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Abstract
Strict requirement of a coherent spectrum in coherent diffractive imaging (CDI) architectures poses a significant
obstacle to achieving efficient photon utilization across the full spectrum. To date, nearly all broadband computational
imaging experiments have relied on accurate spectroscopic measurements, as broad spectra are incompatible with
conventional CDI systems. This paper presents an advanced approach to broaden the scope of CDI to ultra-broadband
illumination with unknown probe spectrum, effectively addresses the key challenges encountered by existing state-of-
the-art broadband diffractive imaging frameworks. This advancement eliminates the necessity for prior knowledge of
probe spectrum and relaxes constraints on non-dispersive samples, resulting in a significant extension in spectral
bandwidth, achieving a nearly fourfold improvement in bandlimit compared to the existing benchmark. Our method
not only monochromatizes a broadband diffraction pattern from unknown illumination spectrum, but also determines
the compressive sampled profile of spectrum of the diffracted radiation. This superiority is experimentally validated
using both CDI and ptychography techniques on an ultra-broadband supercontinuum with relative bandwidth
exceeding 40%, revealing a significantly enhanced coherence and improved reconstruction with high fidelity under
ultra-broadband illumination.

Introduction
Coherent diffraction imaging (CDI) is an elegant lensfree

computational imaging technology to high-resolution
imaging fields1–3 The core issue in CDI is the retrieval
of phase information from the captured diffraction frame.
Various frameworks have been developed to recover the
missing phase in CDI over the past decades4–7, and great
improvements based on CDI have been promoted alter-
natively. For instance, Fourier holography8,9 directly cap-
tures the phase distribution by interference with a separate
reference wave. Ptychography10–13 records multiple over-
lapped diffraction patterns to retrieve a wide-field image.
Fourier ptychography14,15 stitches together a number of
variably illuminated, low-resolution intensity images in
Fourier space to produce a high-resolution image.
Full coherence of illumination is generally assumed in

CDI, driven by the inherent chromaticity of diffractive

optics that the diffracted angle from any microstructure
only depends on its wavelength. A diffraction pattern for a
varying spectrum channel undergoes a spatial scaling
towards the corresponding wavelength. Thus, the exten-
sion in spectrum results in diffraction aliasing, preventing
CDI from correct convergence16. Practically, a necessary
coherence filtering is commonly processed to select a
quasi-monochromatic radiation from the source spec-
trum CDI applications17–19, which brings a significant
barrier to the photon efficiency of full spectrum. Novel
strategies are required to overcome the trade-off between
radiation bandwidth and convergence for broadband
imaging.
The first utilization of broadband CDI (BCDI) intro-

duced by Fienup in 1999 has opened a new window to
characterize a broadband radiation from multi-
wavelength mapping with insufficient number of wave-
lengths20. Since then, researchers have conducted further
studies around this issue for decades. Imaging with a
partially coherent wavefront can be cast as a blind
deconvolution problem with several discrete wavelength
channels, where the mixed states of decoherence can be
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deconvolved by advanced reconstruction algorithms21,
such as ptychographic information multiplexing
(PIM)22–24 and multi-wavelength techniques25–27. An
alternative approach, called polyCDI, extends the phase
retrieval algorithm and demonstrates convergence with a
pre-measured spectrum of 3% bandwidth28,29. Recent
developments in broadband ptychography enable the
imaging of extended objects using a freely referenced
spectrum30–33. However, these approaches involve com-
plex iterative computations across the dense wavelength
channels of the full spectrum. The convergence is highly
sensitive to the spectral bandwidth, typically limited to 5%
bandlimit. BCDI techniques, such as mono CDI34 and
two-pulse imaging35, achieve an extended bandwidth of
up to 11% experimentally but have challenges. Mono CDI
relies on accurately pre-measured spectrum, while two-
pulse imaging depends on complex opto-mechanical
Fourier spectrometer designs. Overall, these solutions
face formidable challenges, including intricate iterative
computations across dense wavelength channels, the need
for accurate spectrum measurement, strict constraints for
non-dispersive specimens over the full spectrum, and
convergence within the bandlimit for validity. These
challenges impede progress in ultra-wide spectrum
broadband diffractive imaging.
In a recent development, we introduced a ultra-

streamlined diffraction-based computational spectro-
meter based on the coherent mode decomposition from
broadband diffraction measurement36. The implementa-
tion of this computational spectrometer within the con-
text of broadband computational imaging marks a
significant advancement in recovering the compressive
sampled profile of spectrum (CSS) of the imaging system.
Drawing inspiration from the mono CDI framework, we
further propose an advancement to broaden the scope of
CDI to ultra-broadband illumination with unknown probe
spectrum, termed ultra-broadband diffractive imaging
(UDI). UDI, for the first time, eliminates the need for prior
knowledge of probe spectrum and relaxes constraints on

non-dispersive samples, achieving significant enhance-
ment in photon efficiency for ultra-broadband computa-
tional imaging, effectively addresses the key challenges
encountered by existing state-of-the-art broadband dif-
fractive imaging frameworks. This innovation not only
reconstructs the CSS of the diffracted radiation, but also
achieves a coherence-enhanced and superfast-solving
monochromatization (CSM) of the captured broadband
pattern with high efficiency. Crucially, the mono-
chromatization in UDI is exclusively reliant on the
recovered CSS, circumventing the need for spectrum
measurement and overcoming limitations imposed by the
constraint of spectrally non-dispersive specimens. The
superiority of UDI is experimentally confirmed using both
CDI and ptychography from an ultra-broadband spec-
trum with relative bandwidth exceeding 40%, revealing a
precise spectrum measurement and a super-fast and
robust monochromatization convergence with no need
for prior spectral knowledge. This is particularly advan-
tageous for in-line broadband imaging applications where
efficiency and speed are crucial. To the best of our
knowledge, this is the first demonstration of an ultra-
broadband CDI comprising an ultra-simplified design,
while eliminating the constraint of non-dispersion for the
specimen or the need for accurate knowledge of probe
spectrum, providing a successful ultra-broadband CDI
with a significant improvement in photon utilization
efficiency and remarkable enhancement in coherence
across the entire spectrum. The superiority of the pro-
posed UDI is compared in Table 1.

