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Abstract: Mask optimization, a compensation method for the thick mask effect and the optical
proximity effect in projection lithography, is essential for advanced EUV-enabled production
nodes. However, owing to high computation costs and the absence of gradient calculations, it is
challenging to optimize EUV masks under rigorous consideration of the thick mask effect. In
this work, a linearized EUV mask optimization method based on the adjoint method is proposed
to provide fast and effective optimizations. The adjoint method is introduced to calculate the
gradient of the EUV mask model. Additionally, a linearized gradient is proposed to quickly
compensate for wafer pattern distortion caused by the prominent thick mask effect. Two examples
of the EUV mask optimization implemented with a two-step strategy were provided, from which
it was observed that the linearized gradient can improve the efficiency by about 40% in the
coarse optimization step. The proposed method is promising for accurate full-chip EUV mask
optimization.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

For decades, projection lithography has pursued higher resolution by various methods [1],
including alternating phase shifting mask [2], off-axis illumination [3], and multiple patterning
[4]. Among these methods, mask optimization (MO) [5] is one of the most promising methods
to explore the limits of lithography and has been widely used in deep ultraviolet lithography
(DUVL) [6–8]. As the successor of the DUVL, extreme ultraviolet lithography (EUVL) bears
not solely the optical proximity effect but also the severe thick mask effect [9], which makes the
MO an indispensable tool to extend the lifespan of Moore’s law [10].

The MO has been studied extensively since its first commercialization in the 2000s [11,12],
which can be classified into the end-to-end and iterative MO. The former [13–16] trains neural
networks with thousands of reference datasets obtained from the iterative MO, after which
optimized mask patterns can be predicted directly. The end-to-end MO is fast, while it cannot
guarantee obtaining a local optimal solution and usually is used to generate initial patterns for the
iterative MO [17]. The iterative MO simulates the lithography process using the mask model,
projection lens model and resist model to get wafer patterns, then iteratively optimizes mask
patterns based on the simulation results until wafer patterns meet requirements. According to
optimization algorithm, the iterative MO can be divided into the heuristic- and gradient-based
MO. Although the heuristic-based MO does not need the gradient, it is typically slower than the
gradient-based MO [18–20]. Therefore, the gradient-based MO is used most frequently and it is
essential to calculate the gradient for reducing the runtime of the MO.

The difficulty of gradient calculations mainly depends on the thick mask model, while the
derivations of other components of the lithography model like the projection lens model and
resist model are well-established [21,22]. Ma et al. proposed a gradient calculation for boundary
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layer model [23] in the DUVL. However, the mask model is inapplicable for the EUV mask with
the severe thick mask effect. Considering that the application of curvilinear patterns is inevitable
with the emerging of multi-beam mask writing (MBMW) [24,25], it is also necessary for the
mask model to be compatible with complex curvilinear patterns. To meet the requirements, a
fast mask model based on modified Born series (MBS) [26] was proposed in our previous paper.
However, there is a lack of gradient calculation methods corresponding to this mask model for
the highly efficient MO.

Adjoint method is widely applied for optical inverse design [27,28]. With only two electro-
magnetic simulations, one can calculate the gradient of an objective function with respect to all
design variables in the simulation domain [29]. In this work, the adjoint method is introduced
to the gradient calculation of the EUV thick mask model for the first time. With rigorous
consideration of the thick mask effect, the mask can be optimized iteratively based on the gradient.
Compared to the DUVL, there are more differences between wafer patterns and mask patterns in
the EUVL because of the more significant thick mask effect. Therefore, EUV masks need more
optimization. To reduce the computational cost of the EUV mask optimization, a linearized
gradient, which ignores resist models in the gradient calculation, is proposed. A detail of the
gradient calculation is presented in Section 2. The effectiveness and superiority of the proposed
method are demonstrated with two examples of the EUV mask optimization implemented in a
two-step strategy in Section 3.

