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In computational imaging and lithography, it has been a
challenge for a numerical model to faithfully preserve sym-
metries in the physical imaging system. In this Letter, we
present a project-to-symmetry-subspace (PTSS) method to
prevent symmetry loss during the iterative generation of
optical kernels. Essentially, PTSS is to project iterative
vectors onto a predefined symmetric subspace when decom-
posing the transmission cross coefficient (TCC). Simulation
results demonstrate the PTSS-generation of a truncated
set of optical kernels that are substantially free of symme-
try error, regardless of the order of truncation. © 2024
Optica Publishing Group. All rights, including for text and data mining
(TDM), Artificial Intelligence (AI) training, and similar technologies,
are reserved.
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In the field of model-based optical proximity correction (OPC),
it is crucial to achieve accurate and efficient lithographic imag-
ing modeling that adapts to continuously shrinking technology
nodes [1–4]. Usually, lithography systems adopt symmetri-
cal configurations in the semiconductor manufacturing process
[5,6]. An accurate lithographic imaging simulation model
should be able to faithfully reflect the physical symmetry
inherent in the lithography system. For symmetric patterns
in an integrated circuit (IC) layout, the aerial images from
a lithographic imaging simulation should also be symmetric.
This ensures that the resulting IC chip maintains operational
characteristics in alignment with the design specifications. How-
ever, numerical processes such as quantization, sampling, error
accumulation during iterations, especially irregular truncation
of eigen vectors, often introduce asymmetry to the numeri-
cal model [7,8]. An asymmetric numerical model leads to a
degraded simulation accuracy, thereby affecting the optimiza-
tion outcomes and efficiency of OPC [7]. As feature sizes
decrease, the impact of symmetry loss becomes more pro-
nounced in OPC and other computational lithography (CL)
applications. The sum of coherent systems (SOCS) is a widely

used method for efficiently solving a photolithography aerial
image model described by Hopkins’ partially coherent imaging
theory [9]. SOCS decomposes the four-dimensional transmis-
sion cross coefficient (TCC) matrix in the Hopkins’ imaging
formula into a sum of squares of convolutions, using eigen-
value decomposition (EVD) [10,11]. For a large matrix, iterative
methods such as power iteration [12], Krylov subspace pro-
jection methods [13], Arnoldi iteration [14], Lanczos method
[15,16] and their variants are widely employed for EVD. Given
a symmetric TCC matrix, it is unfortunate that the existing EVD
solvers do not guarantee that the generated eigen vectors, thus a
truncated SOCS system, be symmetric. In [7], symmetry check-
ing and enhancement procedures were proposed to ensure the
generation of symmetric aerial images. However, it does not
reduce the symmetry error in the TCC decomposition process.
To the best of our knowledge, there is a lack of general guide-
lines on where to truncate the series to get the lowest symmetry
error, and most of the issues have been addressed by trial-and-
error selection and a combination of optical kernels obtained
from the EVD solver. In this way, the algorithm needs to be
frequently modified for different configurations of lithographic
imaging systems and truncation orders of TCC decomposition,
which can be a complex and time-consuming process. Hence,
it is of great importance to enhance the symmetry preservation
capability within the TCC decomposition.

In this Letter, we introduce a project-to-symmetry-subspace
(PTSS) method to address the symmetry preservation issue in
the lithographic imaging simulation. The aerial image I(r) gen-
erated by the projection exposure systems (steppers or scanners)
can be characterized by the Hopkins’ formulation of partially
coherent imaging [17,18]

I(r) =
∫∫

[M(r − r1)]
+TCC(r1, r2)[M(r − r2)]dr1dr2, (1)

where r is the two-dimensional (2D) image plane coordinates on
the wafer, r1 and r2 are 2D object plane coordinates located on
the mask, M(·) represents the mask response function, the super-
script + denotes the conjugate transpose operation of matrices,
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and TCC (r1, r1) is the so-called TCC operator being defined as
[19,20]

