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Abstract: Optical scatterometry, also referred to as optical critical dimension (OCD) metrology,
is a widely used technique for characterizing nanostructures in semiconductor industry. As a
model-based optical metrology, the measurement in optical scatterometry is not straightforward
but involves solving a complicated inverse problem. So far, the methods for solving the inverse
scattering problem, whether traditional or deep-learning-based, necessitate a predefined geometric
model, but they are also constrained by this model with poor applicability. Here, we demonstrate
a sketch-guided neural network (SGNN) for nanostructure reconstruction in optical scatterometry.
By learning from training data based on the designed generic profile model, the neural network
acquires not only scattering knowledge but also sketching techniques, that allows it to draw the
profiles corresponding to the input optical signature, regardless of whether the sample structure
is the same as the generic profile model or not. The accuracy and strong generalizability of
proposed approach is validated by using a series of one-dimensional gratings. Experiments
have also demonstrated that it is comparable to nonlinear regression methods and outperforms
traditional deep learning methods. To our best knowledge, this is the first time that the concept of
sketching has been introduced into deep learning for solving the inverse scattering problem. We
believe that our method will provide a novel solution for semiconductor metrology, enabling fast
and accurate reconstruction of nanostructures.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Metrology plays an indispensable role in semiconductor manufacturing, with significant impli-
cations for ensuring product quality, enhancing yield, and optimizing processes [1–5]. Optical
scatterometry has become one of the most important techniques for critical dimension metrology
of nanostructures over the past decades due to its inherent noncontact, non-destructive, time-
effective, and relatively inexpensive merits over other techniques, such as scanning electron
microscopy and atomic force microscopy [6–10]. However, optical scatterometry is an indirect
characterization technique that involves the process of inferring geometric parameters from
the measured signatures, making it a typical inverse problem [11]. Here, the term “signature”
represents the optical response of the nanostructure sample under test, which can be in the form
of reflectance, ellipsometric angles, Mueller matrix (MM) elements, etc., or can consist of a
combination of these spectra. In conventional methods, such as library search [12] and nonlinear
regression [13], the solution is obtained by finding the calculated signatures best matching to
the measured ones through a predefined geometric model. This solving process usually takes a
few seconds or even tens of seconds. Additionally, it will yield an inaccurate or erroneous result
when using an improper geometric model. Therefore, any improvement in analysis methods for
scatterometry will be of great interest for the semiconductor metrology.

Deep learning, with its powerful arithmetic capabilities and fast computational speed, has
achieved many successful applications in fields such as computer vision [14] and natural
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language [15], which provides a new avenue for nanostructure reconstruction. Recently, some
researchers have employed neural networks establishing the mapping from signature space to
parameter space for direct deciphering [16–22], and neural networks can also be used as surrogate
electromagnetic (EM) solvers to speed up the solution of traditional methods [23]. However,
the predictive capability of these neural networks is constrained by the predefined geometric
model’s structure. As deviations in the manufacturing process can alter the sample’s shape,
overreliance on this geometric model might result in incorrect outcomes. Therefore, studies
on identification of nanostructures have been proposed [24,25], and there is also a work on
nanostructure reconstruction by weighting the results of neural networks trained by several
different geometric models [20]. Nevertheless, the time cost has been increased in the preparations
of these networks, and the persistent challenge posed by the dependence on the geometric model
requires further attention and resolution.

In this work, we present a novel method named SGNN for nanostructure reconstruction using
sketch-guided deep learning, to address the above challenges. As far as we know, this is the
first time that the concept of sketching has been introduced into deep learning algorithms for
solving the inverse scattering problem. In sketching, arbitrary patterns can be drawn using only
lines. Inspired by this, we replace the parametric representation of geometry with profile data to
enhance the expressiveness of neural networks and propose a design principle for constructing
generic profile models, which are employed to generate signature-profile data pairs for training.
After training on this dataset, the neural network has gained expertise in both scatterometry and
sketching, enabling it to predict the structural profile according to the input optical signature.
Remarkably, it is more expressive and suited for reconstructing samples with structures differing
from generic profile models. We take the measurement of one-dimensional gratings as an
illustrative example. Both simulating and experimental results have demonstrated that our
method exhibits strong generalizability, achieves solutions comparable to those obtained through
nonlinear regression methods, and outperforms traditional deep learning methods.