2. Theory and methods

2.1. Mask optimization

The MO is treated as a minimization problem, in which the mask pattern is the design variable
and the normalized wafer pattern fidelity is the cost function. The mask pattern is represented by
Θ ∈ RM×N . The cost function is defined as the normalized square of the Euler distance between
the wafer pattern and target pattern, which implies the average edge placement error along the
target contour.

F (Θ) =
∥︁∥︁wc(Θ) − wt

∥︁∥︁2
2

C
(1)

where wc is the wafer pattern of the corresponding mask pattern m calculated by lithography
models; wt is the target pattern; The notation ∥·∥2

2 represents the square of l2-norm; C is the
perimeter of the target pattern. The mask optimization problem can be express as

Θ̂ = arg min
Θ

F (Θ) (2)

With the aim of high performance and manufacturability, a two-step optimization strategy
is applied, which is shown in Fig. 1. In the coarse optimization step, the continuous mask is
optimized with the linearized gradient, until the normalized cost function is smaller than 1 or
the iteration number exceeded 60. Then, the obtained mask pattern is binarized and filtered. In
the fine optimization step, the binary mask pattern is represented by the level set method [30]
and optimized with the normal gradient. A fixed number of iterations are conducted to find
the minimum of the cost function in this step. There is a similar strategy that uses an aerial
image penalty term as the cost function in the coarse step [31]. Note this work applies different
gradients instead of different cost functions between the two steps, while the substitution of the
cost function might lead to ineffective optimization.

The optimized patterns might contain small undesired artifacts, such as isolated voids,
protrusions, and irregular edges, which can result in poor manufacturability [21,32–33]. These
artifacts can be taken as noise and removed by filtering operation between the two steps [34].
During the level set evolution, an extra motion, driven by the mean curvature of the pattern
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Fig. 1. A two-step optimization strategy. In the coarse optimization step, the continuous
mask is optimized with the linearized gradient. Then, the obtained mask pattern is
filtered and binarized to improve the manufacturability. In the fine optimization step,
the binary mask pattern is represented by the level set method and optimized with the
normal gradient.

2.2. Rigorous EUVL model91

A lithography simulation model usually consists of a mask model, a vector projection lens model,92

and a resist model. Considering the complex thick mask effect, a mask model based on the93

MBS is adopted, which significantly outperforms the FDTD in terms of speed while maintaining94

comparable accuracy [26, 36]. The mask model can be represented as95

Emask = GV(𝚯)Emask + GS (3)

where Emask is a vector containing the field at all points in the simulation domain; G is a matrix96

representing the convolution; V is a diagonal matrix containing the scattering potential which is97

determined by the mask pattern m; S is a vector representing the incident field from a single source98

points in the partially coherent illumination. The derivation is based on coherent illumination for99

simplicity. After solving the MBS with the fix-point iteration, the mask near field Enear can be100

extracted from Emask and propagated to the wafer plane with the vector projection lens model.101
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where the vector projection operator H represents the propagation of the field from the mask102

plane to the wafer plane. A detailed description of H can be found in Ref. [37]. Then, the aerial103

image, the distribution of intensity, is obtained by summing the intensity of all three components104

of Ewafer.105
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Fig. 1. A two-step optimization strategy. In the coarse optimization step, the continuous
mask is optimized with the linearized gradient. Then, the obtained mask pattern is filtered
and binarized to improve the manufacturability. In the fine optimization step, the binary
mask pattern is represented by the level set method and optimized with the normal gradient.

contour [30], is applied, which can contribute to meeting the curvature requirements of the mask
manufacturing rules checking (MRC) and prohibit the emergence of small features. To some
extent, these methods can enhance the manufacturability.

