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Abstract: Pattern selection is crucial for optimizing the calibration process of optical proximity correc-
tion (OPC) models in computational lithography. However, it remains a challenge to achieve a balance
between representative coverage and computational efficiency. This work presents a comprehensive
evaluation of the feature vectors’ (FVs’) effectiveness in pattern selection for OPC model calibration,
leveraging key performance indicators (KPIs) based on Kullback–Leibler divergence and distance
ranking. Through the construction of autoencoder-based FVs and fast Fourier transform (FFT)-based
FVs, we compare their efficacy in capturing critical pattern features. Validation experimental re-
sults indicate that autoencoder-based FVs, particularly augmented with the lithography domain
knowledge, outperform FFT-based counterparts in identifying anomalies and enhancing lithography
model performance. These results also underscore the importance of adaptive pattern representation
methods in calibrating the OPC model with evolving complexities.

Keywords: feature vector; autoencoder; pattern selection; Kullback–Leibler divergence; dimension
reduction; OPC model accuracy; computational lithography

1. Introduction

It is well-known that the optical proximity correction (OPC) model is indispensable
for ensuring design-to-wafer fidelity in advanced lithography [1]. An essential aspect
of constructing a satisfactory parametric OPC model involves ensuring the presence of
sufficient and relevant test pattern representatives in the calibration set. The quality of
selected pattern samples for the test pattern representatives has a direct influence on the
accuracy of the parametric OPC model [1,2]. Usually, the higher the quality of the pattern
samples, the higher the accuracy of the OPC model fitted thereby. Also, there is a positive
correlation between the OPC model’s accuracy and the sample set’s coverage. When the
number of pattern samples is insufficient, the coverage of the pattern set is often low, and
the OPC model is prone to overfitting problems. Moreover, if the parameters of the OPC
model are not fully trained, then the model’s prediction ability will be affected. Conversely,
when the number of selected samples is too large, overloading the OPC model training
causes the model fitting workload to increase significantly. Therefore, it is a great challenge
to quickly select representative pattern samples to balance the pattern coverage, sample
amount, runtime, and resource.

In recent decades, numerous approaches have been proposed to optimize the pattern
coverage space to achieve a reliable OPC model with high accuracy and predictability [1,2].
Using the feature vectors (FV) extracted from aerial images, crucial optical and geometrical
details can be retained efficiently. It also enables the differentiation of various patterns by
analyzing the corresponding FV distribution within the feature space [3]. Meanwhile, to
assess the pattern coverage index for a given pattern set, a typical approach focuses on
computing the feature vector-based coverage index by comparing representative patterns
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against the selected patterns [4]. A simulation-based alternative metric could also be
devised according to the model‘s error severity estimation, which enables guiding the
incremental pattern selection for the calibration pattern set. This strategy serves to enhance
the accuracy of the OPC model while expediting the calibration process [4]. Moreover,
some research has demonstrated the efficacy of machine learning techniques in selecting
essential and representative patterns for calibrating the OPC model [3,4]. However, as
lithography advancements continue to drive pattern complexity, the need for adaptive and
efficient pattern representation methods becomes paramount.

In the semiconductor industry, the design target pattern layout is usually the combina-
tion of limited unit cells, leading to the intrinsic dimensionality of design target pattern
images being even smaller than natural images [5]. However, the data distribution in the
pattern pool is highly unbalanced. Some patterns lying in memory cells can appear millions
of times across the entire design layout, while some specific patterns at the cell boundary
only appear once in the whole pattern pool. Also, some patterns will derive a consider-
able amount of high similarity patterns due to retargeting or variation of surrounding
features, while some patterns show significant geometry differences from all others. Thus,
a highly efficient pattern representation method is required to simultaneously capture
the critical features of patterns and adapt to the data distribution to avoid unbalanced
feature extraction.

