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A B S T R A C T   

Ellipsometry is a powerful metrology technique for characterizing the optical properties of various materials. 
Channeled spectroscopic ellipsometry (CSE) has shown great promise among the different types of ellipsometry 
due to its simple setup and rapid performance. Furthermore, CSE modulates the polarization parameters of thin 
films into a spectrum, thus transforming the measurement process into a demodulation problem. However, 
conventional CSE faces challenges in measurement accuracy and computational efficiency, with strict hardware 
and calibration requirements. Inspired by physics-informed machine learning, we propose CSE enabled by the 
physics-informed tandem untrained neural networks (PITUNN), which does not require training, exhibits high 
computational efficiency and partially alleviates the strict requirements for hardware and calibration accuracy. 
We also demonstrate the effectiveness of CSE enabled by the PITUNN and its ability to handle system errors and 
random noise through simulations and experiments on thin films of different thickness and materials.   

1. Introduction 

Ellipsometry is a noncontact, nondestructive, and widely used 
metrology technique for characterizing the optical properties of various 
thin films ranging in thickness from sub-nanometers to several microns 
intended for a broad array of scientific and industrial applications [1–6]. 
Among the diverse types of ellipsometry with rotating and active po
larization components [4–8], channeled spectroscopic ellipsometry 
(CSE) can realize measurement in a snapshot manner with a compact 
size and no active component, thus holding great promise in various 
applications, including material characterization [9–13], biomedical 
imaging [14,15], and remote sensing [16,17], among others. The prin
ciple of CSE relies on an approximately linear response of the retardance 
of some multi-order birefringent crystals (e.g., quartz, calcite, and 
magnesium fluoride), to the wavenumber, which modulates sample 
polarization parameters (e.g., Mueller matrix elements) into the output 
intensity spectrum [18–31]. Consequently, the CSE measurement be
comes a demodulation problem aimed at recovering sample polarization 
parameters from the modulated intensity spectrum. Thus, finding ways 
to accurately demodulate polarization parameters from the modulated 

intensity spectrum is a critical issue in CSE and is currently an active 
research field [23–31]. Thus far, measurement accuracy and efficiency 
related to demodulation methods have been considered barriers in the 
practical measurement of CSE. Hence, any advancement in demodula
tion methods would benefit CSE and expand its potential applications. 

The most commonly used demodulation algorithm for CSE, known as 
“Fourier reconstruction” (FR), uses the Fourier transform to recover 
sample polarization parameters by separating them into different 
channels based on their carrier frequencies [23]. Although FR is 
straightforward and fast, it often suffers from measurement noise, band 
limitation, and channel cross-talk, resulting in considerable restrictions 
on the final measurement accuracy [24–31]. Many methods have 
recently been proposed to address the limitations of FR. One such 
approach is iterative reconstruction (IR) [24–26], which involves the 
progressive adjustment of output polarization parameters using opti
mization algorithms to better align with the theoretical mathematical 
model. These methods often include regularization terms to control the 
adjustment process. Although IR has successfully overcome the limita
tions of FR, it is computationally intensive and suffers from parameter 
couplings. Thus, some researchers have attempted to overcome these 
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challenges by incorporating compressed sensing (CS) into IR [27–30]. In 
particular, they transformed the demodulation problem into a convex 
optimization problem by parameterizing the polarization parameters. 
This approach has effectively mitigated parameter couplings, resulting 
in higher measurement accuracy. However, it requires precise hardware 
and calibration because it relies heavily on the accuracy of the mathe
matical model and the calibrated system parameters. 

In recent years, machine learning (ML) has evolved rapidly and 
achieved great success in various optical fields, such as nano-photonic 
design [32–34] and optical measurement [35–38]. With available 
data, ML can establish mappings to predict the required parameters for 
solving specific problems. In the demodulation problem of CSE, many 
data-driven ML methods [39–43] have greatly enhanced the measure
ment accuracy. These methods leverage large datasets to train neural 
networks for mapping the measured spectra (or optical path difference 
domain spectra) to polarization parameters [39–42]. And there are some 
intriguing approaches that use neural networks to predict filters for 
demodulation problems [43]. However, their predictions may not al
ways be physically plausible. It is also difficult to create comprehensive 
datasets covering all possible conditions in CSE. Furthermore, the 
generalization of these ML models, which are primarily determined by 
the training data and the computational costs required for training, can 
pose challenges in their practical applications. Some studies have sug
gested that untrained neural networks (UNN) and physics-informed 
networks are suited for incorporating physical priors during parameter 
updating [44–51]. Furthermore, the burden of creating datasets and 
training models is eliminated because UNNs do not require training. 
Recently, there have been several attempts to solve the demodulation 
problem in channeled polarimetry, such as deep image prior plus spar
sity prior (DIP-SP) and physics-guided neural network (PGNN), which 
employs a UNN [50,51], thus demonstrating excellent performance. 
However, due to the similarities in principles, applying DIP-SP in CSE 
still faces the same limitations as CS, demanding precise hardware and 
calibration. 