Results
UDI operation
As the schematic principle demonstrated in Fig. 1, since

a broadband pattern Ib diffracted by a microstructure can
be interpreted as a linear superposition of multiple dis-
crete channels of monochromatic diffraction patterns in
the source spectrum28, each individual-wavelength dif-
fraction profile Iλ at channel λ can be characterized by a

Table 1 Comparison among State-of-the-art broadband diffractive imaging methods

Method Spectrum knowledge Non-dispersive object assumption Bandwidth (FWHM) Computational complexity

Mixed-State21 No No Several harmonics Moderate

PIM22–24 Yes Yes Several harmonics Moderate

Multiwavelength25–27 Yes Yes Several harmonics Moderate

Poly CDI28 Yes Yes 3% High

Mono CDI34,42 Yes Yes 11% Low

SPIRE31 No No 28% Extremely High

BBSSP30 No No 5.6% Extremely High

This work No No 41% Extremely low
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snapshot of a quasi-monochromatic diffraction measure-
ment Im at λm by utilizing the spatial-spectral point-
spread function (PSF) mapping scheme with a scaling
factor λi/λm, as shown in Fig. 1b schematically. The
broadband pattern can be treated as the incoherent sum
of all spectrum components, given by the sum of PSFs
weighted by the power spectrum ω(λ) of the scattered
light, rewritten to a matrix form in simplicity:

Ib ¼
Xn

i¼1

ωðλiÞ½PSFðλiÞ�2 ð1Þ

where the PSF(λi) is a spectrum propagation function
from a reference diffraction field

ffiffiffiffiffi
Im

p
(details in

Supplementary S1). A broadband measurement Ib with
M*N pixels can be represented as the integral of ω(λ)
[PSF(λ)]2 over the wavelength range, including of M*N
multi-linear equations with n parameters. Practically, it is
usually impossible to solve ω(λ) by ordinary noniterative
methods due to its ill-posed nature. To tackle such
instabilities, we perform an improved residual norm
minimization tactic applied with a weighting regulariza-
tion factor, known as Tikhonov regularization37–39 to
solve Eq. (1). As a result, an optimal CSS estimate of the
original spectrum ω(λ) is extracted (detailed in Methods
and the supplementary information in ref. 36).
Importantly, since ω(λ) represents neither the probe

spectrum P(λ) nor the diffracted radiation, but the final
corrected spectrum for the sample’s spectral transmis-
sivity function T(λ) and the quantum efficiency of detec-
tor QE(λ), ω(λ)= P(λ) T(λ) QE(λ). Thus, the CSS
represents the principal component of the final corrected
power spectrum, which considers the light-matter

interaction between the broadband diffractive radiation
through the sample and the diffraction photons read out
by the detector over the full spectrum. Thus, there is no
need to correct the spectrum for the detector response or
make the strong constraint of non-dispersive specimen
over the entire spectrum for BCDI. Practically, the CSS is
calculated just once and can be applied to various non-
dispersive samples. In situations involving dispersive
objects, the objects spectral transmissivity can also be
obtained from the CSS matrix.
As outlined in mono CDI, the retrieval of the mono-

chromatic pattern can be further reduced to a linear
algebra problem, rewritten to a matrix form in simplicity

CTb ¼ CTCm ð2Þ

where m stands for the vector of the monochromatic
pattern, b represents the broadband pattern, and C can be
regarded as containing the spectrally dependent PSFs over
the calculated CSS. Here, we adopt a specific expression
to calculate C in one dimension (detailed in Supplemen-
tary S2). Note that C is fully determined by the calculated
CSS and the dimension of the measured broadband
pattern (Fig. 1c). For a 2D diffraction pattern with
512 × 512 pixels, C is a 4D matrix with 2564 values.
Thanks to the sparsity of the CSS, C is also sparse, with
only a few percent of non-zero values. Crucially, once the
CSS is computed within the framework of a BCDI
configuration, matrix C attains a unique determination,
rendering it entirely independent of the specific broad-
band patterns employed in BCDI. Given its nature as a
matrix characterized by high ill-posedness, sparsity,
symmetry, and positive definiteness, the direct application
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Fig. 1 Principle of UDI operation. a Geometry of UDI operation. A spectral filter is placed to modulate a quasi-monochromatic or broadband
illumination the from a supercontinuum source. b PSF mapping from a monochromatic diffraction at wavelength λm. A broadband diffraction Ib
captured in-situ can be thought of as a superposition of PSFs of Im at different wavelengths over full spectrum, each multiplied by its corresponding
power spectrum weighting ω(λ). The CSS is reconstructed via adaptive Tikhonov regularization. c Monochromatization procedure consists in the
inversion of the ill-posed matrix function Ib= CIm to retrieve the CSM pattern from the solved CSS
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of conventional noniterative methods to solve Eq. (2) is
typically deemed impractical. Nonetheless, the sparsity
and positive definiteness attributes of matrix C render it
notably amenable to iterative solutions, particularly
through the utilization of the Conjugate Gradient-based
descent algorithms. In this work, we employ a normalized
BiCGStab40 for UDI (see Section Methods and Supple-
mentary S3). The optimized monochromatization quickly
converges within the initial iterations. The numerical
implementation of BiCGStab includes two additional
constraints: non-negativity of monochromatization and
a support constraint on the initial guess of m set to the
broadband measurement b. These constraints prevent
overfitting and enhance the regularization effectiveness of
the method.

Ptychographic UDI experiments
We firstly present a broadband ptychography conducted

with a bandwidth of 20% to illustrate the performance of
UDI (experimental set-up detailed in Supplementary S4).
Initially, we conducted a capture of coherent diffraction at
532 nm with a 3 nm full width at half maximum (FWHM)
and broadband diffraction in-situ at any identical position
of the USAF target (Fig. 2a). The CSS was then extracted
with 87 sparse spectrum channels (green scatters in
Fig. 2b). Following the extraction of the CSS, the sparse
matrix C is subsequently computed (Fig. 2d), allowing us

to monochromatize the broadband measurements.
Additionally, we also computed the matrix C from the
dense spectrum measurement (Fig. 2c). It is evident that
the CSS-derived matrix C contains only 4.1 × 10^7 non-
zero values sparsely, compared to the full spectrum-
derived matrix C with 6.7 × 10^7 non-zero values. This
sparsity is a result of the low-energy trend of spectral
leakage in CSS, which causes the CSS-derived matrix C to
exhibit a sparser characteristic. It should be mentioned
that the matrix C is just performed only once per spec-
trum and can be used for varying non-dispersive samples.
A comparison of the broadband measurement and the

