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Abstract
Miniaturizing spectrometers for compact and cost-effective mobile platforms is a major challenge in current
spectroscopy research, where conventional spectrometers are impractical due to their bulky footprint. Existing
miniaturized designs primarily rely on precalibrated response functions of nanophotonic structures to encode spectral
information captured in a snapshot by detector arrays. Accurate spectrum reconstruction is achieved through
computational techniques, but this requires precise component design, high-precision fabrication, and calibration. We
propose an ultra-simplified computational spectrometer that employs a one-to-broadband diffraction decomposition
strategy facilitated by a numerical regularized transform that depends only on the spectrum of the diffracted radiation.
The key feature of our design is the use of a simple, arbitrarily shaped pinhole as the partial disperser, eliminating the
need for complex encoding designs and full spectrum calibration. Our spectrometer achieves a reconstructed spectral
peak location accuracy of better than 1 nm over a 200 nm bandwidth and excellent resolution for peaks separated by
3 nm in a bimodal spectrum, all within a compact footprint of under half an inch. Notably, our approach also reveals a
breakthrough in broadband coherent diffractive imaging without requiring any prior knowledge of the broadband
illumination spectrum, assumptions of non-dispersive specimens, or correction for detector quantum efficiency.

Introduction
Miniaturized spectrometers, characterized by their

compact size and improved performance compared to
conventional spectrometers, offer significant potential in
various applications such as spectral characterization1,2,
materials analysis3, and hyperspectral imaging4. Recent
advancements in high-precision lithographic micro-
fabrication5 and computational techniques6,7 have led to
the development of a range of miniaturized spectrometers
based on nanophotonic dispersive structures or spectral
filter sensors. These spectrometers can be broadly cate-
gorized into two design approaches. The first approach
involves one-to-one spectral-to-spatial mapping, where
different bands of the light spectrum are separated spa-
tially or temporally and then detected sequentially by a

sensor array. Such spectrometers are generally based on
conventional grating-based dispersions8–11, meta-surface
dispersions12–15, waveguide propagations16–18, digital
planar holography19,20, dispersive photonic crystals21,22,
narrowband filters23–27, microfiber taper28, and micro-
crystal resonators29–32. However, these instruments typi-
cally have limitations in terms of narrowband spectral
dispersions across a wide spectrum range and suffer from
low photon throughput. An alternative approach relies on
broadband-to-broadband spectra mapping combined with
computational retrieval algorithms. In this design, the
intensities of multiple spectral bands are simultaneously
detected after passing through different broadband filters,
and the input spectrum is computationally reconstructed.
Quantum dot arrays33,34, nanowire sensors35, and dis-
ordered multi-scatterings36–38 have been explored in such
designs. Nonetheless, the aforementioned systems require
meticulous designs, and their performance is highly sus-
ceptible to fabrication errors and environmental dis-
turbances. Complex calibration procedures and long-term
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instability also limit the resolution and robustness of these
methods. The representative state-of-the-art computa-
tional spectrometers over the past decade are summarized
in Table 1.
Recently, broadband diffraction with partial coherence

brought new insight into both coherent diffractive ima-
ging (CDI)39,40 and spectrum metrology41,42. This prin-
ciple relies on the linear superposition of a broadband
diffraction pattern, composed of coherent diffraction
components that are inherently wavelength-dependent
and characterized through the propagation of the spatial-
spectral point-spread function (PSF) in the source spec-
trum. However, for diffraction-based spectrometers, the
design of diffractive optics for encoding and the char-
acterization of the PSF over the entire spectrum range
requires careful calculations. These considerations intro-
duce trade-offs that limit the performance of spectro-
meters in terms of simplicity and miniaturization.
Here, we report a novel and straightforward spectro-

meter design based on one-to-broadband diffraction
mapping. Our innovative approach incorporates an arbi-
trarily shaped pinhole as a diffraction-based partial-dis-
perser positioned in front of the detector. This eliminates
the need for pre-encoding designs, making the spectro-
meter ultra-simplified. By solving a multi-variable linear
equation (MLE), we can determine the incident light’s
spectrum accurately. The MLE is solved using coherent
mode decomposition, employing a numerical regularized
transform based on a single-shot measurement of quasi-
monochromatic diffraction, which serves as the point-
spread function (PSF). Importantly, the PSF relies solely
on the diffracted radiation spectrum.
Experimental verification of our developed spectro-