In this paper, we introduce CSE enabled by the physics-informed 
tandem untrained neural networks (PITUNN), which employs three 
UNNs in tandem to incorporate prior information during updating, 
achieving higher measurement accuracy in the presence of system errors 
while maintaining short computational time. The PITUNN partially al
leviates the strict requirements for hardware and calibration accuracy in 

CSE and further expands the theoretical boundaries of UNNs, thus pre
senting a possible solution paradigm for similar problems. In addition, 
its high computational efficiency aligns well with the snapshot principle 
of CSE, thus offering great potential for real-time measurements. 

2. Method 

2.1. Principle of CSE 

To illustrate the measurement process, Fig. 1 exemplifies a schematic 
diagram of CSE. As can be seen, the light from a broad-spectrum light 
source passes through the polarization state generator (PSG) consisting 
of the polarizer P and the multi-order waveplate R1 and is then reflected 
at the sample surface at an incidence angle of θ. The reflected light 

passes through the polarization state analyzer (PSA), which consists of 
the multi-order waveplate R2, the polarizer A, and finally the spectrum 
is obtained by the spectrometer. 

As shown in Fig. 1, the system model in terms of the Stokes–Mueller 
formalism can be expressed as follows 

Sout =[MAT(α2) ][T( − α4)MR(δ2)T(α4) ]Ms[T( − α3)MR(δ1)T(α3) ]

[T( − α1)MP ]Sin
(1)  

where Sin and Sout respectively represent the Stokes vectors of the inci
dent and outgoing light; MS represents the sample Mueller matrix; MP 
and MA represent the Mueller matrices of P and A, respectively; MR(δ1) 
and MR(δ2) represent the corresponding Mueller matrices of R1 and R2 
with the respective retardances of δ1 and δ2, which are calibrated before 
measurements [21,30]; T(⋅) represents the Mueller rotation trans
formation matrix; α1 and α2 are the transmission-axis orientations of P 
and A, respectively; and α3 and α4 are the corresponding fast-axis ori
entations of R1 and R2. At every single wavelength, Sin and Sout are 4 × 1 
vectors; MP, MA, MR(⋅) and T(⋅) are 4 × 4 matrices. 

By setting α1 = α4 = π/4, α2 = α3 = π/2 and performing matrix 
multiplication, we can obtain the output modulated intensity spectrum 
Iout at every single wavenumber for isotropic samples as follows 

Iout =
1
8

⋅Iin⋅{2 − 2⋅N(σ)⋅cos[δ2(σ) ]+ C(σ)⋅cos[δ1(σ) − δ2(σ) ]+

S(σ)⋅sin[δ1(σ) − δ2(σ) ] − C(σ)⋅cos[δ1(σ)+δ2(σ) ] − S(σ)⋅sin[δ1(σ)+δ2(σ) ]}
(2)  

where σ represents the wavenumber, Iin is the incident intensity, N(σ) =
− cos2Ψ(σ), C(σ) = sin2Ψ(σ)⋅cosΔ(σ), and S(σ) = sin2Ψ(σ)⋅sinΔ(σ), in 
which Ψ(σ) and Δ(σ) are the ellipsometric parameters. In this way, CSE 
modulates the sample Mueller matrix elements into the spectrum, and 
the measurement becomes a demodulation problem. 

In practice, systematic errors such as the alignment error of each 
device are inevitable, and these can considerably change the mathe
matical model of the spectrum [52]. Here, we denote the alignment 
errors of P, A, R1, and R2 as ε1, ε2, ε3, and ε4, respectively. Considering 
that the alignment errors are typically small values, we can carry out 
approximate simplification as sinεi = εi, cosεi = 1, εi⋅εj = 0 (i, j = 1,2,3,4; 
i ∕= j). In this case, the mathematical model can be rewritten as follows   

There are many other systematic errors aside from alignment errors, 
such as retardance errors and incident intensity errors, and the PITUNN 
can be easily extended to these cases. All that required is to re-derive the 
mathematical model of the intensity spectrum under specific errors, 
while everything else remains unchanged. 

2.2. Physics-informed tandem untrained neural networks 

Inspired by CS and physics-informed machine learning, we transform 
the demodulation problem of CSE into an optimization problem via 
sparsity prior and physics-informed regularization: 

Iout =
1
8

⋅Iin⋅{2 − 4⋅N(σ)⋅(ε1 − ε2) − [2⋅N(σ) − 4⋅(ε1 − ε2) ]⋅cos[δ2(σ) ] +

[C(σ)⋅(1 − 2⋅ε3) + 2⋅ε2 ]⋅cos[δ1(σ) − δ2(σ) ] + S(σ)⋅(1 − 2⋅ε3)⋅sin[δ1(σ) − δ2(σ) ]−

[C(σ)⋅(1 + 2⋅ε3) − 2⋅ε2 ]⋅cos[δ1(σ) + δ2(σ) ] − S(σ)⋅(1 + 2⋅ε3)⋅sin[δ1(σ) + δ2(σ) ]+