corresponding narrowband pattern captured in-situ
reveals that the use of broadband illumination intro-
duces a noticeable decoherence (Fig. 2e). Afterwards, we
applied the CSM approach to monochromatize the
broadband measurements. The enhancement of coher-
ence between the broadband pattern (Fig. 2e) and the
CSM result (Fig. 2f) is readily apparent, revealing that the
CSM in UDI is remarkably efficient with only single
iteration of monochromatization calculation. Utilizing
this efficiency, we monochromatized all the broadband
measurements, resulting in monochromatization with
notably enhanced coherence and superfast convergence.
Subsequently, a comparison between the broadband pty-
chography and the proposed UDI ptychography were
performed using 600 iterations of the mPIE11,
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respectively. Seeing that all elements in group 6 of the
USAF target reconstructed from the UDI results (Fig. 2h)
exhibits clear and high-fidelity resolution compared to
that obtained from the original broadband datasets
(Fig. 2g). This excellent agreement in monochromatiza-
tion and the high quality of the ptychographic result serve
as strong validation for the effectiveness of our UDI
approach in the realm of broadband ptychography.
Besides, a revised evaluation matric is proposed as an
improved evolution function to monitor the evolution for
the broadband ptychography, as detailed in Supplemen-
tary S5.
We further extended the bandwidth of the source

spectrum to 41% FWHM, and repeated the UDI ptycho-
graphy experiment. The CSS can still be precisely com-
puted (green scatters in Fig. 3b) from the diffraction
signals (Fig. 3a). It is noteworthy that the spectral exten-
sion of the light source results in significant diffraction
aliasing (Fig. 3c), ultimately leading to the failure of
broadband ptychography convergence (Fig. 3f). The
existing mono CDI34 fails to converge under the ultra-
wide spectrum (Figs. 3d, 3g). However, UDI still effec-
tively addresses the decoherence issue arising from the
ultra-wide spectral radiation. The CSM pattern in Fig. 3e
exhibits significantly enhanced coherence compared to
the broadband measurement in Fig. 3c. Moreover, the
UDI ptychography result in Fig. 3h also showcases an
enhancement in reconstruction fidelity for ultra-
broadband diffractions. Note that the reconstruction in

Fig. 3h shows an evident decrease in resolution compared
to that with a bandwidth of 20% FWHM in Fig. 2h. This
decrease is due to severe aliasing of high-frequency dif-
fraction information in the ultra-broadband diffraction
signal, which prevents the accurate coherent recovery of
high-frequency diffraction features during mono-
chromatization. Ultimately, this hinders the further
enhancement of resolution under ultra-wide spectral
illumination. We conducted a detailed comparison of the
monochromatization evolution between the CSM algo-
rithm and the conjugate gradient least squares (CGLS)
algorithm used in mono CDI41, as elaborated in Supple-
mentary S6.

BCDI experiments
Additionally, a BCDI application is also showcased in

Fig. 4, where the experimental setup resembles that of
broadband ptychography. Mentioning that all CDI pro-
cedures were performed using the RAAR algorithm with
500 iterations. We first captured a shot of coherent dif-
fraction pattern at 532 nm using a bandpass filter with a
3 nm FWHM (Fig. 4a). The corresponding CDI result is
shown in Fig. 4e. To assess the impact of decoherence, we
conducted an in-situ acquisition of a broadband pattern
with a bandwidth of 20% FWHM, spanning from 480 nm
to 600 nm (Fig. 4b). The decoherence nature of the
broadband pattern ultimately resulted in a convergence
failure in BCDI (Fig. 4f). In comparison, the CSM pattern
(Fig. 4c) exhibits a notably enhanced coherence.
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Simultaneously, the UDI method recovers the probe
spectrum, as illustrated by the CSS plotted in Fig. 4c.
Furthermore, the UDI reconstructions (Fig. 4g, h) reveal a
remarkable improvement in the fidelity of the recon-
structions. Importantly, the UDI approach seamlessly
combines the inherent advantage of high coherence in
monochromatic diffraction with the high photon utiliza-
tion efficiency offered by full spectrum illumination.
Through the enhancement of coherence, the photon
utilization efficiency is boosted by two orders of magni-
tude, leading to a significant reduction in detector
acquisition time. Specifically, for broadband illumination,
the detector acquisition time is reduced to only 0.05 ms
compared to 5 ms for coherent illumination. This
improvement in both efficiency and coherence con-
tributes significantly to the overall superiority of the UDI
method.

Broadband diffractive imaging with spectrally dispersive
specimen
We are further considering a more general case of

broadband diffractive imaging, where the specimen is
spectrally dispersive. Most of the current state-of-the-art
research on BCDI relies heavily on the strong assumption
that the specimen should be non-dispersive over the
spectrum26,28,34,42–44. This assumption severely restricts
the applicability of broadband imaging, particularly in the

extreme ultraviolet (EUV) and soft X-ray spectral ranges
where the material’s absorption edge effect is more pro-
minent8,45. The proposed UDI approach effectively
addresses these limitations, allowing for the extraction of
both the probe spectrum as well as the specimen’s dis-
persiveness using the CSS, enabling the application of
BCDI to spectrally dispersive specimens with ease.
Figure 5 depicts a numerical simulation of BCDI for a

spectrally dispersive EUV mask using broadband HHG
source with 22% FWHM bandwidth spanning from 12 nm
to 15 nm (see the magenta curves in Fig. 5a). The EUV
mask’s multilayer structure functions as a bandpass
spectral filter, selectively reflecting the spectrum centered
at 13.5 nm and absorbing the remaining wavelengths46 (as
detailed in Supplementary S7). This behavior is depicted
by the EUV mask reflection curves in Fig. 5a. As a result,
the spectrum of the HHG source undergoes modulation,
allowing only two HHG harmonics to reflect from the
EUV mask. This results in a spectral bandpass radiation
(see the red curves in Fig. 5a). The corresponding BCDI
result confirms the phenomenon that a successful con-
vergence of CDI is achieved for the broadband diffraction
pattern reflected from the EUV mask (Fig. 5b). Con-
trastingly, the mono CDI, dependent on prior knowledge
of the broadband HHG source spectrum, fails to converge
(Fig. 5c). This failure is attributed to the modulation of the
incident light spectrum by the dispersive EUV mask. In
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Fig. 4 Broadband diffractive imaging at 20% bandwidth a The pre-captured coherent pattern at 532 nm with 5 ms exposure time. b The
corresponding broadband pattern captured in-situ with 20% bandwidth (spectrum ranging from 480 nm to 600 nm) with only 0.05 ms exposure
time. c The CSM pattern recovered from the broadband data in b. d A photograph of the Siemens star target, a micro pinhole with100 μm in
diameter is employed to intercept the incoming light illumination, resulting in a circular planar wave approximately 100 μm that is incident on the
Siemens star. e–g depict the reconstructed patterns obtained from the CDI in a, BCDI in b, and the proposed UDI in c, respectively, after 500
iterations of RAAR. h shows an average image of ten trails of UDI reconstructions