2.2. Rigorous EUVL model

A lithography simulation model usually consists of a mask model, a vector projection lens model,
and a resist model. Considering the complex thick mask effect, a mask model based on the
MBS is adopted, which significantly outperforms the FDTD in terms of speed while maintaining
comparable accuracy [26,35]. The mask model can be represented as

Emask = GV(Θ)Emask +GS (3)

where Emask is a vector containing the field at all points in the simulation domain; G is a matrix
representing the convolution; V is a diagonal matrix containing the scattering potential which is
determined by the mask pattern m; S is a vector representing the incident field from a single source
points in the partially coherent illumination. The derivation is based on coherent illumination for
simplicity. After solving the MBS with the fix-point iteration, the mask near field Enear can be
extracted from Emask and propagated to the wafer plane with the vector projection lens model.
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where the vector projection operator H represents the propagation of the field from the mask
plane to the wafer plane. A detailed description of H can be found in Ref. [36]. Then, the aerial
image, the distribution of intensity, is obtained by summing the intensity of all three components
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of Ewafer.
I =

|︁|︁Ewafer
x

|︁|︁2 + |︁|︁Ewafer
y

|︁|︁2 + |︁|︁Ewafer
z

|︁|︁2 (5)

The feature of resists is the nonlinear response to the intensity [37], which is usually
approximated by a sigmoid function. The wafer pattern can be obtained from the aerial image.

wc = sig (I) = 1
1 + exp [−a (I − tr)] (6)

where a and tr represent the steepness and threshold of the resist model, respectively. Note that
the proposed method imposes no restrictions on the resist model except for the requirement of
differentiability.

2.3. Gradient calculation

The primary challenge in gradient calculations of the rigorous EUVL model lies with the EUV
mask model. To solve this problem, the adjoint method is introduced for the first time. The
gradient of the cost function can be expressed as

∂F
∂Θ = Re

{︁
EAÊmaskCv

}︁
(7)

where Êmask = diag(Emask); EA is the result of adjoint simulations; Cv is a diagonal matrix
representing the partial derivative of V with respect to Θ. The detailed derivation of the gradient
calculation and Cv can be found in Supplement 1. The adjoint simulations are identical to the
forward simulations in Eq. (3), except for the sourece term, which implies that the implementation
and the computational load are the same too. Based on the gradient, the mask can be optimized
efficiently.

Different from the DUV MO, there are much more modifications needed in the EUV MO
due to the more prominent thick mask effect. Besides, it is found that the modification of the
mask pattern for each iteration mainly occurs at the edge of previous patterns. Many iterations
with heavy computational costs are needed to obtain satisfactory mask patterns, which can be
attributed to the nonlinear response of the resist. At the region with the intensity away from the
threshold of the resist, a small perturbation in the intensity cannot induce a discernible change
on the wafer pattern. Therefore, the gradient away from the edge of the mask pattern is nearly
zero. Another reason for the inefficient modification is that the definition of the gradient is based
on the assumption of linearity. However, the cost function is inconsistent with the assumption
because of the nonlinear response of resists.

To solve this contradiction and accelerate the optimization, the linearized gradient is proposed.
The partial derivative of the cost function F with respect to the intensity I is

∂F
∂I =

∂F
∂wc
∂wc

∂I (8)

Then, the linearized gradient can be obtained by ignoring the resist model.

∂F
∂I =

∂F
∂wc (9)

The linearized gradient allows pattern modification anywhere, rather than being confined
solely to the edge of previous patterns. Note that the linearized gradient is not as accurate as the
normal gradient, but it is more effective than the latter. Two examples are provided in Section 3.
to show the superiority of the linearized gradient.

https://doi.org/10.6084/m9.figshare.25206890
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3. Results and discussion

