures containing multi-
layer pattern stacks, grooves, and holes, it will be challenging
to ensure measurement accuracy and adaptability using this
method. Herein, it is full of practical significance to self-build
the MME-based IM OCD tool to meet increasingly strict inline
metrology requirements of the wafer-level nanostructure. How-
ever, its metrology precision suffers a non-negligible loss, due
to the variations in incidence azimuth angles caused by the
polar-coordinate wafer stage.

Fig. 12. Result of the ELFR method. (a) Coefficient of determination R2

and (b) azimuthal-dependent deviation εbias of the results extracted by the
LM method. (c) R2 and (d) azimuthal-dependent deviation εbias of the results
extracted by the ELFR method.

Differing from the LM algorithm [36], [49], library search
strategy [22], and the typical machine learning algorithm [32],
[50], the proposed ELFR method utilizes the weighted averag-
ing of the respective extraction results from the LMRR and the
BMNN algorithms to improve nanostructure reconstruction in
the MME-based IM OCD technique. The LMRR algorithm
adopts an RR strategy to construct and train a mapping model
from the structural parameters extracted by the LM algorithm
to the final structural parameters instead of directly mapping
the measured signals to the final structural parameters, thereby
enhancing the inverse extraction precision. As shown in Fig. 7,
the corresponding coefficient of determination R2 reaches
0.918, which is better than the R2

≤ 0.90 obtained using a
conventional neural network model and a cross-validation neu-
ral network model. Meanwhile, the absolute deviation εbias ≤

1.2 nm determined by the LMRR algorithm is better than that
specified by the neural network model, which indicates that
the LMRR rather than the BMNN dominates the metrology
precision of the proposed ELFR method. Moreover, it can
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Fig. 13. (a) Coefficient of determination R2 and (b) maximum absolute
deviation determined by the ELFR method under different weight vector [w1,
w2]T for the M2 sample.

be easily found that the azimuth dependency of the deviation
εbias determined by the LMRR and BMNN algorithms exhibit
complementarity at the azimuth angle of 0◦, according to
Figs. 7(c) and 8. These results lay the theoretical foundation
for the weighted averaging between the results extracted by the
LMRR and BRNN algorithms, which enables better metrology
precision. By comparing the results obtained using the ELFR
algorithm, the LM algorithm, the LMRR algorithm, the LM
algorithm, the RR algorithm, the BMNN algorithm, and other
revised ELFR algorithms, as shown in Table II, we can find
that a single strategy among these algorithms cannot eliminate
the dependency of extracted parameters on the incidence
azimuth angle.

The MME exhibits high measurement sensitivity primarily
through the captured 4 × 4 Mueller elements. However, with
all the off-diagonal elements in the Mueller matrix being
zero at azimuth angles of ±90◦ and 0◦, the measurement
sensitivity of the MME-based IM OCD tool would diminish
near these three azimuth angles. Consequently, the LMRR and
BMNN algorithms would yield significant absolute deviations
near these azimuth angles. Since the BMNN algorithm cannot
strictly distinguish the Mueller matrix spectra at the azimuth
angles of ±90◦ and 0◦, especially unable to distinguish the
difference in the isotropic scattering features exhibited by
the nanostructure at these three azimuth angles, the extracted
results at these three azimuth angles are similar and have the
same sign. Thus, the reversing sign of the extracted results
at the azimuth angle of 0◦ enables the trade-off between the
LMRR and BMNN algorithms, illustrating the feasibility of
the weighted average fusion model algorithm.

Taking the trench height metrology for the STI nanostruc-
ture after the CMP processing as an example, the coefficient of
determination R2 larger than 0.93, the mean absolute deviation
less than 1 nm, and the maximum absolute deviation less than
2 nm can be easily realized using the proposed ELFR method.
Fig. 10 illustrates that the ELFR method eliminates the evolu-
tion trend of result parameters varying with azimuth angle.

By optimizing the weight vector [w1, w2]T to the optimal
configuration [0.65, 0.07]T using the traversing method, the
coefficient of determination R2 and the maximum absolute
deviation can be improved to 0.945 and 1.292 nm, respec-
tively, which together symbolize the optimal configuration for
achieving the highest measurement precision and consistency.
Meanwhile, selectable ranges of [0.3601, 0.9161] and [0.0168,
0.1280] for w1 and w2, respectively, have been suggested
to ensure the R2 and εbias meet the preset requirements for
inline precision metrology. Both the optimal weights and the
selectable ranges of weights are of guiding significance to
provide the best performance of the MME-based IM OCD
technique in the CMP-processed STI nanostructure and the
adaptability to complex working conditions of advanced IC
manufacturing. The robustness of the ELFR method is further
demonstrated through measurement experiments on the metal
interconnection M2 nanostructure.

V. CONCLUSION

In summary, this study proposes an MME-based IM OCD
technique to meet the stringent inline metrology demands of
advanced IC manufacturing at sub-28-nm nodes. The MME
probe is integrated into the IC process platform via an auto-
mated polar-coordinate stage, enabling the precise metrology
of the wafer-level nanostructures at a high throughput of
144 wafers per hour. We then propose an ELFR approach to
improve nanostructure reconstruction in the MME-based IM
OCD tool, specifically addressing metrology errors caused by
variations in incidence azimuth angle. In the ELFR method,
the weighted averaging of the respective extraction results
from the LMRR and the BMNN algorithms dominates the final
parameter extraction. The LMRR method is first introduced in
the inverse extraction of structural parameters involved in the
IM OCD tool, in which a mapping model from the structural
parameters extracted by the LM algorithm to the structural
parameters of a given benchmark sample has been constructed
and trained. Then, the BMNN has been used to train five map-
ping models through cross-validation sampling. In addition,
by optimizing the weight set (w1, w2), the ELFR method can
achieve optimal metrology accuracy and consistency, which is
much superior to the conventional LM algorithm.

Using the CMP-processed STI wafer and metal intercon-
nection M2 wafer as the measurement object, the results
reported by the ELFR method, the LM algorithm, the LMRR
algorithm, and the BMNN algorithm have been compared in
detail, which could highlight the underlying mechanism for
improving the measurement accuracy and robustness using the
proposed method. With the weights w1 and w2 located in the
optimal setting window, like w1 ∈ [0.6, 0.9] and w2 ∈ [0.02,
0.08], the ELFR method can easily achieve a coefficient of
determination R2 greater than 0.93, a mean absolute deviation
less than 1 nm, and a maximum absolute deviation less
than 2 nm. Moreover, an additional comparative analysis of
simulation and measurement results has been carried out,
which indicates that the excellent metrology capability of the
proposed ELFR method can be attributed to the balance and
cancellation characteristics of the azimuth dependency of the
results extracted by the LMRR and BMNN algorithms. It can
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be expected that the proposed ELFR method, combined with
the MME-based IM OCD tool, will be promising as a precise
inline metrology approach that advanced IC manufacturing
requires.
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