[4⋅C(σ)⋅(ε3 − ε4) − 4⋅N(σ)⋅ε2 ]⋅cos[δ1(σ) ] + 4⋅S(σ)⋅(ε3 − ε4)⋅sin[δ1(σ) ] }

(3)   
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minimize
n̂,ĉ,̂s

⃦
⃦Iexp − Imodel

⃦
⃦2

2 + β⋅Spa(n̂, ĉ, ŝ) + γ⋅Phy(n̂, ĉ, ŝ)

subject to n̂i, ĉi, ŝi = 0, i⩾τ(fτ)

where Spa(n̂, ĉ, ŝ) = ‖n̂ + ĉ+ŝ‖1 Phy(n̂, ĉ, ŝ) =
⃦
⃦N2 + C2 + S2 − 1

⃦
⃦2

2

(4)  

where Iexp represents the spectrum obtained by the spectrometer; Imodel 
represents the spectrum calculated based on the mathematical model 
with the demodulated N, C, and S; n̂, ĉ, and ŝ represent the basis co
efficients that can be calculated to be N, C, and S via parameterization. 
In addition, Spa(⋅) and Phy(⋅) represent sparsity prior and physics- 
informed regularization, respectively. The details of parameterization, 

sparsity prior, and physics-informed regularization are presented in 
Appendix A. Furthermore, β and γ are hyperparameters to adjust the 
weights of different priors; n̂i, ĉi, and ŝi denote the ith coefficients; and 
τ(fτ) represents the index associated with frequency fτ, which is also a 
hyperparameter wherein the constraint means the basis coefficients 
corresponding to the frequencies higher than fτ are set to zero. 

Note that the alignment errors can significantly change the mathe
matical model of the spectrum, thus posing a challenge to the mea
surements. The sample parameters and alignment errors can be heavily 
coupled to each other, leading to decreased measurement accuracy. This 
problem exists whether Eq. (4) is solved by convex optimization 
methods [27,28] or the UNNs [50,51]. Thus, it is important to develop a 
method that avoids such coupling while maintaining high accuracy, low 
computational cost, and low bandwidth limitation. 

2.2.1. Workflow of the PITUNN 
The paradigm for building the PITUNN is shown in Fig. 2. The 

measured spectrum Iexp (as shown in Fig. 2(a)) is fed into the PITUNN, 
which consists of three UNNs (with random initial weights, as shown in 
Fig. 2(b) and (c)) connected in tandem. Within the PITUNN, Iexp will 
sequentially pass through the three UNNs. The first UNN conducts initial 
estimation of N, C, and S, the second UNN estimates alignment errors 
based on the initial estimation of N, C, and S, and with the update of 
network weights, adaptive compensation for alignment errors is per
formed. The third UNN adjusts N, C, and S again based on the 
compensation for alignment errors and outputs the final N, C, and S. The 

Fig. 1. Schematic diagram of channeled spectroscopic ellipsometry (CSE). The 
red line represents the transmission axes of the polarizers and the fast axes of 
the multi-order waveplates. 

Fig. 2. Overview of the PITUNN. (a) Input of a measured spectrum, which contains information about the sample, systematic errors, and random noise. (b) Overall 
workflow of the PITUNN, inputting the spectrum and outputting N, C, and S of the sample. (c) Schematic illustration of the networks used in the PITUNN. (d) 
Parameterization process in accordance with the basis matrix consisting of DCT and Legendre bases. 
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operational details are as follows: 
After receiving the spectrum Iexp, NET 1 outputs the basis coefficients 

n̂, ĉ, and ŝ, and a set of N, C, and S is calculated by parameterization 
based on the basis matrix (as shown in Fig. 2(d), details shown in Ap
pendix A). We construct the loss function in NET 1 as follows 

Loss1 =
⃦
⃦Iexp − Imodel

⃦
⃦2

2 + β1⋅Spa(n̂, ĉ, ŝ) + γ1⋅Phy(n̂, ĉ, ŝ) (5)  

where Imodel is calculated based on the mathematical model in Eq. (2) 
with N, C, and S from NET 1. Then, we can calculate the value of Loss1 of 
this iteration. If this iteration does not meet the stopping criterion, the 
weights of NET 1 will be updated based on the backpropagation algo
rithm, and it will proceed to the next iteration until the stopping crite
rion is met. Finally, the obtained initial N, C, and S will be outputted to 
NET 2. 

After receiving the initial N, C, and S, NET 2 outputs four values 
corresponding to the alignment errors. Here, we construct the loss 
function in NET 2 as follows 

Loss2 =
⃦
⃦Iexp − Imodel

⃦
⃦2

2 (6)  

where Imodel is calculated based on the mathematical model in Eq. (3) 
with initial N, C, and S from NET 1 and the alignment errors from NET 2. 
Next, we calculate the Loss2 value of this iteration. When Loss2 meets the 
stopping criterion of NET 2, the obtained alignment errors will be 
outputted to NET 3, which operates similarly to NET 1. After receiving 
the input alignment errors, NET 3 outputs the basis coefficients n̂, ̂c, and 
ŝ, and a set of N, C, and S is calculated by parameterization. Here, we 
construct the loss function in NET 3 as follows 

Loss3 =
⃦
⃦Iexp − Imodel

⃦
⃦2

2 + β2⋅Spa(n̂, ĉ, ŝ) + γ2⋅Phy(n̂, ĉ, ŝ) (7)  

where Imodel is calculated based on the mathematical model in Eq. (3) 
with the alignment errors from NET 2 and N, C, and S from NET 3. Then, 
the weights of NET 3 are iteratively updated until the stopping criterion 
is met. Finally, the obtained N, C, and S will be outputted. 