The proposed method can be applied to various situations. It is necessary to clarify the model
and optimization parameters. The wavelength was 13.5 nm. The s-polarized light hit the mask at
an incident angle of 6◦. The binary dark-field EUV mask consisted of the absorber and multilayer
[38]. The absorber material was TaN with the refractive index N = 0.9385 + 0.03776i. The
absorber thickness was 50 nm. The multilayer stack parameters from Ref. [39] were adopted.
Note that the proposed method is also applicable to the attenuated phase-shift mask with standard
multilayer blanks [40]. For the projection lens model, the demagnification factor and numerical
aperture (NA) were 4 and 0.33, respectively. The aberration term was ignored. The steepness a
and threshold tr in the resist model were 80 and 0.4, respectively. The resist model was used in
the lithography simulations and the calculation of the normal gradient, while it would be ignored
in the calculation of the linearized gradient. Equation (2) was solved by the steepest descent
method iteratively. The initial step size s for the first iteration was 0.75π/max(∂F/∂Θ), while s
for other iterations was the optimized step size of previous iterations. The actual step sizes were
obtained by the Brent’s method [41] with an evaluation number of 5 and a maximum step size of
2s. The filter used was a Gaussian filter with a standard deviation of 6. The strength factor of the
curvature motion in the level set evolution is 0.008.

All the computations were performed on a virtual machine based on the Intel Xeon Gold
6230R architecture, with 8 allocated cores and 32 GiB of memory. Besides, one NVIDIA Tesla
V100S with 32 GiB of memory was used. The calculations were implemented using MATLAB.
The maximum GPU memory usage was approximately 7.5 GiB during the MO.

3.1. Gradient verification

Before optimizing the EUV masks, it is necessary to verify the accuracy of gradient calculations.
The reference gradient was obtained from a simple first-order difference.

∂F (Θ)
∂Θj

=
F
(︁
Θ + dΘj

)︁ − F (Θ)
dΘj

, j = 1, . . . , MN (10)

where dΘj represents a perturbation in the j-th design variable. The accuracy of the difference
equation depends on the size of the perturbation which is necessary to maintain a balance between
the approximation and rounding errors [42]. Therefore, the gradients with perturbations of
different sizes were calculated to provide solid references. The distribution of the variable Θ and
target pattern are shown in Fig. 2. The test points locate at a line segment with y = 0 nm and
x = [-200, 300]. The gradients are normalized and shown in Fig. 2(c). The great consistency
between the three reference gradients and that from adjoint simulation can be observed, which
demonstrates the accuracy of gradient calculations.

3.2. Mask optimization examples

Two examples of the EUV thick mask optimization are presented in this section. The target
patterns, including a logic pattern and a BigMaC [43] pattern, are discretized into 664 × 672
and 700 × 632 pixels, respectively. The pixel size is 3.375 nm. The results are shown in Fig. 3
and Fig. 4. The minimum dimensions of both the patterns are 20 nm on wafer scale. The
upper-left figure shows the original and optimized patterns in green and blue, respectively. The
corresponding wafer patterns, compared with the target pattern in red, are shown in the right
figure. The figures below are the corresponding zoomed-in views.

Due to the mask shadow effect [9], the original wafer patterns shrink compared to the target
patterns. To compensate for the shrinkage, the openings of the mask patterns are enlarged, which
provides excellent contour fidelity in both examples. The aerial and resist images are provided in
Supplement 1. Compared to the logic pattern, the smaller interval between the features in the

https://doi.org/10.6084/m9.figshare.25206890
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at an incident angle of 6°. The binary dark-field EUV mask consisted of the absorber and141

multilayer [39]. The absorber material was TaN with the refractive index N = 0.9385 + 0.03776i.142

The absorber thickness was 50 nm. The multilayer stack parameters from Ref. [40] were adopted.143