2. Method

2.1. Principle of the sketch-guided neural network

In order to better illustrate the innovations of the proposed method, we first discuss the inverse
solving process of the traditional deep learning. As shown in Fig. 1(a), the geometries of
nanostructures are characterized by several parameters according to the geometric models of
samples, and the aim of the structure reconstruction is to extract the underdetermined geometric
parameters. The neural networks provide a bridge between the signature space and the parameter
space, which enables the decryption of structure information from measured signature. The
geometric models divide the parameter space into multiple subspaces, similarly to the signature
space. More specifically, a single neural network is trained using the training dataset generated
by a specific geometric model, which takes the measured signature as the input and outputs the
structural parameters of the predefined geometric model. However, this solving method restricts
its applicability to other structures. Therefore, we refer to this method as model-dependent neural
network named MDNN. Similarly, when using library search or nonlinear regression, obtaining
accurate results also relies on choosing the correct geometric model. Given a set of optical
signatures measured on a sample, it requires human intervention or classification algorithms
to choose a neural network regarding the geometric model for reconstruction. Without precise
prior knowledge of the structure, MDNN may produce incorrect results due to poor choice of
geometric model. Obviously, the primary limitation of the MDNN is its reliance on geometric
models, resulting in poor generalization.

In the inverse scatterometry, minimizing dependence on geometric models can greatly reduce
training costs and enhance measurement efficiency. For this purpose, we present the SGNN for
nanostructure reconstruction, as illustrated in Fig. 1(b). The capability of neural networks to solve
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Fig. 1. Deep learning algorithms for nanostructure reconstruction in optical scatterometry.
(a) Schematic overview of the reconstruction using the traditional deep learning method. (b)
Overall workflow of the sketch-guided neural network for extracting structural profiles. (c)
Generation of the training data inspired by sketch drawing.

inverse scattering problems has been demonstrated. Based on this, we further enable them to learn
sketching techniques to expand their predictive abilities, allowing them to reconstruct structures
different from those in the training data. The proposed SGNN technique is described as follows.
First, we introduce a modification for characterizing nanostructure geometry by employing profile
shapes as the representation approach, allowing for the integration of individual parameter spaces
into a unified profile space. Second, we build a neural network that takes signatures as input
and outputs profile shapes. Subsequently generating the dataset used to train the network is
the most key technique. Line drawing is a style of sketching in which the artists accurately
depict objects using only straight lines. Novice drawers often use this technique to practice
drawing circles, as shown in the top subplot of Fig. 1(c). Inspired by line drawing, we propose a
designing principle for a generic profile model: employing oblique lines to depict regions that
may exhibit curvature or tilting on a sample, without the need for precise geometry. According to
the designed generic profile model, we employ EM solvers to compute corresponding signatures.
Finally, the neural network, trained on the signature-profile data pairs and referred to as SGNN,
enables the reconstruction of samples with varying geometries. The SGNN method outperforms
the MDNN method in analyzing samples with varying structures, as it does not necessitate an
accurate predefined geometric model or a classification algorithm, but only a single network with
less training data.

2.2. Design of generic profile model based on sketch

To provide insight into the design details of a generic profile model, we presented an illustrative
example of one-dimensional gratings. The top row of Fig. 1(a) and bottom row of Fig. 1(b) show
common geometries with symmetrical convex shapes, with features such as sloped or curved
sidewalls, and rounded corners at the top or bottom. According to those potential features, we
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developed a generic profile model consisting of three components: a trapezoid at the top, a
rectangle in the center, and another trapezoid at the bottom, as illustrated in Fig. 1(c). This model
is defined by six parameters: rectangle width W, top contraction width w1, bottom extension
width w2, height H, top contraction height h1 and bottom extension height h2. The slopes of the
model play the role of straight lines in line drawing. The manipulation of four parameters (W, w1,
H, h1) facilitates the construction of diverse straight lines effectively representing curved shapes,
allowing for potential profiles at the top half of samples. Similarly, by controlling parameters (W,
w2, H, h2), the profile of the lower part can be accurately represented. This model could provide
valuable learning information for the neural network to reconstruct the profiles of samples.