meter demonstrates a reconstructed spectral peak

location accuracy better than 1 nm over a 200 nm band-
width and spectral resolution for a bimodal spectrum with
peaks of 3 nm separation, all within a compact footprint of
under half an inch. This represents the first demonstra-
tion of a spectrometer design that integrates an ultra-
simplified and arbitrarily shaped diffraction structure. Our
design eliminates the need for pre-encoding designs, high-
precision fabrication, or complex calibration processes. It
enables single-shot spectrum measurements across a wide
wavelength range, from ultraviolet to infrared, with min-
iaturized lab-on-chip integration. This advancement is
crucial for portable applications, offering high robustness,
low cost, and long-term stability. Furthermore, the pro-
posed method also reveals a significant breakthrough in
broadband CDI without requiring any prior knowledge of
the broadband illumination spectrum, assumptions of
non-dispersive specimens, or correction of detector
quantum efficiency (QE).

Results
Schematic of diffraction-based spectrometer
A diffraction pattern of a hollow microstructure (with a

constant transmission over the whole concerned spectrum)
with broadband radiation in an arbitrary state of coherence
can be interpreted as a linear superposition of a discrete set
of monochromatic diffraction patterns within the source
spectrum. The diffraction intensity in each coherent mode
is inherently wavelength-dependent and depends on the
spectrum of the diffracted radiation40. It is possible to
retrieve the spectrum from the broadband diffraction pat-
tern with the knowledge of all spectral components of
monochromatic diffractions, which can be treated as an ill-
posed MLE. This means that the radiation spectrum could
be calculated only if the transmittance coefficients of each

Table 1 Comparison of State-of-the-art Compact Computational Spectrometers

Method Bandwidth (Δλ/λc) Spectral resolution Dispersion Calibration Architecture complexity

Nat. Photonics (2013)37 1% 0.75 nm Photonic-crystal Complex Complex

Nature (2015)33 25% 3 nm Quantum dots Ultra-complex Ultra-complex

Optica (2016)36 0.1% 0.01 nm Multimode spiral Complex Ultra-complex

Science (2018)14 12% NA Metalens Complex Ultra-complex

Science (2019)35 10% 15 nm Nanowire Complex Moderate

Nat. Photonics (2020)53 3.2% 10 nm Nano-film Moderate Complex

Light Sci. Appl.(2021)54 35% 5.2 nm Spectral camera Ultra-complex Ultra-complex

ACS Photonics (2022)55 3.4% 30 nm Metalens Complex Complex

Light Sci. Appl.(2023)15 15% 22 nm Metalens Complex Complex

eLight (2023)28 10% 6.89 pm Microfiber taper Ultra-complex Simplified

This Work 28% 3 nm Pinhole Ultra-simplified Ultra-simplified

*Δλ= full width of the spectrum at half maximum, λc= center wavelength of the broadband spectrum
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monochromatic diffraction for different wavelengths are
pre-characterized as the encoding information. However,
this calibration process is usually cumbersome, sometimes
even not achievable in practical applications. The key point
of our method is that each individual-wavelength diffrac-
tion profile Iλ at wavelength λ can be achieved from a single
shot of a monochromatic diffraction pattern Im at a given
wavelength λm by utilizing the one-to-broadband PSF
mapping scheme (Fig. 1a). Applied with this information,
the input spectrum can be reconstructed from a single-shot
broadband diffraction combined with its corresponding
PSFs. For a given application in diffraction optics (Fig. 1b), a
wave propagated from an object couples the amplitude and
phase of a diffraction field U(x’, y’, 0) through the Fraun-
hofer diffraction. Since the detector only records the
amplitude of diffraction and drops the phase information,
Iλ can be described as43:

Iλðx; y; zÞ ¼ ð c
λz

jFfUðx0; y0; 0Þgju¼ x
λz;v¼ y

λz
Þ2 ð1Þ

where propagation travels a distance of z, λ is the
wavelength of the radiation and F denotes the 2D spatial
Fourier transform of the sample U(x’, y’, 0) at z= 0, with u
and v the spatial frequencies. Equation (1) indicates that
the Fraunhofer diffraction intensity distribution depends
only on the propagation distance z and wavelength λ in an
identical way, showing a wavelength-dependent scaling
factor c/λz, which allows us to map a coherent diffraction
Iλ at an arbitrary wavelength from a single shot of
monochromatic diffraction Im at a given wavelength λm by
PSF propagation between different spectral components