Thus, we can develop the PITUNN. Drawing on the parameterization 
of CS, we utilize tandem UNNs to automatically compensate for possible 
alignment errors during network weight updates, ultimately outputting 
N, C, and S that satisfy physical priors, while other methods neglect 
system errors. This approach enhances the robustness against system 
errors and reduces the hardware precision requirements of CSE. 

In consideration of the workflow, the PITUNN requires pre
determined hyperparameters, which encompass six values, namely, 
τ1(fτ), β1, γ1, τ2(fτ), β2, and γ2. The discussion on the selection of optimal 
hyperparameters is presented in Section 5.1. 

2.2.2. Structure of the networks and stopping criterion 
To optimize computational efficiency, we choose shallow fully con

nected neural networks (SFCN), which is a classic handcrafted network 
structure with all neurons connected as illustrated in Fig. 2(c) [53,54], 
to serve as the core solver of the three UNNs in the PITUNN. The dis
cussion about the network structure is presented in Section 5.2. Each 
hidden layer consists of 400 neurons, and we use a rectified linear unit 
(ReLU) as the activation function. Here, NET 1 consists of 4 hidden 
layers, and the output can be partitioned into the initial N, C, and S. NET 
2 consists of 2 hidden layers, and the output can be partitioned into four 
values corresponding to the alignment errors. NET 3 consists of 2 hidden 
layers, and the output can be partitioned into the final N, C, and S. The 
learning rates of all networks are 0.01, 0.01, and 0.001, respectively. 

In the PITUNN, we set the stopping criterion as follows 
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Loss(n) − 1
5
∑5

i=1Loss(n − i)
1
5
∑5

i=1Loss(n − i)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

⩽ε (8)  

where Loss(n) represents the value of the loss function at the latest (the 
nth, n > 20) iteration, and ε represents the stopping threshold. We stop 
the iteration and enter the next step when the loss function of the nth 
iteration does not satisfy Eq. (8). In NET 1, we set the threshold ε to 0.5 
% to obtain a suitable margin for the alignment errors. As for NET 2 and 
NET 3, there is no consideration of margin, thus we set the threshold ε to 
0.02 %. The detailed analysis is presented in Section 5.3. 

3. Simulation 

3.1. Simulation setting and evaluation criteria 

In the simulation, we set the measurement range of the spectrometer 
to 400–800 nm with a spectral resolution of 1 nm (the number of sample 
points K = 400). Retarders R1 and R2 were quartz waveplates with 
thicknesses of 4.5 and 1.5 mm, respectively. Three SiO2 thin films on 
silicon substrates with different thicknesses (1.9, 112 and 1037 nm) 
were chosen to generate the simulated spectrum. In addition, a set of 
alignment errors were randomly generated (ε1 = 0.0804, ε2 = 0.0886, ε3 
= 0.0502, and ε4 = 0.0536), all the alignment errors were in radian unit. 
With the above settings, we were able to generate the simulated spec
trum according to Eq. (3). Here, we also provided a suggested set of 
hyperparameter values: τ1(fτ) = 0.06⋅K, β1 = 0.02, γ1 = 0.03, τ2(fτ) =
0.09⋅K, β2 = 0.02, γ2 = 0.3 for simulation. Note that these values were 
not considered the optimal hyperparameters for the PITUNN. Further 
discussion about selecting these hyperparameter values is presented in 
Section 5.1. In addition, random noise was not considered in the simu
lation to explore the performance of different methods in the presence of 
alignment errors. The actual experimental results in Section 4.2 
demonstrate the robustness of the PITUNN against random noise. 

As for the evaluation criteria of measurement accuracy, we calculate 
the root mean squared error (RMSE) [36] between the demodulated N, 
C, and S and the ground truth using the following equation: 

RMSE =
1
3

⋅
∑3

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K

j=1

[
Xi(j) − XGT

i (j)
]2
/

K

√
√
√
√ (9)  

where K is the number of sample points included in the spectrum; Xi (i =
1, 2, 3) represents the demodulated N, C, and S; Xi(j) represents the value 
of Xi at the jth point; and XGT

i (i = 1, 2, 3) represents the ground truth of 

Fig. 3. Simulated measurement results in the presence of alignment errors 
using the PITUNN. Each row represents the simulation results of SiO2 thin films 
of different thicknesses. The first column shows the demodulated N, C, and S, 
while the second column visualizes the absolute error using box plots. The 
RMSE values between the reconstructed spectra and ground truth are appended 
in the corresponding box plots. 
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N, C, and S. Moreover, we calculated the respective absolute errors of the 
demodulated N, C, and S and visualized them using box plots. Smaller 
RMSE and absolute error values indicate higher measurement accuracy. 

3.2. Results 

Fig. 3 presents the simulated measurement results in the presence of 
alignment errors using CSE enabled by the PITUNN. The results reveal 
that as the sample thickness increases, the frequencies of N, C, and S also 
increase. The measurement accuracy exhibits fluctuations, but overall, it 
aligns well with the ground truth with respective RMSE values of 
0.0051, 0.0066, and 0.0247. The demodulated N, C, and S using the 
PITUNN also exhibit a small number of anomalies at the two ends due to 
significant errors in the calibrated system parameters at the two ends of 
the spectral range. These anomalies indicate relatively large measure
ment errors, thus highlighting the challenge posed by calibration accu
racy to the CSE. 