2.3. Data description

The proposed SGNN was applied to reconstruct the profiles of one-dimensional gratings. As an
illustrative example, the sample used to generate training data is a Si grating (with the generic
profile model designed above). The optical properties of Si are taken from Ref. [26]. The
period of the grating is set to 125 nm. The maximum width and maximum height define the
range of possible shapes for the grating, which we set to 90 nm and 120 nm, respectively. The
varying ranges of each parameter and the limited conditions between the parameters are given in
Table 1. The structural profiles of the samples were constructed by randomly selecting values in
parameters ranges. The profile data were calculated corresponding to each sample. A profile was
generated along the periodic direction, capturing contour points at 0.1 nm intervals. Considering
a distance with a maximum grating width of 90 nm, each profile data was a 901-dimensional
vector. Subsequently, the profile data were normalized using a maximum height of 120 nm,
producing the normalized profile, as depicted in Fig. 2.
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Fig. 2. Architecture of the SGNN. These convolutional layers have a kernel size of 3, zero
padding size of 1 and stride of 1. Before entering the fully connected layers, the extracted
features are flattened into a 1× 672 one-dimensional vector.

Optical signature can be a type of spectral data or a combination of several types of spectral
data. In our study, we selected MM spectra for nanostructure reconstruction since they provide
plentiful information for sensitive measurements [27–29]. Generating training data through
experiments requires producing many samples and performing experiments for each sample,
which is extremely expensive and time-consuming. Therefore, we built an EM solver, based
on rigorous coupled-wave analysis (RCWA) [30], to compute the MM spectra corresponding
to the generated samples described above. We chose a common measurement configuration.
Specifically, the incident angle was fixed at 65°, the spectral range was set to 250–800 nm with
an interval of 10 nm and the azimuth angle was fixed at 60°. Finally, we collected 60,000 distinct
MM-profile pairs through simulation to serve as the training data.
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Table 1. Varying ranges of the six parameters for training data

Parameter name Lower bound Upper bound Conditions

W 30 nm 80 nm ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w1<W/2

w2<(90 − W)/2

h1 + h2 ≤ H − 5

w1 1 nm 39 nm

w2 1 nm 39 nm

H 80 nm 120 nm

h1 1 nm 114 nm

h2 1 nm 114 nm

2.4. Construction of the neural network

For achieving nanostructure reconstruction, a one-dimensional convolutional neural network was
constructed. Convolution operation involves moving convolution kernels over input data and
performing summation, which can extract local features. With more convolutional layers, the
network can extract more complex features from the previous low-level features. As depicted
in Fig. 2, five convolutional layers are adopted to extract higher order features from signatures,
and two batch normalization layers are introduced after the first and second convolutional
layers to mitigate potential vanishing gradients, thus improving generalization performance and
convergence speed. And Max-pooling operations are performed after the first, second, and
fifth convolutional layers to extract the most important information and reduce computation
complexity. The extracted higher-order features are flattened, processed by three fully connected
layers, and then used to predict profiles. Additionally, considering computational efficiency
and the handle of negative values, Leaky ReLU with a negative slope of 0.2 is selected as the
activation function, except for employing a Sigmoid function after the final layer to constrain the
output values within reasonable bounds.

The construction and training of SGNN were performed using the open-source deep learning
library Pytorch, on a computer workstation with a central processing unit (Intel Xeon E5-2643v4
@3.4 GHz), 128 GB access memory and three graphics processing units (GeForce RTX 2080 Ti).
The training iterations and batch size of data were set to be 600 and 200, respectively. The mean
absolute error between predicted and target profiles was chosen as the loss function. The Adam
optimizer [31] with a learning rate of 0.001, known for its fast convergence, was employed for
training.