(Fig. 1a). Owing to the microfeature size of the pinhole,
the incident radiation can be considered as a spatial
coherent illumination, which preserves a uniformity of the
spectral intensity. Since the detector array captures a
diffraction pattern with a much longer integration time
than the coherence time of radiation, the broadband
diffraction pattern IB can be treated as the incoherent sum
of all spectrum components, written as:

IB ¼
Z

ωðλÞ½PSFðλÞ�2dλ ð2Þ

where, PSF(λ) represents the sum of PSFs from the
reference diffraction Im, and ω(λ) is the power spectrum
of the diffracted light. Equation (2) indicates that a
broadband diffraction pattern IB captured by a detector
withM×N pixels can be represented as the integral of ω(λ)
[PSF(λ)]2 over the wavelength range, including of M×N
multi-linear simultaneous equations with n variables of
discrete spectral components over full spectrum range
(details in Supplementary S1). Due to the measurement
noise in both IB and Im combined with the approximation
errors in PSF mapping that make the equations ill-posed, it
is generally impossible to solve these equations straight-
forwardly by ordinary noniterative methods. Herein, a
least-square-based multi-variable linear regression (MLR)
scheme applying an adaptive Tikhonov regularization is
employed to reconstruct the power spectrum ω(λ) and
suppress the noises and errors during reconstruction.
Additionally, generalized cross-validation (GCV) statistics
are applied to balance the requirements of robustness and
resolution44 (details in Supplementary S2).
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Fig. 1 The proposed one-to-broadband diffraction-based spectrometer. a Schematic of the operation principle from a monochromatic
diffraction to a broadband diffraction, i.e., one-to-broadband diffraction. A broadband diffraction IB captured in-situ can be represented as a
superposition of wavelength-dependent PSFs from a single-shot monochromatic diffraction Im at wavelength λm times the corresponding power
spectrum components ω λð Þ over full spectrum. The incident spectrum ω λð Þ can be reconstructed using adaptive Tikhonov regularization.
b Geometry of the proposed diffraction-based spectrometer. c A photograph of the ultra-compact computational spectrometer developed based on
the proposed principle, which is integrated into a tiny CMOS panel (10 mm× 10mm in size)

Chen et al. Light: Science & Applications            (2024) 13:9 Page 3 of 10



Noting that the proposed one-to-broadband diffraction-
based computational spectrometer is ultra-simplified and
only relies on a single-shot of broadband diffraction IB of
an arbitrary shaped microstructure as input combined
with a shot of monochromatic diffraction Im pre-captured
in situ without any movement parts or complex calibra-
tions over full spectrum, it is designed with an ultra-
compact form. As shown in Fig. 1c, the experimental
prototype of such spectrometer was formed by coupling a
Φ20 μm pinhole in front of the CMOS array detector. The
system was integrated into a digital camera, with a size
comparable footprint of 10 mm× 10mm in size.

Experimental validation
To illustrate the performance of the proposed spectro-

meter, a group of experimental validations was performed
using a supercontinuum light source (YSL Photonics SC-
Pro-M) and a set of optical filters (Thorlabs F series) to
modulate the shape of incident spectra. The light scat-
tered from a Φ20 μm pinhole was recorded by a digital
camera (MV-CA050) to capture a coherent quasi-
monochromatic diffraction shot Im from a narrowband
spectrum and a broadband diffraction shot IB in situ from
an unknown wide spectrum, respectively (set-up detailed
in Supplementary S3).
To verify the superposition of broadband diffraction via