Chen et al. Light: Science & Applications          (2024) 13:213 Page 6 of 12



comparison, our proposed UDI method achieves the best
reconstruction (Fig. 5d), simultaneously recovers the
probe spectrum and the EUV mask’s dispersiveness with
only 18 sparse spectral components from the recovered
CSS (Fig. 5e). The resulting recovered image exhibits a
high PSNR47 of better than 16.5 dB.
It should be emphasized that the UDI outperforms the

existing mono CDI for two main reasons. Firstly, UDI
accurately recovers the spectral information of the ima-
ging system. In contrast, mono CDI relies heavily on
precise prior spectral measurements. Due to the detector’s
spectral nonlinearity or the sample’s spectral dispersion,
there is a significant deviation between the spectrum
measurement of the light source and the spectral features
in the captured diffraction image, preventing accurate
spectral characterization. Besides, UDI also offers com-
prehensive improvements in monochromatization,
coherence enhancement, noise robustness, and wide-
spectrum robustness. This results in superior ultra-
broadband computational imaging outcomes.

Discussion
Accuracy of CSS calculation
We first performed a numerical investigation to evalu-

ate how CSS affects the accuracy of broadband diffraction
pattern fitting. We chose a broadband HHG source with a
bandwidth of 22% FWHM as the illumination source in
numerical calculation. Our analysis involved measuring
the fitting error of a broadband diffraction pattern while
varying the spectral sampling channels between 25 to 600
and the detector noise levels ranging from 20 dB to

noisefree, as detailed in Fig. 6. The detector noise is a
mixture with Gaussian noise and Poisson noise, following
the detector noise model established in our previous
work48.To assess the performance of the fitting, we used
the mean squared error (MSE) as our evaluation function.
Figure 6b demonstrates that the MSE decreases rapidly as
the number of spectral samples increases, and stabilizes
once the number of samples surpasses 100. Crucially, this
trend of change is consistent across varying levels of noise.
It reveals that a broadband diffraction pattern can be
accurately decomposed into a sum of sparse, discrete
channels of monochromatic diffraction patterns present
in the source spectrum. This sparse sampled profile of
spectrum represents the primary components of the full
spectrum, which can be solved by the proposed UDI
method.
We characterized the performances of CSS calculation

with broadband diffractions under varying levels of noise.
The “HSUT” logo (inside Fig. 7g) was used to generate
ideal coherent diffraction data at 13.5 nm. Subsequently, a
corresponding broadband pattern was obtained by line-
arly superimposing 600 discrete channels of monochro-
matic diffraction patterns in the HHG source spectrum.
To replicate real-world scenarios, the diffraction datasets
were synchronized with a 16-bit camera and added with
varying levels of mixed detector noises.
Images inside Fig. 7a–e depict the broadband patterns

with varying levels of noise, and the corresponding cal-
culated CSSs are plotted simultaneously. Seeing that the
calculated CSSs exhibit a strong correspondence with the
spectrum within fewer than 30 spectral channels, even in
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the presence of substantial noise. We employed the
sparsely calculated CSSs for fitting the broadband pat-
terns, and subsequently analyzed the fitting MSEs and
fitting error rates, as depicted in Figs. 7i, f, and j,
respectively. The fitting MSEs consistently demonstrate
minimal values across different noise levels, and the fitting
error rate remains below 10%, displaying uniformity
(Fig. 7j). These findings indicate that the calculated CSS
effectively aligns with the primary components of the full-
spectrum radiation, maintaining high compressed sparsity
and robustness against noise.

Broadband diffraction monochromatization in CSM
We utilized the recovered CSS with a bandwidth of 22%

and 29 sparse spectral channels to create the sparse
matrix C (Fig. 7a). Known that C is a sparse diagonal
matrix with a sparsity of 0.03%. There are four identical
sets of data distributed along the diagonal of matrix C.
This is due to that the scaling of the spectral PSF is the
same for all four quadrants. Figure 8b, c show the matrix
C created from the CSS and the spectrum measurement,
respectively for comparison. The matrix C created from
the CSS has a distribution similar to that from the spec-
trum measurement, with only small localized differences
where the sparse C is slightly non-uniform due to spectral
leakage in CSS. However, these artifacts are not dominant
in monochromatization due to the superiority of the
proposed UDI method.
The generation of the matrix C from the CSS allows us

to recover the optimal monochromatization from a
broadband measurement. Figure 8d compares the

monochromatized diffraction patterns between the mono
method34 and the CSM process in UDI after 3 iterations.
As a comparison, the CSM exhibits super-fast and smooth
semi-convergence in monochromatization, generally well-
retrieved monochromatization with enhanced coherence
within the initial several iterations, whereas the mono has
not yet found the direction and still exhibits similarities to
the broadband diffraction with a mixture of decoherence.
Additionally, a video sequence (Visualization 1) is also
presented to show the evolution of CSM vs. mono. To
further verify the superior noise-robustness of the pro-
posed UDI method, an exhaustive comparison of BCDI
reconstructions was conducted between UDI and mono
CDI under diverse noise conditions. This detailed com-
parison is detailed in Supplementary S8.

Outlook
We have introduced a powerful UDI method for ultra-

broadband diffractive imaging. Our research comprehen-
sively addresses the key challenges of current state-of-art
BCDI. By employing UDI, we successfully achieve a sig-
nificant enhancement in coherence of ultra-broadband
diffraction patterns. We provide a detailed explanation of
the theory and design process for our UDI method in
broadband diffractive imaging, which has been experi-
mentally verified. It presents a natural sort of superiorities:
Firstly, UDI represents an advancement in ultra-

broadband diffractive imaging with an unknown probe
spectrum, while simultaneously recovering the spectrum
information of the diffracted radiation. UDI overcomes
limitations posed by constraints on spectrally non-dispersive
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specimens across a wide spectrum. It is inherently applic-
able across a broad wavelength range and eliminates the
need for prior spectral knowledge, particularly crucial for
applications in EUV and soft X-ray ranges where the
absorption edge effects of materials are more pronounced.
Figure 9.
Secondly, the UDI achieves coherence-enhanced,

superfast-solving, and noise-robust monochromatization
under ultra-wide spectral illumination. It efficiently uti-
lizes the entire flux from a broadband source and results
in a significant reduction in data acquisition time. This
makes UDI highly beneficial for ultra-broadband imaging,
offering a nearly fourfold improvement in bandwidth
compared to existing mono CDI benchmark. The
monochromatization in UDI operates with high efficiency,
achieving optimal results within the initial iteration, which
is 30 times faster than the state-of-the-art CGLS
method34,39. Computational costs are detailed in Supple-
mentary S4. The advancements are exclusively achieved
within an ultra-streamlined BCDI architecture, offering
substantial advantages for in-line broadband imaging.
Nevertheless, certain critical matters still require clar-