TCC(r1, r2) = [P(r1)]
+J(r1, r2)P(r2), (2)

where J(r1, r2) is the mutual intensity function of the source and
P(·) is the point-spread function (PSF) of the projection system;
both of them are represented in the frequency domain. The TCC
operator contains all information about the lithographic imag-
ing system except for the mask. As symmetrical illumination
schemes and projection systems without odd-order aberrations
are commonly employed, an imaging system is almost always
symmetric with respect to the X- and Y-flip operations on the
mask [6,19]. In this Letter, the idea of PTSS will be illustrated
mostly using the X- and Y-flip symmetries although the same
method and algorithm apply straightforwardly to other types of
symmetry. By the SOCS method, the TCC operator is approxi-
mated by a Mercer expansion in terms of the eigenvalues {Wn}

N
n=1

and the corresponding optical kernels {Kn(r)}N
n=1 [21,22],

TCC(r1, r2) ≈

N∑︂
n=1

wnKn(r1)K+n (r2), (3)

where N is the truncation order for the approximate decomposi-
tion. For Hermitian operators, we use the Lanczos algorithm to
implement the approximation process [16]. Let qj denotes the
orthonormal Lanczos vectors obtained from the Lanczos iter-
ations, we can get optical kernels {Kn(r)}N

n=1from the Krylov
subspace Sq

N by similarity transformation [23],

Sq
N = span{q1, q2, . . . , qN}. (4)

The TCC operator should faithfully reflect the symmetry of the
actual lithographic imaging system, therefore naturally remains
invariant under the parity operations Px and Py,

TCC · Px[V(x, y)] = Px[TCC · V(x, y)],
TCC · Py[V(x, y)] = Py[TCC · V(x, y)], (5)

where the operators Px and Py are defined, respectively, as the
flip or mirror symmetry along the X and Y directions. For any
vector V(x,y), we have

Px[V(x, y)] ∆= V(−x, y),
Py[V(x, y)] ∆= V(x,−y).

(6)

Note that
P2

x = P2
y = I, (7)

I being the identity matrix, so Px and Py have eigenvalues λx,
λy=±1. It follows from Eq. (5) that TCC and Px, Py are simul-
taneously diagonalizable. A symmetry about X exists if V(x,
y)=V(−x, y) or an antisymmetry if V(x, y)=−V(−x, y) holds for
any vector V(x, y). The same is true for the Y direction. Accord-
ingly, we use {λx, λy} as symmetry signatures to group the
optical kernels from the Lanczos solver into four sets. Symmetry
signatures corresponding to the four sets are respectively,

{(λx, λy)} = {(+1,+1), (−1,+1), (−1,−1), (+1,−1)}. (8)

Then, given any Lanczos vector qin
j , we make the following linear

transformations before the next Lanczos iteration,

qiny
j = (qin

j + λx × Px[qin
j ])/2,

qout
j = (qiny

j + λy × Py[qiny
j ])/2. (9)

Four symmetric subspaces are formed by the sets of Lanczos
vectors obtained after taking each pair of symmetry signatures

Fig. 1. Flowchart of TCC decomposition and projection pro-
cesses.

from Eq. (8) and applying Eq. (9). Given the pair of symme-
try signatures, (λx, λy)= (+1, +1), the subspace (+x, +y)Sq

N can
be constructed to characterize the components of the Lanczos
vectors that are symmetric about both X and Y. Similarly, given
(λx, λy)= (−1, +1), the subspace (−x, +y)Sq

N is constructed to
characterize the components that are anti-symmetric about X
and symmetric about Y. Moreover, given (λx, λy)= (−1, −1)
and (λx, λy)= (+1, −1), subspaces (−x, −y)Sq

N and (+x, −y)Sq
N

respectively represent components that are anti-symmetric about
both X and Y and symmetric about X and anti-symmetric about
Y. Finally, we take Lanczos vectors from the four symmetric
subspaces and use a similarity transformation to obtain the ulti-
mate optical kernels {Kn(r)}N

n=1, which will maintain the same
symmetry as the Lanczos vectors. This guarantees Eq. (5), as
such the desired symmetry {λx, λy} in the TCC operator, is pre-
served. In this way, for a layout pattern input that is symmetric
about the X-flip and the Y-flip, we can obtain an aerial image
intensity distribution that satisfies the same symmetry. This out-
lines the fundamental principle of the PTSS method, which has
been disclosed in [24]. Figure 1 illustrates the flow of the TCC
decomposition using the PTSS method. Substituting Eq. (3) into
Eq. (1), we reformulate the aerial image equation as follows:

I(r) =
N∑︂

n=1

wn[M+ ⊗ Kn](r) ⊙ [K+n⊗M](r)

=

N∑︂
n=1

wn |[K+n⊗M](r)|2,
(10)

where ⊗ represents the convolution operation between two
functions or images, and ⊙ denotes the Hadamard product.