The manifold hypothesis asserts that high-dimensional data lies on or near a low-
dimensional manifold within the high-dimensional space. And the low-dimensional mani-
fold can also significantly suppress the curse of dimensionality, leading to sharp boundaries
in further clustering usage and outlier detection [6–9]. A well-constructed autoencoder (AE)
network can capture the non-linear relationships between the input pattern images. Thus, it
can use a low-dimensional manifold to represent the raw pattern space. The multiple-layer
machine learning network empowers an autoencoder to learn a hierarchical representation
for the input data. This highly efficient feature encoding allows a much lower feature di-
mension while keeping the primary critical pattern information [4]. In a previous work [4],
AE exhibited superior performance in pattern selection applications and enhanced final
model accuracy. However, the proof data focused on the indirect model performance of
the overall pattern selection. The direct validation of its feature extraction efficacy remains
unestablished. Considering that AE is self-adaptive to integrating various types of domain
knowledge through additional constraints, fine-tuning the network is promising to enhance
the efficacy of the pattern selection. Thus, a direct and comprehensive evaluation of their
effectiveness is essential for guiding future enhancements of the AE network.

In this work, we first collect a dataset with diverse pattern designs and limited critical
patterns for the OPC model calibration. Two key performance indicators (KPI), namely,
the distance ranking and the Kullback–Leibler (KL) divergence, are constructed to realize
the direct evaluation of the effectiveness of the FV-based pattern selection. Then, the
KPI-based effectiveness estimation and comparison were carried out on the FFT-based FV,
unsupervised AE-based FV, and improved AE-based FV, which revealed the efficacy of
the AE-based feature vector in improving pattern coverage for the OPC model calibration.
Moreover, tuning the AE network and loss function facilitates the improvement of the final
pattern selection/coverage strategy.

2. Materials and Methods
2.1. Two KPIs for Feature Vector Effectiveness Evaluation

The objective of pattern selection is to achieve a sub-set from the entire dataset and
approach a minimum data bias to the whole dataset. When a typical sub-set is used for the
OPC model training, the data distribution in this sub-set will induce minimum data bias
trend and avoid additional over-fitting. A representative pattern selection flow will convert
patterns into FVs and apply distance-based clustering or ranking methods to construct
sub-sets [10–13]. In the previous work [4,6,14,15], we found that the majority of data bias for
the sub-set comes from two aspects, namely, the selection method and the FV effectiveness.
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The selection method will dramatically affect the data distribution of the sub-set. For
example, if the random selection is used and the sub-set population is large enough, the
sub-set usually tends to pick more elements from regions with high density in the FV
space. Then, elements with higher probability density in the entire set will still show higher
probability in the sub-set. However, in industry practical usage, the initial set is usually a
mixed dataset from multiple data sources during the industry’s practical usage, leading to
the pattern distribution being initially far from ideal and homogeneous. Correspondingly,
the random selection will thoroughly inherit this biased distribution, leading to poor
selection results. With a well-designed selection methodology, the sub-set can leverage
data diversity more by adding the sample ratio in low-probability regions to avoid missing
critical outliers [4,6,14].

Meanwhile, the FV effectiveness will also significantly affect any well-designed FV-
based selection method [15]. Contrary to the random selection, the FV-based selection
assumes the FV can help adjust the sample rate based on lithography domain knowledge.
An effective FV should keep critical information of the raw image and drop redundant
information with an un-close correlation to the downstream OPC tasks. Thus, by evaluating
the FV similarity, the sample rate among similar patterns can be reduced to expand pattern
coverage. Euclidean distance in feature space is widely used in similarity judgment,
clustering, or ranking solutions. However, if the FV fails to capture critical features or
contains too many redundancies, it can lead to severe multicollinearity. In such scenarios,
the Euclidean distance will not be able to represent the similarity or domain overlap
situations between two datasets.

Based on the above considerations, we use two KPIs to quantify the FV effective-
ness. The first KPI is distance ranking, which is an intuitive method in practical us-
age [10,14,16,17]. Assume we already have a sub-set SC used for lithography model calibra-
tion. We can examine the minimum Euclidean distance from every pattern in the validation
set SV to the sub-set SC, sort the distances from small to large, and achieve the ranking
REuc(x) with x∈SV. After the model calibration, when we apply the model on all validation
data to obtain the model error, we discover the outlier set SO and its corresponding ranking
REuc(x) with x∈SO. If the FV effectiveness is high, the outliers should have a much larger
distance than the normal patterns. Thus, the ranking of outliers should exhibit a small
value in both average ranking and standard deviation. The distance calculation may not be
limited to Euclidean but can be adjusted flexibly in clustering processes.