Note that the proposed method is also applicable to the attenuated phase-shift mask with standard144

multilayer blanks [41]. For the projection lens model, the demagnification factor and numerical145

aperture (NA) were 4 and 0.33, respectively. The aberration term was ignored. The steepness 𝑎146

and threshold 𝑡r in the resist model were 80 and 0.4, respectively. The resist model was used in147

the lithography simulations and the calculation of the normal gradient, while it would be ignored148

in the calculation of the linearized gradient. Eq. (2) was solved by the steepest descent method149

iteratively. The initial step size 𝑠 for the first iteration was 0.75𝜋/max(𝜕𝐹/𝜕𝚯), while 𝑠 for150

other iterations was the optimized step size of previous iterations. The actual step sizes were151

obtained by the Brent’s method [42] with an evaluation number of 5 and a maximum step size of152

2𝑠. The filter used was a Gaussian filter with a standard deviation of 6. The strength factor of the153

curvature motion in the level set evolution is 0.008.154

All the computations were performed on a virtual machine based on the Intel Xeon Gold155

6230R architecture, with 8 allocated cores and 32 GiB of memory. Besides, one NVIDIA Tesla156

V100S with 32 GiB of memory was used. The calculations were implemented using MATLAB.157

The maximum GPU memory usage was approximately 7.5 GiB during the MO.158

3.1. Gradient verification159

Before optimizing the EUV masks, it is necessary to verify the accuracy of gradient calculations.160

The reference gradient was obtained from a simple first-order difference.161

𝜕𝐹 (𝚯)
𝜕𝚯 𝑗

=
𝐹
(
𝚯 + 𝑑𝚯 𝑗

) − 𝐹 (𝚯)
𝑑𝚯 𝑗

, 𝑗 = 1, . . . , 𝑀𝑁 (10)

where 𝑑𝚯 𝑗 represents a perturbation in the 𝑗-th design variable. The accuracy of the difference162

equation depends on the size of the perturbation which is necessary to maintain a balance between163

the approximation and rounding errors [43]. Therefore, the gradients with perturbations of164

different sizes were calculated to provide solid references. The distribution of the variable 𝚯 and165

target pattern are shown in Fig. 2. The test points locate at a line segment with y = 0 nm and166

x = [-200, 300]. The gradients are normalized and shown in Fig. 2(c). The great consistency167

between the three reference gradients and that from adjoint simulation can be observed, which168

demonstrates the accuracy of gradient calculations.
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Fig. 2. An example for verification of the gradient calculation. (a) The distribution of
design variable 𝚯. (b) The target wafer pattern. (c) Comparison between the reference
gradients with perturbations of different sizes and that from the adjoint simulation at a
line segment with y = 0 nm and x = [-200, 300] nm.

169

Fig. 2. An example for verification of the gradient calculation. (a) The distribution of
design variable Θ. (b) The target wafer pattern. (c) Comparison between the reference
gradients with perturbations of different sizes and that from the adjoint simulation at a line
segment with y = 0 nm and x = [-200, 300] nm.

3.2. Mask optimization examples170

Two examples of the EUV thick mask optimization are presented in this section. The target171

patterns, including a logic pattern and a BigMaC [44] pattern, are discretized into 664 × 672172

and 700 × 632 pixels, respectively. The pixel size is 3.375 nm. The results are shown in Fig.173

3 and Fig. 4. The minimum dimensions of both the patterns are 20 nm on wafer scale. The174

upper-left figure shows the original and optimized patterns in green and blue, respectively. The175

corresponding wafer patterns, compared with the target pattern in red, are shown in the right176

figure. The figures below are the corresponding zoomed-in views.177
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Fig. 3. The mask optimization for the logic pattern with the minimum dimension of 20
nm on wafer scale. (a) The original and optimized mask pattern. (b) The corresponding
wafer pattern. The figures below are the corresponding zoomed-in views.