PSF mapping, we first captured a coherent

monochromatic diffraction shot Im (Fig. 2a) in situ at a
633 nm wavelength to generate a series of PSFs as the
regressors over full band spectrum components and a
shot of broadband diffraction IB (Fig. 2b) from radiation
with 350 nm bandwidth spectrum (Fig. 2c solid curve) as
the spectrum-response variable. Then, 334 discrete
counts of the power spectrum ω(λ) were calculated at
different wavelength positions by solving Eq. (2) with the
MLR scheme (Fig. 2c yellow dots). Then, a linear fitting
with a uniform interval of 5 nm is processed to resample
the calculated dataset (Fig. 2c red dots). Note that the
distribution of the calculated power spectrum presents a
high alignment with the measurement, even notably when
subjected to specified step changes of the power spec-
trum. Thereafter, we recovered a prediction of the
broadband diffraction IB_hat by summing up the calcu-
lated spectral components times the corresponding PSFs
(Fig. 2d). The recovered diffraction pattern matches well
with the measured broadband diffraction, especially in the
low orders of diffraction, while the intensities in high
orders are blurred due to the inherent nature of temporal
decoherence and the read noise of camera (Fig. 2e).
Moreover, we used the residual rate (RR) (IB− IB_hat)/IB
to evaluate the alignment between the captured broad-
band diffraction and its prediction (Fig. 2f). Seeing that
the RR increases along with the order of the diffraction
since only first several orders of broadband diffraction are
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Fig. 2 Superposition of broadband diffraction via PSF mapping. a The coherent monochromatic diffraction Im by a 633 nm band-filter. b The
broadband diffraction IB captured by a wide spectrum illumination. c The measured spectrum (solid curve), the calculated power spectrum
components (yellow dots), and the linear fitting with a uniform interval of 5 nm (red dots). d Recovered diffraction IB_hat from the calculated spectra
power scatters. e Vertical line cuts along the center of the diffraction patterns, and red, black, and blue curves correspond to the patterns in
subfigures a, b, and ds, respectively. f 3D distribution of an RR map between the measured diffraction IB and its prediction IB_hat, and the insert shows
the zoom-in RR map in the region of blue boxes. All diffraction patterns are scaled to 1/2 power
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recorded with high SNR (signal-to-noise ratio), corre-
sponding to RR < 0.1.
Figure 3 presents five arbitrary spectra reconstructed by

the above process (red curves) compared with the corre-
sponding measurements (black curves). It should be
mentioned that a quasi-monochromatic diffraction Im
from a given narrowband filter is pre-captured to generate
the PSFs before each spectrum reconstruction, as men-
tioned above. Results in Fig. 3a were reconstructed from
the corresponding pre-captured pattern Im at the wave-
length of 633 nm with a full width at half maximum
(FWHM) of 3 nm, Fig. 3c, d from that at the wavelength of
532 nm with an FWHM of 3 nm and 1 nm, respectively,
Fig. 3e from that at the wavelength of 750 nm with a
FWHM of 10 nm, and Fig. 3f from that at the wavelength
of 710 nm with a FWHM of 10 nm, respectively. In the
first case, a wide spectrum with 4 narrowband peaks
around the wavelength of 532 nm, 580 nm, 633 nm, and
710 nm was concerned, which was reconstructed from
these calculated power spectrum components (Fig. 3a) via

uniform resampling and convolution procedures. It indi-
cates that the reconstructed spectrum exhibits a peak
location accuracy better than 1 nm over the concerned
200 nm spectral range (Fig. 3b). In practice, the con-
volution with a Hann window is used to process the
reconstructed spectrum, and the Hann kernel shapes the
spectrum curves enormously (Fig. 3c), resulting in notable
mismatch to the measurement in ground truth. It indi-
cates that the convolution kernel should be carefully
selected to improve the precision of spectrum recon-
struction in practical applications. Furthermore, as illu-
strated in Fig. 3d, the proposed spectrometer presents a
high spectral resolution and can easily distinguish a
bimodal spectrum with peaks of 3 nm separation from the
corresponding pre-captured narrowband diffraction with
a FWHM of 1 nm. Moreover, to verify the robustness
against the bandwidth, reconstructions of arbitrarily
shaped broadband spectra with bandwidths of 100 nm
and 230 nm were carried out, and results are respectively
shown in Fig. 3e, f. Note that the reconstructed spectral
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peaks agree well with the measurements in ground truth
by a commercial grating-based spectrometer (Horiba
iHR550), and the spectral curves are also well-traced with
relatively low error bars. Tiny mismatches occur occa-
sionally on steep turning points of the spectra when
subjected to ultra-broadband spectrum, as indicated with
the blue dashed box in Fig. 3f.