The second KPI is KL divergence, also known as Kullback–Leibler divergence, which
is a type of statistical distance measuring how one probability distribution diverges from
a second reference probability distribution [18]. It originates from information theory
to represent relative entropy and has been widely used in various areas to quantify the
distance between two distributions. The KL divergence can quantify the gap between
the feature space distribution of two certain datasets. When two datasets come from the
same probability distribution, their KL divergence should approach 0. With the growth
of the distribution disagreements, the KL divergence will also enlarge. Since outliers
differ dramatically from calibration patterns in the lithography domain, an effective FV
should exhibit a large gap between the outliers and the calibration patterns and, thus, a
considerable KL divergence between them.

For continuous probability distributions P(x) and Q(x) defined on the same sample
space, we can define the KL divergence from Q(x) to P(x) as [18]:

DKL(P∥Q ) =
∫

P(x)log
[

P(x)
Q(x)

]
dx (1)

However, in most cases, the actual probability density function is rarely known. The
critical problem is to estimate the entropy and divergence of related distributions only from
a finite number of samples. One potential solution is k-nearest-neighbor-based estimators
to approximate the probability density function under the assumption of multi-dimensional
ε-ball [19]. Compared to the a priori kernel density estimator (KDE), it is computationally
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more efficient in high dimensions [20]. Assume the distance from Xi to its k-nearest-
neighbor in {Yi} is denoted by vk(i), and one d-dimensional open Euclidean ball is centered
at x with radius ρ, then the estimator for KL divergence is:

Dn,m(p∥q ) =
d
n

n

∑
i=1

log
[

vk(i)
ρk(i)

]
+log

(
m

n − 1

)
(2)

where n and m are the size of the d-dimensional samples {X1, X2, X3, . . ., Xn} and {Y1, Y2,
Y3, . . ., Ym} drawn independently from P(x) and Q(x), respectively.

When KL divergence is applied on some FVs, with P(x) being the KDE of the calibration
set and Q(x) being the KDE of outliers, the KL divergence should show a positive correlation
to FV effectiveness.

2.2. Experiment Case

In order to evaluate the FV effectiveness via the two KPIs, a practical pattern set
with clear outliers is needed. In this work, we used a contact hole layout of a typical
memory device to construct the pattern set. The lithography process was performed with
an ASML immersion deep ultraviolet (DUV) scanner with numerical aperture (NA) = 1.3
from Netherlands. And the corresponding mask was OPC-ed by a production-level baseline
lithography model.

For a typical production-level lithography model, the model quality is good enough for
most patterns. The lithography model is calibrated with physically driven terms, enabling
good generalization ability. Thus, patterns with dramatically different design shapes can
usually cover each other in the lithography domain. Only the outliers with significant
model errors cannot be clearly covered by the majority of patterns.

The whole pattern set was picked from this full-chip layout via mixed selection meth-
ods, including random selection, diversity-based selection [4], and simulation property-
based selection. This mixed selection aims to construct a dataset that is not severely
influenced by pattern population. Since different selection strategies have different focuses,
we use the mixed selection method to make the final selection diverse enough to cover as
much pattern sensitivity as possible.

The first step before each detailed selection is a pattern collection from a full-chip
layout. This collection systematically scans a complete chip layout and identifies all the
geometrically unique patterns. The “unique” here means within a certain radius, the
geometry configuration of one pattern will not be the same as any other pattern. In DUV
lithography model calibration, only neighboring contents within a certain radius will
influence lithography model prediction. Thus, this radius is used as a radius in pattern
definition. Usually, one pattern can be repeated multiple times across a full-chip layout in
the design stage. And these repeating instances will exhibit almost the same lithography
behavior. As shown in Figure 1, this pattern collection will first break the layout into
patterns that cover the full area with circuit designs, the red cross in subfigure b indicates
pattern center and the red box indicates pattern boundary. Then, a pattern-matching process
will remove repeating patterns and only keep unique patterns. This pattern collection
strategy can trim the repeating patterns and focus only on unique patterns exhibiting
different lithography behaviors.