2.5. Algorithm for profile smoothing

Considering that neural networks establish a mapping relationship between inputs and outputs
through end-to-end learning, predictions can be inherently unstable and biased. Predicted profiles
can be post-processed to reduce the impact of biases, which is another advantage compared to
MDNN. Since the nodes of the network output are independent of each other, the biases are
specifically manifested in the high-frequency and sub-high-frequency fluctuations on predicted
profiles. There are already many mature smoothing algorithms, such as low-pass filtering,
moving median filtering, etc. However, one single algorithm cannot satisfy the needs for profile
smoothing, and the effect of smoothing depends on the manual setting of parameters, i.e. window
length. To improve the prediction results, we proposed a profile smoothing algorithm. As
shown in Fig. 3, the proposed automatic profile smoothing algorithm consists of two process:
first smoothing process based on frequency-domain low-pass filtering, and second smoothing
process using moving median filtering algorithms. The former aims to filter out high-frequency
fluctuations in the predicted profile, while the latter achieves the removal of sub-high-frequency
fluctuations. The details of proposed algorithm and its automated implementation are described
in the following text.
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Fig. 3. Flowchart of the proposed automatic profile smoothing algorithm. (a)(b) Effect
of window length on frequency-domain low-pass filtering and moving median filtering,
respectively, where the black line indicates the input profile and red line represents smoothed
profile; (c) Schematic diagram of the first smoothing process for removing high frequency
fluctuations from a profile; (d) Schematic diagram of the second smoothing process to
remove sub-high frequency fluctuations from a profile.

In the first smoothing process, the setting of the window function plays a crucial role and
determines the profile smoothing effect. The selection of the window function needs to consider
parameters such as the main lobe width and side lobe attenuation comprehensively. Hann window
is selected due to its good trade-off between the above two parameters. In addition, window
length is also a decisive parameter. As shown in Fig. 3(a), too small a window function length
will cause the original profile to deform, and too large a window function length will not work
for noise removal. Therefore, we use the predicted profile area Ap as a threshold and adopt a
multiple-step smoothing strategy that the window length L1 is gradually increased, and when
the smoothed profile area Af coincides with Ap, we can obtain the preliminary smoothed profile,
as illustrated in Fig. 3(c). For the second smoothing process, an improper window length can
also affect the smoothing performance, as shown in Fig. 3(b), such as poor smoothing due to
smaller window length, profile distortion caused by excessive window length. And we employ a
multiple-step smoothing strategy with gradually increased window length L2, as illustrated in
Fig. 3(d). Regarding the common one-dimensional gratings shown in Fig. 1, the local maximum
of a smooth profile does not exceed two. Thereby, we can utilize N= 3 as a termination condition.
What’s more, the relative area change δA between the smoothed profile and the input profile is
constrained by a threshold ε to preserve the original profile. Based on the above setting, the
predictions of the SGNN will undergo smoothing to obtain the reconstructed profiles.
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3. Results and discussion

3.1. Evaluation of reconstruction ability

The proposed SGNN method was initially assessed using simulating datasets, as simulations
offer a comprehensive exploration of SGNN’s ability to reconstruct gratings of diverse shapes.
Two types of gratings, namely rectangular and trapezoidal, are utilized to generate testing data.
The geometric model of each structure is shown in Supplement 1, Fig. S1 and Table S1, provides
details about the ranges and conditions of those structural parameters. The materials of the
gratings and substrates for each testing samples are consistent with those in the training set. Other
settings related to the measurement configuration (such as incident angle, detection spectral
wavelength, etc.) are the same as those set in Section 2.3. A total of 8 test sample structures
were provided, with each sample structure generating 50 test samples by randomly selecting
values within parameter ranges, and their spectra were computed using the established EM. The
simulated test dataset contained 400 samples in total.

To achieve better results through the proposed profile smoothing algorithm, there is need to
set initial parameters and termination conditions for each process for its implementation. In the
first smoothing process, the initial value of the window function length L1 is set to 11, with
an increment of 2 for each iteration. In the second smoothing process, the initial value of the
window length L2 is set to 3, with an increment of 2 for each iteration. And zeros are padded at
both ends of the input profile to ensure consistent data dimensions before and after smoothing.
The threshold ε for relative area change is set to 0.1%.