ification and warrant further research. Despite the potent
ultra-broadband imaging capabilities exhibited by the
UDI when handling unknown probe spectrum, it is crucial
to acknowledge that UDI relies on the Fresnel diffraction
approximation. Consequently, its applicability may be
constrained in scenarios involving multi-layer or multi-
scattering samples, potentially impeding its capacity to
fully leverage the entire performance in such intricate
situations. Additionally, the optimization algorithm for
monochromatization and the spectral quantum efficiency
of the detector may also limit further spectral bandwidth
extension in UDI. Our UDI experiments demonstrate
ultra-broadband diffractive imaging with a relative spec-
tral bandwidth exceeding 40% FWHM. This bandwidth is

currently limited by the detector’s quantum efficiency, not
by the UDI algorithm itself.

Materials and methods
CSS calculation
As described in Supplementary S1, Eq. (2) can be treated

as an ill-posed multi-variable linear regression problem,
which can be solved by Tikhonov regularization, to pre-
vent overfitting and suppress the noise signals during
reconstruction37–39. The least square of sum of squared
residuals with a regularization item is minimized as

Ib ¼
Xn

i¼1

ωðλiÞ½PSFðλiÞ�2 )Simplicity

ω̂ ¼ argmin
ω

kAω� bk22 þ Γ2kωk22; Γ > 0
ð3Þ

where A is a given M*N*n matrix with elements of each
column of a flattened PSF(λi) matrix in 1D array
corresponding to the i-th slice of spectrum and b is a vector
of a broadband diffraction flattened in 1D array, ω is the
vector of unknown spectrum coefficients for the function. Γ
is the regularization coefficient that controls the weight given
to minimization of the side constraint relative to minimiza-
tion of the residual norm. ||.||2 is the l2 norm. Note that the
efficiency of these estimates depends on appropriately choice
of the regularization coefficient Γ, which should be carefully
selected to balance the results of robustness and resolution.
In this work, we employ a generalized Cross-Validation
statistic to make the balanced choice of Γ adaptively49:

Γ̂ ¼ argmin
Γ

kAω̂� bk22
½n� TrðAðATAþ Γ2IÞ�1

AT Þ�2
ð4Þ

where I is the identity matrix and the operator Tr sums
elements on the main diagonal of a matrix. As a result, we
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Fig. 9 UDI workflow. The sparse matrix C is constructed as a pre-calculation process in the broadband CDI application, as indicated by the red
dashed box. Subsequently, the measured broadband pattern b is monochromatized using the pre-calculated matrix C, resulting in the
monochromatic pattern m, as depicted in the blue dashed box. Notably, this monochromatization process does not require any prior knowledge of
the spectrum
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can have the CSS estimates ω̂ from solving Eq. (4)

ω̂ ¼ ðATAþΓTΓÞ�1
ATb ð5Þ

The algorithm of the CSS calculation is described in
detail in the supplementary information in ref. 36.

Broadband monochromatization
As described in Supplementary S2, C is a sparse, sym-

metric, and positive definite matrix. The sparsity and
positive definiteness of matrix C make Eq. (3) particularly
well-suited for iterative solutions using BiCGStab. This
algorithm performs as an implementation of an ortho-
gonal projection technique onto the Krylov subspace. It
involves minimizing the least squares problem to achieve
the desired monochromatization. Implicitly, BiCGStab
solves not only the original system Cm ¼ b but also a dual
linear system CTm� ¼ b� with CT .

m̂ ¼ argmin
m

kCm� bk2 subject tom 2 KkðCTC;CTbÞ

m̂� ¼ argmin
m�

kCTm� � b�k2 subject tom� 2 LkðCCT ;Cb�Þ

ð6Þ

where Kk ? Lk , denotes the Krylov space orthogonally

KkðCTC;CTbÞf ¼ spanfCTb;CTCCTb; ¼ ; ðCTCÞk�1
CTbg

LkðCCT ;Cb�Þf ¼ spanfCb�;CCTCb�; ¼ ; ðCCT Þk�1
Cb�g

The flowchart of BiCGStab algorithm is detailed in
Supplementary S3.

UDI workflow
Step 1: Pre-capture a shot of broadband pattern and a

quasi-coherent pattern in-situ, respectively.
Step 2: Calculate the CSS from the measurements in

Step 1 via adaptive Tikhonov regularization.
Step 3: Calculate the sparse matrix C which contains

the spectral information of CSS.
Step 4: Monochromatize the broadband patterns in

broadband imaging experiments via BiCGStab along with
the pre-calculated sparse matrix C in Step 3.
Step 5: Output the optimal diffraction pattern m with

enhanced-coherence in broadband imaging applications.
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S1 Broadband Fraunhofer diffraction approximation from PSF superposition 10 

Consider a monochromatic plane wave with a wavelength λ propagated from a 11 

microstructure couples the amplitude and phase of a diffraction field 𝜓λ(x, y, z) by traveling 12 
a distance of z, in the paraxial approximation, given by the Fraunhofer diffraction formula1: 13 

 ( )
 

2 22 /
/ z

,
( ) e ( 0)

i z
i x y

x yu v
z z

ex, y,z U x , y ,
i z

 
 


 

+

= =
 = Fψ , (S1) 14 

where ℱ denotes the 2D spatial Fourier transform of the sample U(x′, y′, 0) at z = 0, with u 15 

and v the spatial frequencies. In case of broadband radiation, the broadband diffracted field 16 

Փ can be written as: 17 

 ( )( ) ( )x, y,z   = ψ , (S2) 18 

where ω(λ) is the final corrected broadband radiation spectrum for the sample's spectral 19 
transmissivity function T(λ) and the detector's QE(λ), given as: 20 

 ( ) ( ) ( ) ( )S T QE    = , (S3) 21 

where the S(λ) denotes the initial spectrum radiation.  22 
Since only the amplitude of diffraction is recorded by the detector, while the phase 23 

information is dropped, the detector integrates over time to produce the broadband 24 
diffraction pattern Ib: 25 

 2 21( ) ( )
2bI t dt d 


=  =   , (S4) 26 

with using Parseval’s theorem. By Eq. (S2) substituted into Eq. (S4), we have Ib: 27 

 ( )
21

2bI d  


=  ψ . (S5) 28 

Known that a recorded monochromatic diffraction pattern Iλ can be written as: 29 
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ψ F . (S6) 30 