After the pattern collection, the unique pattern set amount can still easily reach the
million level from a full-chip layout. However, a typical scanning electron microscope
(SEM) metrology verification process can only afford a thousand-level pattern input. We
then further down-selected to construct a fair dataset that covers the majority of pattern
designs while not markedly affecting the data distribution of the whole set. The random
selection aims to achieve a direct fair-down selection from the initial unique pattern set.
We used multiple rounds of random selection to pick 2000 patterns as the basis of the
pattern set.
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Figure 1. (a) The definition of a pattern. (b) The process of pattern collection.

Since the sample ratio is low, pure random selection will still miss many representative
patterns in the low-probability region of the design space. We use additional selections to
pick more patterns from different aspects. Sun et al. demonstrated that diversity-based
selection can capture diverse patterns via the feature vectors [4]. Different feature vectors
project the pattern set to a specific feature space and identify pattern design trends/clusters.
We also applied multiple rounds of diverse-based selection with various-type feature
vectors to select 1400 patterns to supplement the pattern set.

Finally, 50 patterns were added to the pattern set via the simulated process variation
sensitivity with the baseline lithography model. We simulated the process variation sensi-
tivity for all unique patterns and picked out the top-ranking ones as high-risk candidates.
The quality of overall 3450 patterns was estimated using their SEM metrology data, and
about 25 patterns were dropped due to the low SEM image quality. For every pattern
with good SEM image quality, multiple gauges were placed to extract the wafer critical
dimension (CD) using a Hitachi CD-SEM machine from Japan. The Critical Dimension is
the smallest feature size on a chip during semiconductor manufacturing. In the following
model calibration and model check process, the maximum absolute model error under one
pattern will be marked as the model error of this pattern.

2.3. Outlier Identification

Outliers are critical for evaluating the FVs’ effectiveness. When the lithography model
exhibits good generalization ability, all patterns show low model error, which makes it hard
to distinguish outliers. We intentionally reduced the calibration set volume to calibrate a
new lithography model with relatively poorer generalization ability. The outlier patterns
that appeared with more significant model errors can then be used as a probe to evaluate
the FV effectiveness. We used 1000 patterns to construct a new calibration set, in which
every pattern is randomly selected from a complete set with 3425 patterns. Model error
(+/− 10 nm) is chosen as outlier criteria since it is a typical model error range in the current
tech node considering SEM machine metrology error, SEM image quality, and OPC model
fitting power.

As shown in Figure 2 and Table 1, the new model was calibrated by 1000 selected
patterns (with 2000 gauges), the model root mean square (RMS) of the calibration pattern
set was 1.62 nm and the model error range (the range between the maximum model error
and minimum model error) of calibration pattern set was at 7.94 nm; all patterns met the
model error spec for tape out (in +/− 10 nm). However, when the new model was applied
to the remaining 2425 patterns, 30 model error outliers as shown in red cycle (with model
error > 10 nm or model error < −10 nm) were found. The outliers potentially come from
3 aspects, while only one aspect is suitable for the evaluation of the FV effectiveness.
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(a) The outliers show a significant gap in the lithography domain to the calibration set,
and thus cannot be generalized by the baseline model.

(b) Special lithography effects exist in the outliers, and the lithography model lacks the
fitting power to fit on these outliers.

(c) The SEM metrology quality is poor on the outliers, and the “wafer CD” collected for
the calibration/verification is not the actual wafer CD.
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Table 1. The RMS and error range of baseline OPC model.

Dataset RMS (nm) Error Range (nm)

Calibration 1.62 7.94
Verification 3.04 37.06

Verification excluding outliers 2.09 15.35

We further performed another process to confirm the source of the outliers. We added
the 30 outlier patterns into the calibration set and re-calibrated the model with 1030 patterns
(with 2060 gauges). The updated calibration and verification results are shown in Figure 3
and Table 2. All calibration and verification patterns met the model error specifications. This
means that the root cause of the 30 model error outliers is the aspect, and the outliers are
dramatically different from the 1000 calibration patterns in the lithography domain. After
adding them to the calibration, they all met the model error specification with negligible
trade-offs on other patterns.

Table 2. The RMS and error range of improved OPC model.