To quantitatively evaluate the results of SGNN, we took the mean absolute error (MAE)
between the reconstructed profile and ground truth as the metric, defined by

MAE =
1
n

∑︂n

i=1
|pi − yi |, (1)

where pi and yi represent the element of the reconstructed and ground truth profile, respectively,
and n is the dimension of profile data, which is 901 regarding the above settings. And the upper
quartile absolute error (UQAE) of a result is used to auxiliary illustrating the distribution of
errors.

3.1.1. Case of rectangular gratings

We began by evaluating the SGNN’s reconstruction performance with rectangular gratings, which
are commonly employed in photonics and optoelectronics. These standard rectangle gratings
may exhibit manufacturing errors in the form of three variations: rectangle with upper rounded
corners, rectangle with lower rounded corners, and rectangle with upper and lower rounded
corners. Figure 4 illustrates the reconstruction errors for these samples. The MAE of each sample
is less than 1.5 nm. The mean values of MAEs for these four structures are 0.93 nm, 0.90 nm,
0.85 nm and 0.92 nm, respectively. It is worth noting that the MAE is greater than the UQAE for
almost all samples. It means that at least 75% of the data points are reconstructed very accurately
with errors less than the MAEs.

Figures 4(b)-(e) and Supplement 1, Fig. S2, depict the detailed results for Samples 1-4, with
MAEs close to the mean values. It is apparent that the reconstructed profiles closely align with the
ground truths. Areas with relatively significant errors are predominantly located along the vertical
sides of these rectangles, suggesting that accuracy is somewhat reduced at the vertical edges,
contributing to the elevated MAE values. This is primarily because during the initial smoothing
process, frequency domain truncation results in the loss of high-frequency information, leading
to the appearance of slanted vertical edges. Remarkably, the SGNN effectively characterizes
rounded corners, even when they were not part of the training dataset, albeit with minor deviations.
Figures 4(f)-(i) present the detailed results for Samples 5-8, exhibiting the worst MAE values.

https://doi.org/10.6084/m9.figshare.25782495
https://doi.org/10.6084/m9.figshare.25782495
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Fig. 4. Results of SGNN for rectangular gratings. (a) depicts the MAEs and UQAEs
between the reconstructed profiles and ground truths; (b)-(i) display detailed results and
errors for samples 1-8, with the reconstructed profiles represented by dashed lines and
ground truth profiles drawn as solid lines in the top subgraphs.

More results are listed in Supplement 1, Fig. S4-S7. All samples demonstrate successful
reconstruction, affirming the efficacy of the proposed method in achieving accurate solutions for
rectangular gratings.

3.1.2. Case of trapezoidal gratings

Subsequently, we conducted an evaluation of the SGNN method with trapezoidal gratings, which
represent another prevalent structural type. Trapezoidal gratings are available in four distinct
shapes: standard trapezoid, trapezoid with upper rounded corners, trapezoid with lower rounded
corners, and sinusoidal shape. Figure 5 presents the reconstruction errors for these samples.
The mean values of MAEs for these four structures are 0.23 nm, 0.57 nm, 0.39 nm and 1.14 nm,
respectively. For samples with the first three shapes, the MAE is comparable to the UQAE,
indicating that approximately 75% of the data points are reconstructed very accurately, featuring
errors less than the MAEs. For samples with sinusoidal shape, the UQAEs exceed the MAEs,
and even for the worst-case UQAE, 75% of the reconstructed data points exhibit errors of less
than 3.3 nm, which is also considered a desired outcome.