We compared the results of the PITUNN with the state-of-the-art 
demodulation methods, namely, FR [23], CS [27], and DIP-SP [50], as 
introduced in Section 1, to further evaluate the performance of the 
PITUNN. The simulation conditions were identical for all the demodu
lation methods for fairness of comparison. The corresponding mea
surement results are presented in Fig. B1 of Appendix B. Furthermore, 
the RMSE results are listed in Table 1. For clarity of comparison, we use 
red font to indicate the best performance and blue font to indicate the 
second-best performance. 

As shown in Fig. B1 (a), FR exhibits relatively low overall mea
surement accuracy, with respective RMSE values of 0.0521, 0.0519, and 
0.2382. When the sample thickness is 1037 nm, corresponding to the 
highest frequency of N, C, and S, FR nearly becomes ineffective due to 
channel cross-talk, as analyzed in Section 1. At the same time, Fig. B1(b) 
illustrates the simulated measurement results using CS, showing a 
moderate improvement in measurement accuracy compared to FR, with 
respective RMSE values of 0.0747, 0.0154, and 0.1133. Fig. B1(c) il
lustrates the simulated measurement results using DIP-SP, which ach
ieves higher measurement accuracy compared with FR and CS, with 
respective RMSE values of 0.0158, 0.0160, and 0.0616. However, these 
three methods lack robust tolerance to errors in calibrated system pa
rameters, resulting in more anomalies at the two ends compared with 
the PITUNN as shown in Fig. B1(d). 

Thus, through comparison, it is apparent that CSE enabled by the 
PITUNN achieves the highest measurement accuracy and does not de
mand strict hardware precision or accurate calibration of system pa
rameters, thus alleviating the drawbacks of existing demodulation 
methods. 

4. Experiments 

4.1. Experimental setup 

As shown in Fig. 4, a prototype was developed to further verify CSE 
enabled by the PITUNN. The broad-spectrum light source used was EQ- 
99–3.1, the converging lenses were both Thorlabs AC254-030-A, the 
polarizers were both Union optics PGT5012, the multi-order waveplates 
were customized quartz waveplates of 1.5 and 4.5 mm thicknesses, the 

absorptive filter was Thorlabs NE10A, and the spectrometer was 
SE2090-010-VNIR (the resolution and the spectral range were set as in 
the simulations). 

The samples used in the experiments are listed in Table 2, encom
passing various substrates and surface materials. Their data (the ground 
truth) were measured by a commercial ellipsometer (RC2, J. A. Woollam 
Co., USA). In all the experiments, we employed the same hyper
parameters as those used in the simulations: τ1(fτ) = 0.06⋅K, β1 = 0.02, 

Table 1 
RMSE of different methods in the simulation.  

Fig. 4. Experimental setup. The angle of incidence was set to 65◦. The sample 
was mounted vertically by a vacuum chuck. 

Table 2 
Samples used in the experiments.  

Sample Film structure 
(surface/substrate) 

Thickness 
(nm) 

#1 Au/Glass 19.60 
#2 SiO2/Si 1037 
#3 Al/Al2O3 20.37  

Fig. 5. Experimental measurement results using the PITUNN on 
different samples. 
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γ1 = 0.03, τ2(fτ) = 0.09⋅K, β2 = 0.02, γ2 = 0.3. 

4.2. Results 

The experimental measurement results using the PITUNN are pre
sented in Fig. 5. Overall, the demodulated values of N, C, and S align 
well with the ground truth, with respective RMSE values of 0.0225, 
0.0573, and 0.0522. 

The experimental measurement results using other competitive 
methods are presented in Fig. B2 of Appendix B, and the RMSE results 
are listed in Table 3. We use red font to indicate the best performance 
and blue font to indicate the second-best performance. Upon comparing 
the experimental measurement results among these competitive 
methods, it is observed that the PITUNN maintains the highest mea
surement accuracy across varying samples in the same measurement 
condition. This robust performance demonstrates the ability of the 
PITUNN to handle random noise and alignment errors effectively. 

Next, we conducted multiple repetitions of the experiments to 
compare the computational time of these methods. The average pro
cessing time for CS was about 0.5 s; for DIP-SP, it was about 7 s; and for 
the PITUNN, it was about 1 s. Evidently, due to its simple network 
structure and appropriate stopping criterion, the PITUNN exhibited high 
computational efficiency, making it a promising method for real-time 
measurements. 

5. Discussion 

In this section, we present a detailed theoretical discussion of the 
PITUNN based on the simulated data of 112 nm SiO2 thin films in the 
presence of alignment errors. First, we discuss some empirical rules for 
hyperparameter selection and determine the optimal hyperparameter 
values for the simulated measurements of the 112 nm SiO2 sample. 
Then, we compare the measurement results using different network 
architectures as the core solver of the three UNNs in the PITUNN and 
discuss the early stopping of NET 1. Finally, we explore the contribution 
of physics-informed regularization in the PITUNN. 