Dataset RMS (nm) Error Range (nm)

Calibration 2.05 13.56
Verification 2.15 13.63
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Based on such confirmation, we can use these 30 outlier patterns as an indicator to
benchmark the effectiveness across different FVs directly. An effective FV should show
significant discrimination between the outlier and majority patterns in the FV space.

2.4. Three Feature Vector Generation Methods

To compare the effectiveness across different FVs, we prepared three types of FVs. The
first one is the FFT-based FV. The FFT kernel functions are naturally orthogonal and thus
show little feature redundancy to benefit further distance calculation. Also, the optical part
of the lithography process can be regarded as an Abbe imaging process. The diffraction
orders of a pattern in the source panel are naturally the FFT feature component of the
mask design. The interaction between the source illumination and the FFT components
of the pattern will significantly affect the imaging quality and, thus, the lithography
model calibration status [21,22]. The FFT-based FV is widely used in lithography-related
machine learning applications, and thus, we use it as the baseline FV in pattern selection
solutions [23,24].

In industry usage, one not-bad option is constructing a feature vector based on empiri-
cal knowledge. OPC engineers construct feature vectors using clear corresponding physical
properties. Although some important components will definitely be missed, it offers users
a tuning knob to embed empirical knowledge into the feature vector. AE combines the
benefits of the above two solutions. Its network-enabled encoded FV carries most of the
input image information, while the flexibility in loss function allows end users to embed
empirical knowledge into the feature vector.

Thus, the second FV is an unsupervised AE-based FV with basic mean square error
(MSE) loss used between the input and output images. In contrast to the FFT-based FV,
the dimensions of the AE features are learned by a typical deep-learning network and are
not orthogonal to each other. As shown in Figure 4, the AE network is constructed by
symmetrical encoder and decoder parts. The convolution layer kernel size and count are
tunable to adjust the encoder dimension. The MSE loss forces the network to extract critical
features of input images that can help restore an image at the network’s end with pixel-level
information consolidated [7–9]. By reducing FV dimensionality, redundant features can
be dropped during the training progress, leading to higher discrimination ability in the
AE-based feature space but sacrificing the MSE loss and generalization ability.
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The aerial images calculated by the lithography model are used as the training input
for the AE network. The lithography model uses physical terms to construct a compact
mathematical model of the whole lithography process. The aerial images are the interme-
diate result, including the interaction of illumination light through scanner optics, mask
transmission, and the multiple-layer resist films [25,26]. The aerial images are already very
similar to the final simulated pattern shape. Thus, they contain the geometry characters
of the pattern design. Moreover, the aerial images take almost all optical effects in the
lithography process, containing much more lithography domain knowledge than pure
design shapes. The pixel size of aerial images is 14 nm in the current case, and the image
size is 96 pixels, corresponding to the typical model ambit of DUV models.
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This AE network will be capable of capturing the non-linear relationships embedded
in the aerial images that are closely related to lithography model calibration. To avoid
overfitting, 80% of the patterns were randomly selected for the model training of the AE
network, and the other 20% of the patterns were used for verification. The MSE loss
function of the AE network with different dimensions is shown in Table 3. The verification
loss values are comparable to training loss values in the same dimension, which means
no overfitting for the AE networks. Moreover, the loss value increases after decreasing
the feature vector dimension. The phenomenon was expected because a lower dimension
meant less information (including information from redundant features) retained in the
feature vector without loss of generality.

Table 3. The loss of AE models with MSE training loss function.

Dimension Training Loss (×103) Verification Loss (×103)

49 2.52 2.61
100 1.79 1.86
196 1.30 1.37
400 1.00 1.07
729 0.95 1.02
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The third FV is an improved AE-based FV with more constraints imposed on the aerial
contour locations. Generic AE FV is selected to demonstrate its capacity with FFT FV while
the improved AE FV is used to demonstrate the benefit from empirical knowledge. Even
though information loss cannot be neglected in the AE encoding process, we still believe
that the remaining critical features can better represent patterns needed to calibrate the
lithography model. Also, the training loss can be designed to concentrate more on the
specific domain due to the machine learning network’s intrinsic capacity. And specific
information that is well acknowledged as less critical is sacrificed [27]. In the lithography
process, it is well addressed that the image slope significantly affects the imaging quality.
Thus, the improved AE network can be tuned to extract more slope information by adding
MSE loss between the image slopes of the input and output images to the total loss function.
Following the same strategy of the improved AE network with MSE loss, the training loss
for 80% of training patterns and verification loss for the other 20% of patterns are shown in
Table 4.