Figures 5(b)-(e) and Supplement 1, Fig. S3 provide the detailed results for Samples 1-4, with
MAEs close to the mean values. It is evident that the reconstructed profiles are highly consistent
with the ground truths. For samples with the first three shapes, the errors exceeding UQAE
are located at the boundary junctions and rounded corners. Despite the errors, the structural
profiles, whether sloping edges or rounded corners, can be accurately reconstructed. The MAEs

https://doi.org/10.6084/m9.figshare.25782495
https://doi.org/10.6084/m9.figshare.25782495
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Fig. 5. Results of SGNN for trapezoidal gratings. (a) depicts the MAEs and UQAEs
between the reconstructed profiles and ground truths; (b)-(i) display detailed results and
errors for samples 1-8, with the reconstructed profiles represented by dashed lines and
ground truth profiles drawn as solid lines in the top subgraphs.

of samples with sinusoidal shape are much larger due to more curved edges, however, it is still
feasible to obtain relatively reliable results. The reconstructed profiles exhibit a rectilinear shape
at its top, this is because the top part of the designed generic profile model is a trapezoid. This
situation can be alleviated by changing the constraint conditions of the geometric parameters.
Figures 5(f)-(i) present the detailed results for Samples 5-8, exhibiting the worst MAE values.
It appears that the curves bend less accurately for Samples 6 and 8. This may be effectively
improved by increasing the training data. More results are listed in Supplement 1, see Figs.
S8-S11. The outcomes of this extensive testing underscore the generalization of the proposed
method in effectively reconstructing trapezoidal samples.

3.2. Experimental demonstration

To further assess the robustness of the proposed SGNN in practical implementation, a trapezoidal
Si grating with a period of 125 nm was fabricated. The design dimensions of the sample are as
follows: a top width of 38 nm, a height of 92 nm, and a sidewall angle of 80°. The experiment
was conducted using a dual-rotating compensator Mueller matrix ellipsometer (ME-L, Wuhan
Eoptics Technology Co.). The beam diameter used in the experiments is 200 µm. The two arms
and the sample stage of the ME-L can be rotated to change the incidence and azimuthal angles in
experiments. The accuracy and repeatability of ME-L are 0.13 nm and 0.001 nm, respectively,
tested on a standard SiO2 film with a thickness of 96.75 nm. The experimental configurations
were consistent with the previous text: the incident angle of the experiment was set to 65°, and

https://doi.org/10.6084/m9.figshare.25782495
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the azimuth angle was set to 60°. The instrument acquired the MM spectra of the sample and then
we performed interpolation to generate data within the 250− 800 nm spectral range, consistent
with the settings in the training dataset.

Nonlinear regression methods are commonly employed in optical scatterometry as a precise
solution for nanostructure reconstruction. To illustrate the practicality and accuracy of the
proposed SGNN, we compared its results with those obtained using a widely adopted nonlinear
regression method based on the Levenberg-Marquardt (LM) algorithm. Here, we present the
results of four geometric models with well-fitted spectra, including standard trapezoid, trapezoid
with upper rounded corners, trapezoid with lower rounded corners, and trapezoid with upper and
lower rounded corners. Table 2 gives the extraction results, and the quality of the results was
assessed by the mean square error (MSE) between the measured and calculated MM spectra,
defined by

MSE =
1
m

∑︂m

i=1
(Mmea

i − Mcal
i )

2 (2)

where Mmea
i and Mcal

i are the measured and calculated MM spectral data points, respectively, and
m represents the number of data points. Considering both the MSE and the number of fitting
parameters, the result based on trapezoid with lower rounded corners was deemed more favorable
and served as the reference for subsequent discussions.

Table 2. Results based on different geometric models

Geometric model
Geometric parameters

MSE
W H b rtop rbottom

trapezoid 36.8 nm 91.8 nm 17.6 nm 1.76× 10−3

trapezoid with upper rounded corners 36.6 nm 92.2 nm 17.6 nm 0.5 nm 1.76× 10−3

trapezoid with lower rounded corners 38.6 nm 92.9 nm 16.3 nm 20.0 nm 1.32× 10−3

trapezoid with upper and lower rounded corners 38.4 nm 93.4 nm 16.4 nm 0.6 nm 20.0 nm 1.32× 10−3

We also conducted a comparative analysis between the proposed SGNN method and the
traditional MDNN method. Following the analysis of nonlinear regression method, the trapezoid
with lower rounded corners, as depicted in Fig. S1 and characterized by four parameters, was
chosen as the geometric model. Table S1 provides the ranges and conditions for the variation
of the geometric parameters in the training dataset. A neural network with the same hidden
layer architecture as SGNN was constructed, using MM spectra as input to predict geometric
parameters. These parameters were normalized during training, and a Tanh function was applied
after the final layer to constrain the outputs within reasonable bounds. The training dataset’s
scale and settings remained identical to those of SGNN.