5.1. Selection of hyperparameter values 

Although the simulated and experimental results presented above 
have demonstrated the effectiveness of using the same set of recom
mended hyperparameters, it is still possible to fine-tune the hyper
parameters for each specific measurement considering the physical 
significance of the hyperparameters and the prior information of the 
samples. However, determining suitable hyperparameter values remains 
a challenging task. Therefore, in this section, we offer some empirical 
adjustment strategies. Notably, complex coupling and trade-offs exist 
among the hyperparameters, and empirical strategies may only partially 
guide us to the optimal hyperparameter values. Subsequently, we 
employ a genetic algorithm to identify a more optimal set of hyper
parameter values based on simulated data of the 112 nm SiO2 sample, 
thus forming the basis for further discussions. 

The PITUNN involves several hyperparameters: τ1(fτ), β1, γ1, τ2(fτ), 
β2, and γ2. Among these, τ1(fτ) and τ2(fτ) regulate the highest frequency 
in the basis matrix. Consequently, if prior information suggests a lower 
frequency for sample parameters, smaller values of τ1(fτ) and τ2(fτ) can 
be chosen; conversely, larger values are suitable for higher frequencies. 
As shown in Fig. 6, the frequency components encompassed in the 
demodulated N, C, and S increase progressively by gradually increasing 
τ1(fτ) and τ2(fτ). 

The hyperparameters β1 and β2 act as weighting coefficients that 
control the sparsity prior and are mainly linked to random noise during 
measurements. When facing significant random noise, such as dust on 
the sample surface or low reflectivity of the sample, larger β1 and β2 
values are appropriate, as discussed in Ref. [27]. Additionally, larger β1 
and β2 tend to output N, C, and S with lower frequency, thus necessi
tating a trade-off. As shown in Fig. 7, the frequency components 
encompassed in the demodulated N, C, and S decrease progressively by 
gradually increasing β1 and β2. 

The hyperparameters γ1 and γ2 are the weighting coefficients that 
control the physics-informed regularization and introduce physical 
priors during the network parameter update process. Generally, these 
coefficients require little adjustment. As shown in Fig. 8(a), we 

Table 3 
RMSE of different methods in the experiments.  

Fig. 6. Simulated measurement results using the PITUNN when τ1(fτ) and τ2(fτ) are taken as different groups of values. The specific values of τ1(fτ)/K and τ2(fτ)/K are 
labeled in the subplots, and the other hyperparameter values are as those used in the simulations (β1 = 0.02, γ1 = 0.03, β2 = 0.02, γ2 = 0.3). 
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considered 19 discrete values for γ1 and γ2 in the range of 0.05–1, with 
an interval of 0.05, leading to a total of 361 simulations. As can be 
observed, the contour lines of RMSE are primarily horizontally distrib
uted, indicating that γ1 has a more significant impact on the measure
ment accuracy of the PITUNN. Furthermore, most regions exhibit 
relatively low RMSE values, suggesting that the measurement accuracy 
is not highly sensitive to γ1 and γ2. Therefore, extensive adjustments are 
not necessary. 

Subsequently, for the simulated data of the 112 nm SiO2 sample, we 
employed a genetic algorithm to optimize the hyperparameters, result
ing in the following optimized set of values: τ1(fτ) = 0.0807⋅K, β1 =

0.3357, γ1 = 0.1023, τ2(fτ) = 0.0804⋅K, β2 = 0.0112, and γ2 = 0.8770. 
With these optimized hyperparameters, the simulated measurement 
results of the PITUNN are displayed in Fig. 8(b), yielding an RMSE value 
of 0.0029. 

As can be seen, the adjusted hyperparameters enhance the perfor
mance of the PITUNN. Furthermore, the theoretical upper limit of the 
PITUNN’s accuracy exceeded what was obtained by using the fixed 

hyperparameters. Thus, it can be concluded that hyperparameter tuning 
can integrate more prior information about measurement conditions 
and the sample into the measurement process. Subsequent discussions 
are based on the optimized hyperparameter values: (τ1(fτ) = 0.0807⋅K, 
β1 = 0.3357, γ1 = 0.1023, τ2(fτ) = 0.0804⋅K, β2 = 0.0112, and γ2 =

0.8770). 

5.2. Structure of the networks 

As can be observed from Eq. (3), the negative impact of the align
ment errors on the measurement can be roughly summarized as a 
“global offset” [52] (although it should be noted that this over
simplification overlooks the complex coupling phenomena). This im
plies that the alignment errors have a similar mathematical significance 
as N, C, and S in the model. Thus, unlike previous works on random 
noise in images [55,56], it is impossible to isolate the alignment errors 
from N, C, and S using an underparameterized network like the deep 
decoder or a theory of structural bias. Therefore, we can say that the 

Fig. 7. Simulated measurement results using the PITUNN when β1 and β2 are taken as different groups of values. The specific values of β1 and β2 are labeled in the 
subplots, and the other hyperparameter values are τ1(fτ) = 0.2⋅K, γ1 = 0.03, τ2(fτ) = 0.3⋅K, γ2 = 0.3. 

Fig. 8. (a) RMSE values using the PITUNN when γ1 and γ2 are taken as different groups of values and presented in the form of a contour plot; (b) Simulated 
measurement results using the PITUNN with optimized hyperparameters. 

Fig. 9. Simulated measurement results taking (a) ResNet and (b) RNN as the core solver of the three UNNs of the PITUNN.  
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network structure is unlikely to affect the measurement accuracy 
significantly. Moreover, employing relatively simple neural networks is 
feasible, considering that the mathematical model of CSE is relatively 
simple. 