Due to the mask shadow effect [9], the original wafer patterns shrink compared to the target178

patterns. To compensate for the shrinkage, the openings of the mask patterns are enlarged, which179

provides excellent contour fidelity in both examples. The aerial and resist images are provided180

in Supplement. Compared to the logic pattern, the smaller interval between the features in the181

BigMaC pattern would lead to stronger interaction. Therefore, it is more challenging to optimize182

the BigMaC pattern. For the logic and BigMaC pattern, the cost functions of the optimized183

patterns are 90% and 86% smaller than those of the original patterns, respectively.184

The convergence of the cost function with the linearized and normal gradient is shown in Fig.185

5. For the case of the normal gradient, the normal gradient was used in both two steps. There are186

some turning points at the normalized cost of 1, at which the mask patterns are binarized and187

filtered to reduce the complexity. With the linearized gradient, the numbers of iterations required188

to reach the turning points are decreased by about 44% and 57% for the logic and BigMaC189

pattern, respectively, which demonstrates the superiority of the linearized gradient.190

The runtime of the mask optimizations is shown in Table. 1. The forward simulations of EUV191

Fig. 3. The mask optimization for the logic pattern with the minimum dimension of 20 nm
on wafer scale. (a) The original and optimized mask pattern. (b) The corresponding wafer
pattern. The figures below are the corresponding zoomed-in views.

BigMaC pattern would lead to stronger interaction. Therefore, it is more challenging to optimize
the BigMaC pattern. For the logic and BigMaC pattern, the cost functions of the optimized
patterns are 90% and 86% smaller than those of the original patterns, respectively.

The convergence of the cost function with the linearized and normal gradient is shown in
Fig. 5. For the case of the normal gradient, the normal gradient was used in both two steps. There
are some turning points at the normalized cost of 1, at which the mask patterns are binarized and
filtered to reduce the complexity. With the linearized gradient, the numbers of iterations required
to reach the turning points are decreased by about 44% and 57% for the logic and BigMaC
pattern, respectively, which demonstrates the superiority of the linearized gradient.

The runtime of the mask optimizations is shown in Table 1. The forward simulations of EUV
masks are accelerated by the initial condition from the field of the mask with the last pattern
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Fig. 4. The mask optimization for the BigMaC pattern with the minimum dimension
of 20 nm on wafer scale. (a) The original and optimized mask pattern. (b) The
corresponding wafer pattern. The figures below are the corresponding zoomed-in
views.
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Fig. 5. Convergence of normalized cost function with linearized and normal gradient
for (a) the logic and (b) the BigMaC pattern. The optimization adopts the two steps
strategy. In the coarse step, the iteration stops when the normalized cost is smaller
than 1. Then, the obtained masks are binarized and filtered, which leads to the turning
points of the cost function. The filtered masks are optimized for 36 iterations in the
fine step to get the optimized masks.
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Fig. 4. The mask optimization for the BigMaC pattern with the minimum dimension of 20
nm on wafer scale. (a) The original and optimized mask pattern. (b) The corresponding
wafer pattern. The figures below are the corresponding zoomed-in views.
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Fig. 4. The mask optimization for the BigMaC pattern with the minimum dimension
of 20 nm on wafer scale. (a) The original and optimized mask pattern. (b) The
corresponding wafer pattern. The figures below are the corresponding zoomed-in
views.
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Fig. 5. Convergence of normalized cost function with linearized and normal gradient
for (a) the logic and (b) the BigMaC pattern. The optimization adopts the two steps
strategy. In the coarse step, the iteration stops when the normalized cost is smaller
than 1. Then, the obtained masks are binarized and filtered, which leads to the turning
points of the cost function. The filtered masks are optimized for 36 iterations in the
fine step to get the optimized masks.
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Fig. 5. Convergence of normalized cost function with linearized and normal gradient for (a)
the logic and (b) the BigMaC pattern. The optimization adopts the two steps strategy. In the
coarse step, the iteration stops when the normalized cost is smaller than 1. Then, the obtained
masks are binarized and filtered, which leads to the turning points of the cost function. The
filtered masks are optimized for 36 iterations in the fine step to get the optimized masks.