To numerically validate the proposed PTSS method, we simu-
lated a partially coherent lithographic imaging system described
by Eq. (1). The light source is an annular illumination with inner
and outer partial coherence factors of σin= 0.73 and σout= 0.36,
respectively. The illumination wavelength is 193 nm, and the
polarization state was set as unpolarized. The numerical aper-
ture of the projection system is NA= 1.35, and the projection
system is configured to be free of aberrations. When the optical
model has odd aberrations, the required TCC symmetry is bro-
ken, and the PTSS method is no longer applicable. Equation (3)
is implemented with the standard Lanczos method and the pro-
posed PTSS. Figure 2(a) shows optical kernels obtained from
the conventional Lanczos method. It is obvious that the symme-
try is not preserved in these optical kernels. Figure 2(b) shows
the optical kernels generated via the PTSS, which preserve sym-
metries and antisymmetries of the corresponding subspaces and
represent optical point-spread responses with a definitive even
or odd parity.
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Fig. 2. Optical kernels obtained from (a) conventional Lanczos
method and (b) PTSS.

Fig. 3. (a) Designed mask pattern layout. (b) Imaging procedure
corresponds to Eq. (10). (c) Normalized aerial image obtained from
the conventional method with a truncation order of N= 5. (d) Resist
image. (e) Contours extracted from the resist image based on a
predetermined threshold. Relative differences between the aerial
image obtained from the conventional method and its flipped images
along (f) X and (g) Y. Relative differences between the aerial image
obtained from the PTSS and its flipped images along (h) X and (i)
Y. Comparison result of contours obtained from (j) conventional
method and (k) PTSS at symmetric positions e1 and e2 in (e).

Then, we designed a target mask layout with a pattern that
exhibits symmetry under X- and Y-flips, as seen in Fig. 3(a). The
critical dimension (CD) of the target layout is 45 nm. We utilized
an in-house rasterization algorithm to implement the process of
polygon-to-image and obtain the pixelated mask response func-
tion M(·) in Eqs. (1) and (10). It is important to ensure that
M(·) depends only on spatial coordinates and preserves the X-
and Y-flip symmetries. The procedure of calculating the aerial
image using the optical kernels and mask response function, as
described by Eq. (10), is illustrated graphically in Fig. 3(b). Fig-
ure 3(c) shows the normalized aerial image I(x, y) obtained from
Fig. 3(b), and the corresponding optical kernels was calculated
by the conventional Lanczos method with a truncation order of
N= 5. The resist effect can be modeled with a sigmoid function
[25],

Iresist = sigmoid(Iaerial, a, tr) =
1

1 + exp[−a(Iaerial − tr)]
, (11)

where a is the steepness index of the sigmoid function, and tr
is the threshold of resist. It is reasonable to deduce that the
sigmoid function has no effect on the aerial image’s symmetry.
Figure 3(e) shows the contours extracted from the resist image
in Fig. 3(d) based on a predetermined threshold tr= 0.36, and
a= 5. Relative differences between the aerial image I(x, y) and

Fig. 4. As the truncation order ranges from 1 to 120, the RMSE
variation for both methods with (a) X-flipped and (b) Y-flipped.