To validate this hypothesis, we select three representative neural 
networks as the core solvers of the three UNNs in the PITUNN, including 
SFCN (the representative underparameterized networks, as shown in 
Fig. 2(c)), residual network (ResNet, the representative over
parameterized networks) [57], and recurrent neural networks (RNN, the 
representative serial data processing networks) [58]. We compare the 
measurement accuracy achieved by these different networks. 

The measurement results using ResNet and RNN are shown in Fig. 9, 
and the results using SFCN are shown in Fig. 3. The results reveal that 
the various neural network structures employed do not substantially 
influence the final measurement accuracy. This observation is in 
accordance with the analysis presented above. 

Then, we recorded the computational time of the PITUNN using 

different neural networks by performing several simulations under the 
same condition. The average computational time is shown in Table 4. 
From this, we can see that, due to the simple structure of SFCN, the 
computational cost required is the smallest when it is used as the core 
solver of the three UNNs in the PITUNN. Therefore, we choose SFCN as 
the core solver of the three UNNs in the PITUNN. 

5.3. Early stopping in NET 1 

As discussed in Section 5.2, it is impossible to isolate N, C, S and the 
alignment errors by designing the network structure. Thus, we propose 
to develop an early stopping mechanism for NET 1 to handle the 
alignment errors. On the one hand, the output N, C, and S cannot serve 
as a reliable reference for the following networks if the iterative 
updating of NET 1 is stopped too early. On the other hand, if the iterative 
updating of NET 1 is stopped too late, it may result in an insufficient 
margin for the following networks to compensate for the alignment er
rors. Therefore, we must set a suitable stopping criterion to obtain a high 
measurement accuracy. 

For this reason, we used Eq. (8) and conducted simulations based on 
a range of ε values to establish a suitable stopping criterion. Throughout 
the simulations, we monitored the value of the stopping criterion as the 
iterative updating of NET 1 progresses, as shown in Fig. 10(a). Specif
ically, we selected three different values of ε, 10 %, 0.5 %, and 0.01 % 
and visualized the calculation procedure of the PITUNN to provide a 

Table 4 
Computational times of the PITUNN based on different neural networks.   

NET 1 NET 2 NET 3 Total (s) 

SFCN  0.70  0.06  0.35  1.11 
ResNet  2.30  1.27  6.75  10.32 
RNN  1.65  0.50  2.26  4.41  

Fig. 10. Discussion on the early stopping of NET 1. (a) Variation of the constructed stopping criterion in the simulation. (b) Initial N, C, and S output by NET 1 and 
the final N, C, and S output by NET 3 when taking different values of ε. (c) RMSE values of the PITUNN when taking different values of ε and the trend curve. 
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more precise illustration of the iterative process. The output of NET 1 
(initial N, C, and S) and the output of NET 3 (final N, C, and S) are shown 
in Fig. 10(b). As can be seen, when ε = 0.5 %, the final N, C, and S have 
the highest measurement accuracy. When ε = 10 %, the reference N, C, 
and S output from NET 1 has relatively large errors (as in the case of 
“stopping too early” in the above analysis), and the final N, C, and S 
outputs from NET 3 have relatively low accuracies. Similarly, when ε =
0.01 %, the reference N, C, and S outputs from NET 1 have relatively 
small errors (as in the case of “stopping too late” in the above analysis), 
and the final N, C, and S output from NET 3 also have relatively low 
accuracies. The results of the simulation above prove that NET 1 does 
need an appropriate stopping criterion. 

Thus, we conduct further simulations with more values of ε. The 
relationship between the RMSE values and ε is illustrated in Fig. 10(c). 
The results reveal that when the stopping criterion is set to approxi
mately ε = 0.5 %, a high measurement accuracy can be achieved. 
Moreover, the results in Sections 3.2 and 4.2 consistently demonstrate 
that this particular stopping criterion leads to stable and high mea
surement accuracy across various scenarios. 

5.4. Contribution of physics-informed regularization 

For the demodulation problem in CSE, a calibration must be per
formed before the measurement to determine the specific values of the 
system parameters. The intensity spectrum Iexp was obtained by the 
spectrometer so that the demodulation problem is underdetermined. As 
more information is incorporated into the underdetermined problem, 
the possibility of obtaining a more accurate solution theoretically in
creases. Thus, we integrated the physics-informed regularization term 
into the optimization problem, as shown in Eq. (4). Notably, a physics- 
informed regularization does not exist in all cases, such as when 
measuring samples with depolarization where N2 + C2 + S2 ∕= 1. Thus, in 
this section, we discuss the contribution of the physics-informed regu
larization to the PITUNN. 

As discussed in Section 5.1, the sensitivity of measurement accuracy 
to γ1 and γ2 is not pronounced, thereby highlighting the flexibility and 
convenience of physics-informed regularization. Subsequently, we set 
both γ1 and γ2 to 0, thus excluding physics-informed regularization. The 
simulated measurement results shown in Fig. 11 indicate a slight decline 
in measurement accuracy compared with the results in Section 3.2. 
These results not only verify the contribution of physics-informed reg
ularization to the performance of the PITUNN but also demonstrate that 
even in the absence of physics-informed regularization, the PITUNN can 
achieve relatively high measurement accuracy guided by other physical 
information, which can still be utilized for measurements of samples 
with different characteristics. Therefore, we can state that the PITUNN 
exhibits strong generalization capabilities. 