(PatternACC) [26]. In other words, the greater the similarity between the patterns, the less time
needed. Given the linearized gradient tends to introduce more modifications than the normal
one, the reduction in time, which is 42% and 47% respectively, is slightly less pronounced than
the reduction in iteration number. Due to the step size search, the forward simulation has been
executed five times more frequently than the adjoint simulation. Then, the estimated average
effect of the PatternACC with the linearized gradient is about 48%. The average runtime with the
linearized gradient is about 400 seconds.

The mask optimizations in this work are conducted under a single source point. The proposed
method can be extended to the partially coherent illumination with the Abbe integration [44].
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Table 1. Runtime of the mask model and MO. The data are presented
in seconds.

Pattern Logic BigMac

Method Linearized Normal Linearized Normal

Step 1
Forward 74 127 91 160

Adjoint 25 45 31 72

Step 2
Forward 158 178 93 92

Adjoint 64 65 43 43

Mask Model 322 416 258 367

Mask Optimization 421 526 385 513

However, the PatternACC may be unsuitable for the partially coherent illumination due to the
difficulty of handling vast amounts of data. Assuming that the runtime of the MO is linear to the
number of source points Np, the runtime is estimated as 400 × 2 × Np seconds. For example, the
runtime of the MO with 108 source points is 1 day. Further investigation about the selection of
the source points and speed improvement, is required for a reliable and pratical MO under the
partially coherent illumination. Given that the current NA is 0.33, the runtime can be reduced
by replacing the vector model with a scalar one, while additional research about the impact on
accuracy is required. The vector model used in this work can be applied to situations with high
NA.

4. Conclusion

In summary, a linearized EUV mask optimization based on the adjoint method is proposed. The
adjoint method is first introduced into gradient calculations of the EUV thick mask model, which
makes the gradient-based rigorous EUV MO possible. Moreover, the linearized gradient is
proposed to reduce the iterations of the optimization. It was shown that the linearized gradient
was more efficient than the normal one in the coarse optimization step, and half of the iterations
can be saved. This work contributes a solid foundation for the further development of EUV
computational lithography, and future studies can explore its application on partially coherent
illumination with acceptable runtime.
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1. DERIVATION OF THE ADJOINT SIMULATION

The derivation in this section focuses on the gradient calculation of the mask model. Given a
small perturbation dEmask, the resulting change dF in the cost function F can be expressed as:

dF = Re
{

SAdEmask
}

(S1)

where SA is a vector containing the partial derivative of F with respect to Emask. Details of SA

can be found in Sec. 2. Then, the equation representing the mask model is rewritten as

Emask = GV(Θ)Emask + GS (S2)

Next, a perturbation dV in the scattering potential V is introduced in Eq. (S2).

Emask + dEmask = G (V + dV)
(

Emask + dEmask
)
+ GS (S3)

where dEmask is a vector representing the corresponding change of the field. Note that dV is a
diagonal matrix.

dVEmask = ÊmaskdV̂ (S4)

where Êmask = diag(Emask) and dV̂ is a vector containing the main diagonal elements of dV. By
combining Eq. (S2) and Eq. (S3) and ignoring the higher-order term, we obtain

dEmask =
(

G−1 − V
)−1

ÊmaskdV̂ (S5)

Substituting Eq. (S5) into Eq. (S1), we get

dF = Re
{

EAÊmaskdV̂
}

(S6)

where
EA = SA

(
G−1 − V

)−1
(S7)

Considering that G = GT , Eq. (S7) can be rewritten in the form of Eq. (S2).(
EA

)T
= GV

(
EA

)T
+ G

(
SA

)T
(S8)

where T represents the transpose. Eq. (S8) takes
(
SA)T as the incident field and calculates the

diffraction of the EUV mask like Eq. (S2), which is called the adjoint simulation [1, 2]. Then, the
chain rule is applied to connect dF and the perturbation in the design variable dΘ.

dF = Re
{

EAÊmaskCvdΘ
}

(S9)

where Cv is a diagonal matrix representing the partial derivative of V̂ with respect to Θ. Details
of Cv can be found in Sec. 3. Finally, the gradient of the cost function is