Seeing that the distribution of a Fraunhofer diffraction pattern depends only on the 31 
propagation distance z and wavelength λ in an identical way, showing a wavelength-32 
dependent scaling factor c/λz, allowing us to map a coherent diffraction Iλ at an arbitrary 33 

wavelength from a single diffraction shot Im at 𝜆𝑚 by PSF propagation between different 34 
spectral components. Introducing the scaling factor λi/λm, the PSF mapping can be 35 
described as: 36 
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, (S7) 37 

where xi, yi denotes the coordinates of the diffraction field |𝜓𝑖| at a wavelength λi, and M, 38 
N is the total number of pixels in the captured diffraction pattern. Seeing that the PSF(λi) 39 

is an affine transformation from a reference diffraction filed √𝐼𝑚 where λi/λm is the scaling 40 

factor to describe the PSF mapping and (M(λm -λi)/λm, N(λm -λi)/λm) is the translation factor 41 



to center the scaled diffraction orders. 42 

Thus, combined with Eq. (S5~S7), the broadband diffraction pattern 𝐼𝑏  can be 43 

approximately rewritten as an integration of PSFs from the reference diffraction filed √𝐼𝑚, 44 

weighted by the power spectrum ω(λ) over full spectral bandwidth of radiation: 45 

  
2

b ( ) ( )I PSF d   =  . (S8) 46 
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  48 



S2 Sparse matrix C building in UDI 49 

As descripted in Eq. (S8), a measured broadband diffraction 𝐼𝒃  can be thought of the 50 

integral of ω(λ)[PSF(λ)]2 over the wavelength range. For a given broadband diffraction b, 51 
the retrieval of the monochromatic pattern m is reduced to a linear algebra problem, 52 
rewritten to a matrix form in simplicity: 53 

 T TC C C=b m ,  (S9) 54 

where m stands for the vector of the monochromatic pattern, b represents the broadband 55 
pattern, and the matrix C can be regarded as containing the spectrally dependent PSF in 56 
Eqs. (S7, S8). Here, we adopt a specific form of expression to calculate C in one dimension 57 
as outlined in 2, given by: 58 
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where 60 
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 61 

Herein, λ, n, j are the indices that run over 𝜔̂(𝜆), m, b respectively. The matrix C can be 62 
understood as the contribution of pixel n of m to pixel j of b is given by the part of pixel n 63 

that falls onto pixel j for the scaled pattern at wavelength λ by a scaled factor λ/ λc times 64 

the corresponding CSS 𝜔̂(𝜆), summed over full spectrum Λ. 65 

Ideally, the monochromatized m can be targeted to any wavelength within the broadband 66 

spectrum to retrieve the object’s response at any specific wavelength. However, in real-67 

world conditions, we usually choose the spectrum's center of mass to minimize 68 
interpolation errors during the monochromatization calculation. 69 

  70 



S3 Enhancing monochromatization in UDI 71 

The primary difficulty with the discrete ill-posed problem in matrix function 𝒃 = 𝐶 ∙ 𝒎 is 72 

that it is essentially underdetermined due to the cluster of small singular values of the 73 
computed matrix C3. Hence, it is necessary to incorporate further information about the 74 
desired solution in order to stabilize the problem and to single out a useful and stable 75 
solution.  76 

In our approach, we employ an enhanced version of the CG-S (Conjugate Gradients-77 

Squared) method to address nonsymmetric linear systems. Specifically, we introduce a 78 
modified BiCGStab algorithm4,5 to effectively solve the monochromatization problem 79 
arising from broadband diffraction. BICGStab is performed with two additional constraints 80 

in this work: non-negativity of 𝒎𝑘 (diffracted photon counts should not be negative) and 81 

a support constraint on the initial guess of 𝒎0 set to the measured broadband pattern b. 82 

These constraints help to prevent overfitting and further improve the regularizing power of 83 
the method. Thus, we obtain the following scheme for preconditioned Bi-CGSTAB: 84 

𝒎0 is an initial guess; 85 

𝑟0 = 𝒃 − 𝐶 ∙ 𝒎𝟎 86 

𝑟̅0is an arbitrary vector, such that 87 
(𝑟̅0, 𝑟0) ≠ 0, 𝑒. 𝑔. , 𝑟̅0 = 𝑟0; 88 

𝜌0 = 𝛼 = 𝜔0 = 1; 89 

𝜐0 = 𝛼 = 𝑝0 = 0; 90 

for 𝑖 = 1,2,3, ⋯, 91 

      𝜌𝑖 = (𝑟̅0, 𝑟𝑖);  𝛽 = (𝜌𝑖 𝜌𝑖−1⁄ )(𝛼 𝜔𝑖−1⁄ ); 92 

      𝑝𝑖 = 𝑟𝑖−1 +  𝛽(𝑝𝑖−1 − 𝜔𝑖−1𝜐𝑖−1); 93 

      Solve 𝑦 from 𝛫𝑦 = 𝑝𝑖; 94 

      𝜐𝑖 = 𝐴𝑦; 95 

      𝛼 = 𝜌𝑖 (𝑟̅0, 𝜐𝑖)⁄ ; 96 

      𝑠 = 𝑟𝑖−1 − 𝛼 𝜐𝑖; 97 

      Solve 𝑧 from 𝛫𝑧 =  𝑠; 98 

      𝑡 = 𝐴𝑧; 99 

      𝜔𝑖 = (𝛫−1𝑡,  𝛫−1𝑠) (𝛫−1𝑡,  𝛫−1𝑡)⁄ ; 100 

      𝒎𝑖 = 𝒎𝑖−1 + 𝛼𝑦 + 𝜔𝑖𝑧; 101 

       𝒎𝑖 [𝒎𝑖 < 0] = 0; 102 

       if 𝒎𝑖 is accurate enough then quit; 103 

       𝑟𝑖 = 𝑠 − 𝜔𝑖𝑡; 104 

 End 105 

 106 
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S4 UDI ptychography experimental set-up 108 

We describe the setup configuration that was employed for the broadband ptychography as 109 

shown in Fig. S1. In our experiment, we utilize a supercontinuum source (SC-Pro, YSL 110 
Photonics) with a repetition rate of 5 MHz to generate a broadband radiation. To select a 111 
specific range of wavelengths from the supercontinuum source, we employ a pair of 112 
spectral filters: a 600 nm short-pass filter, an 800nm short-pass filter, and a 450 nm long-113 
pass filter. These filters allow us to extract the desired broadband spectra ranging from 114 