its flipped images Px[I(x, y)], Py[I(x, y)] can be calculated by

RDX = [I(x, y) − Px[I(x, y)]]/max(I(x, y)),
RDY = [I(x, y) − Py[I(x, y)]]/max(I(x, y)), (12)

where max(I(x, y)) denotes the maximum value in the aerial
image matrix I(x, y). In addition to indicating the symmetry
error of aerial images in the X and Y directions, the values of
RDX and RDY indirectly reflect symmetry errors of the TCC
operator. The results of the conventional method’s RDX and
RDY are displayed in Figs. 3(f) and 3(g), respectively, show-
ing symmetry errors in the order of 10−3 to 10−2. However,
with the application of the PTSS, the symmetry errors in both
directions are significantly reduced to the order of 10−7, as illus-
trated in Figs. 3(h) and 3(i). In Figs. 3(h), 3(i), and 3(k), N= 5
denotes the total number of (symmetric) kernels, in the same
manner as in Figs. 3(f), 3(g), and 3(j). The symmetries of the
first five symmetric kernels are (+x, +y), (+x, +y), (+x, −y),
(−x, +y), and (−x, +y). Figure 3(j) depicts the comparison of
contours obtained from the conventional method at symmetric
positions e1 and e2 in Fig. 3(e). The difference in contours at
positions e1 and e2 indicates that a symmetric pattern results
in asymmetric contours after simulation. Figure 3(k) depicts the
comparison of contours obtained from the PTSS at symmet-
ric positions e1 and e2 in Fig. 3(e). As expected, the contours
of the symmetric pattern remain symmetric, indicating that
the PTSS effectively preserves the symmetry of the imaging
system.

Furthermore, we investigated the variation of the symmetry
errors in simulated aerial images at different truncation orders.
To measure these errors, we calculate the overall difference
between the simulated aerial image, and it is flipped image using
the root mean square error (RMSE),

RMSE =

⌜⎷
1
m

m∑︂
j=1

[I(x, y) − P[I(x, y)]]2, (13)

where P can be Px or Py, m denotes the total number of ele-
ments in the aerial image matrix I(x, y). Fig. 4(a) shows the
RMSE variation for both methods with X-flipped when the trun-
cation order varies from 1 to 120. For the conventional method,
the RMSE typically falls within the range of 10−3 to 10−6 and
varies across several orders of magnitude as the optical kernels
used in the imaging process change once. Consider the case
where the truncation order is 28, resulting in an RMSE at the
level of 10−6. However, upon adding one more kernel, the RMSE
increases to the level of 10−4. It suggests that the 29th kernel
contributes to a significant amount of symmetry error, as the
conventional method produces an asymmetric kernel that looks
like the one depicted in Fig. 2(a). Since the conventional method
cannot guarantee symmetrical optical kernels, it requires several
optical kernels near the truncation order be kept and grouped
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Fig. 5. (a) Comparison of model errors among the PTSS TCC,
the conventional TCC, and the Abbe methods. Comparison of (b)
accuracy and (c) eigenvalues for the two TCC methods.

together to cancel their asymmetries. But it is highly non-trivial
to decide which kernels should be grouped and kept. By con-
trast, our PTSS method effectively avoids the symmetry loss
caused by the truncation, maintaining a near-zero RMSE at the
level of 10−7. As a result, the number of optical kernels can
be freely chosen as needed without a delicate kernel selection
process. As shown in Fig. 4(b), the RMSE variations for both
methods exhibit a similar trend for the Y-flip. Other factors,
such as quantization, sampling, and error accumulation dur-
ing iterations, can also contribute to the RMSE. Nevertheless,
the PTSS approach consistently outperforms the conventional
method with an RMSE that is always an order of magnitude
below.

In Fig. 5(a), an aerial image by the Abbe method [26] is taken
as the ground truth. The differences between the ground truth
and the results of the conventional and PTSS methods are meas-
ured in RMSE. The model errors for both TCC methods decrease
almost synchronously as the number of kernels increases. With
an RMSE of 0.005 set as a permissible limit, at least 38 kernels
are needed for accurate imaging. Figure 5(b) shows the RMSE
differences between the two TCC methods, while Fig. 5(c) illus-
trates the variations and differences in eigenvalues between
them.

In conclusion, we have demonstrated a PTSS method that
ensures the generation of symmetric kernels during TCC decom-
position, where the iterative vectors are repeatedly projected
onto predefined symmetric subspaces. The effectiveness of
PTSS has been verified by simulating the aerial image and con-
tour of a symmetric pattern under a symmetric TCC. Unlike
the conventional methods that suffer from EVD-induced asym-
metries, the PTSS method always generates a fully symmetric
model, regardless to which order the TCC eigenvectors are
truncated.
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