∂F
∂Θ

= Re
{

EAÊmaskCv

}
(S10)



2. DERIVATION OF THE SOURCE OF ADJOINT SIMULATION

In this section, we derive the source of adjoint simulation SA. The derivation comprises two steps.
The first step is to take the derivative of all equations in the lithography model except the EUV
mask model. Then, one can combine the resulting equations to get SA. From the definition of the
cost function, we have

dF = 2
(
wc − wt)⊙ dwc (S11)

where ⊙ represents the Hadamard product. Using the resist model, we obtain

dwc = awc ⊙ (1 − wc)⊙ dI (S12)

Note that the intensity is real number, while the field components are complex numbers. Follow-
ing the Ref. [3], we have

dI = 2Re
{

conj
(

Ewafer
x

)
⊙ dEwafer

x + conj
(

Ewafer
y

)
⊙ dEwafer

y + conj
(

Ewafer
z

)
⊙ dEwafer

z

}
(S13)

The notation conj represents the complex conjugate operator. The derivative of projection model
is straightforward. 

dEwafer
x

dEwafer
y

dEwafer
z

 = H


dEnear

x

dEnear
y

dEnear
z

 (S14)

Note that Enear represents a 2D field distribution. A matrix CS is added to represent the slicing
operation on the 3D field distribution Emask.

Enear
x

Enear
y

Enear
z

 = CS


Emask

x

Emask
y

Emask
z

 (S15)

Combining all the equations above, we obtain

SA =
∂F

∂Emask =


Ewafer

x

Ewafer
y

Ewafer
z


†

CIHCS (S16)

where
CI = I3×3 ⊗ diag

{
4ai

(
wc − wt)⊙ wc ⊙ (1 − wc)

}
(S17)

⊗ and ⊙ represent Kronecker and Hadamard product, respectively. † represents the conjugate
transpose. I3×3 is a 3 × 3 identity matrix. The imaginary unit i is introduced by the convolution
with the green function [4].

3. DERIVATION OF THE COEFFICIENT MATRIX

In this section, we derive the matrix Cv representing the partial derivative of V̂ with respect to
Θ. The derivation is similar to that of SA. Therefore, only the definition of the potential V̂ is
presented [5]. The definition of V̂ is

V̂ = (k0n)2 − k2
0 − iε (S18)

where k0 is the vacuum wave vector; n is the complex refractive index which is defined as

n = nbg + m3D

(
nabs − nbg

)
(S19)

where nbg is the background refractive index; nabs is the refractive index of absorber. m3D is
a vector describing the artificial density of absorber in the 3D simulation domain, which is
generated by extruding the 2D pattern in m.

m3D = CDm (S20)

2



where

m =
1 + cos (Θ)

2
(S21)

CD is a matrix representing the extrusion. After taking the derivative of all equations above, we
obtain

Cv =
∂V̂
∂Θ

= diag
{

k2
0

(
nabs − nbg

)
n
}

CDdiag {sin (Θ)} (S22)

4. AERIAL AND RESIST IMAGES

The aerial and resist images of the logic and BigMac patterns are shown in Fig. (S1) and Fig. (S2),
respectively. The figures in the left column are for the original patterns, and those in the right
column are for the optimized patterns. The figures in the upper row are aerial images, and those
in the lower row are resist images. The aerial images of the optimized patterns exhibit better
contrast than those of the original pattens in both examples, which leads to better resist images.
The results show that the mask optimizations are necessary and effective.
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Fig. S1. The aerial and resist images of the logic pattern. The aerial images (a) before and (b)
after optimization. The resist images (c) before and (d) after optimization.
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Fig. S2. The aerial and resist images of the BigMaC pattern. The aerial images (a) before and (b)
after optimization. The resist images (c) before and (d) after optimization.
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