450nm to 60 nm or from 450  nm to 800 nm for further measurements. A 90° flip 115 
narrowband filter with a center wavelength of 532 nm with a 3 nm FWHM (Full width at 116 
half maximum) (FL532-3, Thorlabs) is positioned on the optical path to generate a quasi-117 
monochromatic radiation in situ. A 200 μm diameter pinhole (P200K, Thorlabs) is placed 118 
in front of the resolution target (R1L1S1N, Thorlabs) as a micro aperture to select the 119 

radiation to a spot size of approximately 200 μm. A CMOS detector (QHY268M, 120 
QHYCCD) is placed behind the sample at a distance of 30 mm to record the diffractions 121 

produced by the interaction of the radiation with the sample. The sample is mounted on an 122 
X-Y stage (M-L01K, PI). A sequence of broadband diffraction patterns is recorded as the 123 

sample is laterally scanned through the illuminated beam via a scanning probe with a step 124 
size of 30μm. 125 

The Broadband Coherent Diffractive Imaging (BCDI) setup resembles that of broadband 126 

ptychography. The only minor distinction lies in the use of a 100 μm diameter pinhole 127 
(P100K, Thorlabs) in broadband CDI to generate a 100 μm diameter plane wave on the 128 

Siemens star target (R1L1S1N, Thorlabs) plane. Besides, the power of supercontinuum 129 
source is set to 80% of full power to meet with the detector’s dynamic range. The 130 
bandwidth of the spectrum extends from 475 nm to 605 nm. 131 

 132 

 133 
Fig. S1. Schematic of broadband ptychography setup. A broadband radiation was generated via a 134 
supercontinuum radiation passing through a set of broadband filters and expanded with a magnification 135 
of 5 by a beam expander, then directed onto the target through a 200 μm diameter pinhole and 136 
diffracted to the detector in the far field. A 90° flip narrowband filter at 532 nm with 3nm FWHM is placed 137 
on the optical path to generate a quasi-monochromatic radiation in-situ. The inside image depicts the 138 
reconstructed probe obtained through an ultra-broadband illumination with a 41% bandwidth using UDI 139 
ptychography. 140 

In our experiment, we used an Intel i5-12400F CPU for the monochromatization 141 
calculations. As a result, our UDI method takes less than 150 ms to achieve optimal 142 



monochromatization, compared to over 5000 ms required by the mono CDI method. This 143 
highlights the significant advantage of our UDI method, particularly for in-line broadband 144 

imaging applications where efficiency and speed are critical. 145 

 146 

 147 

 148 

 149 

 150 
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S5 Evaluation matric for broadband ptychography 152 

We monitored the evolution of the PSNRs between the reconstructed images and the 153 

ground-truth USAF target over the course of the ptychographic iterations, as plotted in Fig. 154 
S2(a). It can be seen that both broadband ptychography and UDI ptychography quickly 155 
established a sharp convergence within the first hundred iterations. However, the 156 
broadband ptychography subsequently got stuck in a local optimum, halting further 157 
improvement of the reconstructed image, while the UDI ptychography continued to 158 

converge at a high level. Eventually, after 600 iterations, the UDI ptychography achieved 159 
smooth convergence, resulting in a significantly improved reconstruction with a PSNR of 160 
18 dB and clear resolution of all groups of features. 161 

Note that in experimental data analysis, obtaining the true object complex function is not 162 
always feasible, making it challenging to calculate the PSNR for evaluation. Moreover, the 163 

conventional MSE metric used in diffraction analysis is primarily effective in coherent 164 
diffraction scenarios and not suitable for evaluation in cases involving broadband 165 

illumination. To overcome this, we propose an improved evolution function where we 166 
utilize the CSS and the recovered probe and object to fit a corresponding broadband 167 

diffraction dataset, enabling us to match with the original broadband measurement. This 168 
approach results in an improved error metric that better evaluates the quality of the 169 
reconstruction in broadband cases, given as 170 
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Where J denotes the total number of scanning positions in ptychography, P(r) and Oj(r) 172 

denote the retrieved complex function of probe and object, respectively. Fig. S2(b) shows 173 
the plot of the corresponding error metric E in Eq. (S10) as a function of the iteration, 174 

demonstrating a similar trend to the PSNR evolution depicted in Fig. S2 (a). This 175 
observation confirms the effectiveness of the evaluation function in the context of 176 
broadband ptychography. 177 
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 178 
Fig. S2. Comparison of convergence evolution between broadband ptychography and CSM 179 
ptychography.  a compares the evolution of the PSNR between the ground-truth USAF target pattern 180 
and the image recovery over 600 iterations of mPIE from the original broadband dataset (black) and 181 
the corresponding CSM dataset (green), respectively. b plots the evolution of the diffraction error E for 182 
the original broadband diffraction dataset (black), and the corresponding CSM dataset (green). 183 

184 



S6 Monochromatization evolution under ultra-broadband illumination 185 

 186 
Fig. S3. Comparison of broadband diffraction monochromatization evolution between the CSM process 187 
in the proposed UDI method and the CGLS in mono CDI method at 41% bandwidth.  a-1 A frame of 188 
the ptychographic broadband diffractions at 41% bandwidth, and the corresponding ptychographic 189 
results are demonstrated in a-2. b-1~f-1 show the monochromatization evolution within first 5 iterations 190 
of CSM, respectively, and the corresponding ptychography results are presented in b-2~f-2, 191 
respectively. g-1~m-1 Monochromatization evolution at 1, 3, 5, 10, 15, 25 iterations of CGLS, 192 
respectively, g-2~m-2 showcase the corresponding ptychography results, respectively. 193 

We tracked the evolution of the monochromatization iterations using CSM process in the 194 
proposed UDI and CGLS in mono CDI method 3 from the ultra-broadband diffraction 195 

pattern with a 41% FWHM (Fig. 3b of the main text), as illustrated in Fig. S3. As evident 196 
from the results, even under the challenging conditions of an ultra-wide spectral bandwidth, 197 
our CSM approach efficiently calculates the monochromatized diffraction pattern within 198 

the first initial iteration (Fig. S3 b-1). A comparison with the original broadband pattern 199 
reveals a notable enhancement in the coherence of the CSM pattern, accompanied by a 200 
substantially high SNR. As the iterations continue (after 4 times of iterations), the CSM 201 
monochromatization exhibits overfitting, resulting in signal decoherence, and 202 
consequently, a reduction in the SNR. The corresponding ptychography results (Fig. S3 203 

b2-f2) also confirm the characterization. In comparison, the monochromatization achieved 204 
by CGLS exhibits reduced sensitivity in coherence enhancement, leading to noise-induced 205 
blurring (Fig. S3 g1-m1). Consequently, this makes it ineffective for ultra-broadband 206 
ptychography (Fig. S3 g2-m2). 207 
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S7 Reflective EUV mask structure 209 