Table 4. The loss of AE models with improved training loss function.

Dimension Training Loss (×104) Verification Loss (×104)

49 2.54 2.64
100 1.73 1.81
196 1.62 1.71
400 0.61 0.70
729 0.55 0.66

3. Results

These three FV generation methods are applied to the whole pattern pool to obtain
the corresponding FV for each pattern. FV dimension is a critical parameter in pattern
selection usages. The higher the FV dimension, the more occupied disk space, and the
longer runtime. The smaller FV dimension will compress too much from the original input
images and lose critical information. Five-dimension values are used in this work to match
actual application usages: 49, 100, 196, 400, and 729.

Figure 5 shows the KPI comparison across all three FVs. The box plot shows the
distribution of the ranking result, with box length indicating the ranking gap from the
75th percentile to the 25th percentile and orange line indicating the median value. The
whisper indicates the full range of ranking gaps, and the circle shows limited aberrations
with dramatically different rankings. The smaller ranking number refers to the outliers
with a more considerable distance to calibration patterns.

As For the FVs with dimension 729, the curse of dimensionality damaged the discrimi-
nation capacity of the AE-based FV. Most outliers failed to separate from normal patterns.
However, distance-based FV solutions can hardly hit actual issue patterns if the objective
is an outlier discovery. The KL divergence of three FVs is comparable with a small value
close to zero, showing poor discrimination capability.

When the FV dimension is reduced, the FFT-based FV shows stable KPIs in both
ranking and KL divergence aspects. It indicates that the high-frequency components after
the FFT are not critical enough to describe the differences between calibration and outlier
patterns in this case. On the contrary, the AE-based FV shows much better behavior than
the FFT-based FV. The ranking box and whisper ranges are all reduced and agree well with
the KL divergence. The improved AE-based FV shows the best result, accompanied by
the majority of outliers ranking in the top 100, and the KL divergence is also much more
significant than basic AE-based and FFT-based FVs. It also confirmed that adding more
domain knowledge into the AE network training can effectively benefit the FV effectiveness
in pattern selection usage for lithography model calibration.
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In pattern selection processes, various strategies can be applied to pick representative
patterns. When the probability distribution of critical outliers fully overlaps with majority
patterns, the KL divergence will be zero and no strategy can distinguish outliers by feature
vectors. With increasing KL divergence, the separation of outliers and majority patterns
will increase, enabling selection methods to highlight outliers without picking too many
majority patterns.
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The distance ranking itself can be used as a straightforward selection strategy by
directly picking top N ranking patterns as a selection result. In the current case, when KL
divergence is 0.14 (AE FV in dimension 49), the top 430 patterns should be picked to cover
90% outliers. While when KL divergence increased to 0.91 (improved AE FV in dimension
49), only the top 60 patterns needed to cover 90% of outliers.

When analyzing high-dimensional data, Principal Component Analysis (PCA) is
a widely used tool to compress data to low dimension. Although PCA dropped a lot
of information, and low-dimension distance cannot fully reveal the original FV space
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distribution, PCA can still provide a qualitative visualization. Since we observed the
improved AE showing much better effectiveness than the basic AE in both KPI comparisons,
we further performed PCA-based 2D visualization between the improved and basic AE
FVs under dimension 49 in Figure 6. The PCA visualization indicates that the improved
AE has a much better separation between the outliers and the calibration set.
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4. Conclusions

We designed an experiment to directly evaluate the FV effectiveness in pattern selec-
tion usages for lithography model calibration. Two KPIs were constructed to quantify the
FV effectiveness. Both KPIs confirmed that AE-based FV is more effective than FFT-based
FV in extracting critical pattern features with considerable sensitivity to the lithography
model performance. Moreover, the autoencoder is highly effective in adopting domain
knowledge into loss construction and further improves the FV’s effectiveness in identifying
anomalies from a large pattern pool.
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