6. Conclusion 

In this work, we have introduced CSE enabled by the physics- 
informed tandem untrained networks. The proposed PITUNN in
tegrates sparsity prior and physics-informed regularization, as well as 
utilizes a tandem network consisting of three UNNs to address system 
errors (e.g., alignment errors) and random noise encountered during 
measurements. 

The analysis based on simulated and experimental results demon
strates the following contributions of this work: 

Pioneering paradigm for CSE measurement. Methods based on 
data-driven machine learning face challenges in generalization and 
training costs, while their outputs are not always physically plausible. In 
the PITUNN, we integrate the capabilities of physics-informed machine 
learning with tandem UNNs for the first time, developing a novel 
paradigm for the demodulation problem in CSE. Such a paradigm en
sures that the outputs are physically plausible and eliminates the chal
lenges related to generalization and training costs, holding potential 
implications for other domains, such as channeled spectroscopic 
polarimetry. 

High accuracy and robustness. Traditional CSE are constrained by 
their stringent requirements for hardware precision and calibration, 
leading to relatively low measurement accuracy. Through comprehen
sive simulations and experiments, we have validated the superior 
measurement accuracy of the PITUNN, demonstrating its exceptional 
robustness against system errors and random noise. 

Rapid performance with high efficiency. Due to its simplistic 
network structure and judicious early stopping mechanism during 
network updates, the PITUNN boasts an average single-run time of 
approximately 1–1.5 s in both simulations and experiments. While 
maintaining high measurement accuracy and robustness, it also retains 
rapid processing speeds. The efficiency of the PITUNN aligns perfectly 
with the snapshot nature of CSE, marking a significant advancement for 
the online applications of CSE. 

Furthermore, the PITUNN offers new insights for addressing sys
tematic errors in optical measurement processes, while also expanding 
the application of UNNs in measurements. 
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Data availability 
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can be seen at https://github.com/xiuguochen/PITUNN.git.  

Appendix 

Appendix A:. Sparsity prior and physics-informed regularization 

Prior 1: Sparsity prior 
Following the theory of compressed sensing, we can conclude the first prior: Sparsity prior. We can use a family of orthogonal functions to 

represent any function in their function space parametrically. It is empirically known that most of the isotropic sample Mueller matrix elements are 
fluctuating quasi-periodic functions. Thus, we can use Fourier basis functions, Legendre polynomials, wavelet basis functions, and so on to param
eterize the Mueller matrix elements. 

For example, some researchers used the discrete cosine transform (DCT) basis and Legendre polynomials to parameterize the Stokes parameters 
and Mueller matrix elements in their works [27–30]. The parameterization process can be expressed as follows 

Xi = Mbasis⋅x̂i (A1)  

where Xi (i = 1, 2, 3) represents N, C, and S in vector form; Mbasis represents the basis matrix; and x̂i represents the corresponding basis coefficients in 
vector form. Here, the demodulation problem for CSE is converted to solving for a set of basis coefficients. 

The basis matrix Mbasis is constructed by the DCT basis MDCT and Legendre basis MLegendre 

MK×K
DCT (i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

̅̅̅̅
2
K

√

cos
( π

2K
(2j − 1)(i − 1)

)
, for i = 2, ...,K

̅̅̅̅
1
K

√

, for i = 1

, j = 1,2, ...,K (A2)  

MK×L
Legendre =

⎡

⎣
P1(t1) ⋯ PL(t1)

⋮ ⋱ ⋮
P1(tK) ⋯ PL(tK)

⎤

⎦ (A3)  

where K is the number of sample points included in the spectrum, and t1, …, tK uniformly sample the interval [− 1, 1]. In addition, the Legendre 
polynomial Pi(t), (i = 1, 2, …, L) is given by 

Pi(t) = 2i
∑i

j=0
tj
(

i
j

)
⎛

⎝

i + j − 1
2
i

⎞

⎠ (A4)  

MK×(K+L)
basis =

[
MK×L

Legendre MK×K
DCT

]
(A5) 

Here, we set L = 5. 
After a suitable parameterization, we tend to use fewer non-zero basis coefficients to characterize the Mueller matrix elements [27]. This can be 

summarized in terms of sparsity, and the sparsity of the basis coefficients is usually expressed as 

Spa(n̂, ĉ, ŝ) = ‖n̂ + ĉ + ŝ‖1 (A6)  

Prior 2: Physics-informed regularization 
In the specific situation of samples without depolarization, there exists a physical prior expressed as 

N2 + C2 + S2 = 1 (A7) 

Thus, we can construct the constraint in the loss function: 

Phy(n̂, ĉ, ŝ) =
⃦
⃦N2 + C2 + S2 − 1

⃦
⃦2

2 (A8)  
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Appendix B:. Experimental measurement results using other methods

Figure B1. Simulated measurement results using (a) FR, (b) CS, (c) DIP-SP on different samples. (d) Localized enlargements of simulated measurement results on 
1037nm sample at the left end 
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Figure B2. Experimental measurement results using (a) FR, (b) CS, (c) DIP-SP on different samples. (d) Localized enlargements of experimental measurement results 
on sample #2 at the left end 
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