In the EUV lithography process, an EUV mask reflects EUV light using multiple 210 

alternating layers of molybdenum and silicon6. The structure of a typical EUV mask is 211 
shown in Fig. S4. Unlike conventional photomasks, which block light with a single 212 
chromium layer on a quartz substrate, EUV light is strongly absorbed by most materials. 213 
Therefore, reflective optics, including the EUV mask structure, is carefully designed and 214 
applied to the EUV lithography tool. An EUV mask consists of 40-50 alternating silicon 215 

and molybdenum layers7. This multilayer structure reflects EUV light through Bragg 216 
diffraction. The reflectance of the best modern Mo/Si multilayers now approaches 70% in 217 
a narrow band of wavelengths near 13.5 nm. The TaN-based absorber stack is commonly 218 
used to fabricate the IC pattern on the EUV mask. The absorber layer must exhibit several 219 
characteristics, including high EUV absorption, stability under EUV radiation, and high 220 

etch selectivity. 221 

 222 
Fig. S4. The structure of an EUV reflective mask. The EUV mask blank is composed of 40-50 layers of 223 
Mo/Si multilayer to reflect the EUV light with a reflectance of nearly 70%. The TaN-based absorber 224 
stack is commonly used to fabricate the IC pattern on the EUV mask.  225 

It should be mentioned that the Bragg diffraction occurs when radiation of a wavelength λ, 226 
comparable to the multilayer spacings, is scattered in a specular fashion and undergoes 227 
constructive interference. When the scattered waves are incident at a specific angle, they 228 

remain in phase and constructively interfere. That’s to say, the reflectance of the multilayer 229 
structure in the EUV mask depends on the incident angle and wavelength, with longer 230 
wavelengths reflecting more near normal incidence and shorter wavelengths reflecting 231 

more away from normal incidence8. It is observed that the EUV mask achieves its highest 232 
reflectance at a wavelength of 13.5 nm when the incidence angle is 6 degrees. Therefore, 233 
the multilayer EUV mask can be considered a high-performance bandpass filter reflector. 234 

This dispersive characteristics of the EUV mask modulates the incident light spectrum, 235 
leading to a notable discrepancy between the pre-measured spectrum of the light source 236 
and the spectral features observed in the captured broadband diffraction image. This 237 
discrepancy hinders precise spectral characterization in the existing mono CDI framework. 238 

The 3D interaction of light with the EUV mask can introduce significant artifacts. The 239 
reflection and diffraction of EUV light, combined with all-reflective projection imaging, 240 
cause asymmetric shadowing, size bias, and telecentricity errors, leading to contrast 241 

variations. Thick absorbers deform the wavefront, creating aberration-like effects and 242 



variations in the best-focus position. Partial reflection from the absorber generates a weak 243 
secondary image that overlaps with the main image. The method described in this paper is 244 

applicable to wide-spectrum far-field scalar diffraction scenarios, which is independent of 245 
the near-field 3D effects of the EUV mask, such as multi-scattering and shadow effects. 246 

   247 



 248 
S8 Robustness of UDI against noise 249 

To further validate the enhanced noise-robustness of the proposed UDI method, we 250 
conducted a comprehensive comparison of BCDI reconstructions between UDI and mono 251 
CDI across various noise conditions. Fig. S5 illustrates the comparison between UDI and 252 
mono CDI under different levels of detector noise. The broadband diffraction pattern 253 
emanates from the HHG source with a 22% FWHM bandwidth, as depicted in Fig. 8a of 254 

the main text.  255 

In the scenario of ideal diffraction data without noise, the reconstructed images from both 256 
mono CDI and the proposed UDI exhibit excellent recovery with high Peak Signal-to-257 
Noise Ratio (PSNR), as illustrated in Fig. S5 d1 and f1. Due to the diffraction aliasing in 258 
broadband radiation, the conventional BCDI fails to converge (Fig. S5 b1). Notably, it is 259 

essential to highlight that optimal monochromatization is achieved after 30 iterations in the 260 
case of mono CDI (Fig. S5 c1), whereas only a single initial iteration is required for UDI 261 

(Fig. S5 e1). 262 

When subjected to a noisy diffraction dataset, in contrast to the noise-free scenarios 263 

portrayed in Fig. S5 c1, the monochromatization performance of mono CDI noticeably 264 
degrades. Specifically, for the diffraction dataset with 40 dB detector noise, the 265 
monochromatization process in mono proves highly susceptible to noise. The 266 

monochromatized pattern undergoes a significant increase in distortion and recovery errors, 267 
while the enhancement in coherence remains limited (Fig. S5 c2). This effect becomes even 268 

more pronounced as the detector noise is increased to 30 dB (Fig. S5 c3). 269 

 270 
Fig. S5. UDI under varying noise conditions. a1-a3: Broadband patterns diffracted from the 271 
broadband HHG source with a 22% FWHM bandwidth under varying noise conditions: Noise free, 40 272 
dB detector noise, and 30 dB detector noise, respectively. b1-b3 depict the images reconstructed after 273 
500 iterations of RAAR algorithm from the broadband diffraction datasets demonstrated in a1-a3, 274 
respectively. c1-c3: Similar with a1-a3, but monochromatized after 30 iterations of the mono CDI 275 
method2. d1-d3: Similar with b1-b3, but from the monochromatized diffraction datasets demonstrated 276 
in c1-c3. e1-e3: Similar with c1-c3, but monochromatized after only a single initial iteration of the 277 
proposed CSM method. f1-f3: The UDI reconstructions, which is similar with d1-d3, but from the 278 
monochromatized diffraction datasets demonstrated in e1-e3. 279 

Contrastingly, the proposed UDI method consistently outperforms in achieving improved 280 
monochromatization, even in the presence of substantial noise. Notably, the UDI attains 281 
optimized monochromatization with significant coherence enhancement as early as the first 282 



initial iteration, even when confronted with challenging conditions such as a broadband 283 
diffraction pattern with a 22% FWHM bandwidth at 15 dB heavy detector noise (Fig. S5 284 

e3).  285 

The superior robustness of CSM is further substantiated in UDI. In comparison to mono 286 
CDI under noisy diffraction datasets, the reconstructed images from UDI consistently 287 
exhibit high levels of recovery, characterized by superior resolution and contrast, achieving 288 
a PSNR exceeding 15 dB (Fig. S5 f2, f3). In contrast, the result from mono CDI experiences 289 

a significant decrease, reaching only 12 dB (Fig. S5 d2, d3). 290 
 291 
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