The measured MM spectra were input into the SGNN, and the profile smoothing algorithm
was applied to process the outputs for obtaining the reconstructed profile. The threshold ε for
the profile smoothing algorithm was set to 0.4%, with all other settings consistent with those in
Section 3.1. Figure 6(a) presents the reconstruction results of the prepared sample using different
methods, with the outcome of the nonlinear regression method serving as the reference ground
truth, and Fig. 6(b) shows the AEs of profile data points. The traditional MDNN exhibited a larger
deviation with a MAE of 6.1 nm, primarily attributed to experimental noise and instrumental
errors (e.g., errors in the angle of incidence, azimuth, etc.) that can alter the spectral data. And
optimizing the measurement configurations is also an important way to improve measurement
accuracy, as some of them may be more sensitive to small deviations in shapes. In contrast, SGNN
achieved a better match between the reconstructed profile and the ground truth, with a MAE of
2.5 nm. Larger errors were distributed at the boundary junctions and sloping edges, similar to
the error distribution observed in simulated tests, but with a greater error magnitude due to the
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gap between experimental and simulated data. Figure 7 depicts the measured and calculated
MM spectra. It was evident that the MM spectra obtained by the nonlinear regression method
exhibited the best agreement with the measured spectra, achieving an MSE of 1.32× 10−3. The
MM spectra obtained through the SGNN method followed a similar trend as the measured spectra,
albeit with a slightly larger MSE compared to the nonlinear regression method, registering at
3.13× 10−3. Conversely, the MM spectra obtained by the MDNN exhibited a considerably larger
deviation from the measured spectra, yielding a higher MSE of 9.42× 10−3. Experimental results
demonstrated that the proposed SGNN enabled the reconstruction of samples independent of
predefined geometric model, achieved a solution comparable to nonlinear regression method,
and outperformed the MDNN by showing more robustness under the same training setup.
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Fig. 6. Experimental result. (a) Comparison of profiles reconstructed by nonlinear
regression (denoted as NR) method, SGNN and MDNN, respectively. (b) AEs of SGNN
and MDNN results.
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Fig. 7. Comparison of measured MM spectra with MM spectra calculated using the results
of nonlinear regression (denoted as NR) method, SGNN and MDNN, respectively.

4. Conclusion

In conclusion, we have proposed the SGNN for nanostructure reconstruction. Drawing inspiration
from the common sketching style of line drawing, we created a generic profile model by arranging
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lines in space according to the diverse potential shapes of samples. We fully leveraged the
computational power advantage of neural networks, allowing them to learn scattering knowledge
and sketching techniques from the data simulated by using the EM solver based on the generic
profile model. Predicting profile instead of outputting parameters allows us to reduce the influence
of noise. Therefore, we have also proposed a profile smoothing algorithm for one-dimensional
gratings. By feeding the output of the SGNN in response to a set of measured MM spectra into the
profile smoothing algorithm, we could obtain the reconstruction result. Simulations conducted on
a series of grating have confirmed that the proposed method has strong generalization, handling
various sample with different structures unseen in the training data, and can achieve accurate
solutions. In other word, it enables both classification and structural reconstruction tasks. Further
experiments have demonstrated that SGNN is superior to MDNN in term of robustness and can
yield reliable results that are close to that of the nonlinear regression method.

In addition, as a prospective, we can make it possible to reconstruct samples with more
complex structures, not limited to convex symmetric gratings, by modifying the generic profile
model, e.g., adding trapezoids, adjusting the parameter ranges, setting trapezoids to asymmetric,
etc. Moreover, using the present generic profile model, SGNN is capable of measuring
two-dimensional cylindrical structures. Furthermore, by creating a generic profile model in three-
dimensional space, SGNN has the potential to be extended to reconstruct other two-dimensional
nanostructures. The developed method provides a completely novel insight into solving the
nanostructure reconstruction task.
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