Spectrum reconstruction quality
The proposed one-to-broadband diffraction-based

computational spectrometer is based on PSF mapping.
Therefore, ideally, the spectral resolution is limited by the
spectral sampling interval of the PSF mapping for a
constant diffraction distance z:

δλ ¼ λm
2

ðλ1 þ λnÞnpixel �
λm

2npixel
ð3Þ

where npixel is the sum of pixels within the active sensor
array size in the detector, λ1 and λn denote the boundaries
of the broadband spectrum. Equation (3) indicates that
the spectral resolution is reciprocally related to the
number of sampling pixels in the active detector sensor
array, primarily determined by the detector’s dynamic
range. Since higher diffraction orders typically exhibit
lower intensity, resulting in poor SNR. To address this, we
intentionally overexpose and subsequently filter out the
zero-order diffraction to fully utilize the sensor’s dynamic
range. Additionally, we eliminate background noise in the
detector to enhance the diffraction SNR. In our
diffraction-based spectrometer, utilizing larger active
sensor arrays enhances spectrum measurement precision
but also comes with a significant increase in computa-
tional expense. Consequently, we carefully bin the pixels
to strike a balance between the quality of spectrum
measurement and computational expenses. For a more
detailed analysis, please refer to Supplementary S4.

In practical applications, the reconstructed spectrum is
usually more sensitive to the diffraction efficiency of the
disperser device. We further conducted two groups of
validations by applying a Φ20 μm pinhole and a Φ100 μm
Siemens star as the diffracted disperser, respectively.
Noting that the diffractions from the Siemens star (Fig. 4b)
retain more abundant information in frequency with high
SNR than these from the pinhole (Fig. 4a), which can
improve the generalization ability and the accuracy of the
proposed diffraction-based computational spectrometer.
here, we introduce the spectral correlation function of the
PSF to determine the spectral resolution, as given by:

CðδλÞ ¼ covðPSFðλmÞ; PSFðλm þ δλÞÞ
σðPSFðλmÞÞσðPSFðλm þ δλÞÞ ð4Þ

Figure 4c plots the spectral correlation functions CðδλÞ
of the PSFs for different pixel sizes and diffraction devices
as a function of δλ in wavelength space. Seeing that the
spectral correlation functions of the Siemens star drop
more steeply than those of the pinhole, the decrease in
pixel size will also be helpful in reducing the spectral
correlation function. Since the PSFs are performed as the
regressors over the full spectral range in the proposed
MLR scheme, that’s to say, the lower the correlation of the
PSFs, the more spectrum power components can be
recovered. Experimental results shown in Fig. 4d, e pro-
vide evidence to support this point. Figure 4d compara-
tively shows the counts of the calculated spectrum
components over 10 trails of calculations from the Sie-
mens star and the pinhole, respectively. it can be observed
that 180 discrete counts are calculated from the Siemens
star, whereas only about 120 counts from the pinhole,
which eventually results in a much more precise recon-
structed spectrum for the Siemens star than that for the
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pinhole, as shown in Fig. 4e. The refined design of the
diffraction disperser boosts diffraction efficiency, conse-
quently enhancing the quality of spectrum reconstruction.
Meanwhile, the spectral response bandwidth of the
spectrometer is predominantly limited by the detector
QE.
Additionally, the resolution of peak separation of the

bimodal spectrum may also degenerate from the deco-
herence of the pre-captured diffraction, which is used to
generate the PSFs over the full spectrum range. The better
the coherency of the quasi-monochromatic diffraction,
the higher the resolution of spectral peak separation
(details in Supplementary S5).

Discussion
A fancy application of broadband lensless imaging was

further implemented to demonstrate the prospect of the
proposed novel spectrometer in practical applications.
Figure 5 shows the layout of a broadband CDI set-up
(details in Supplementary S6) and the reconstructions by
utilizing the developed approach compared with results
based on conventional phase retrieval techniques. It
should be mentioned that the strict requirement of nar-
rowband radiation with high coherency in current CDI
architectures poses a significant obstacle to achieving
efficient photon utilization across the full spectrum45.

Numerous studies have been conducted to overcome this
trade-off for broadband CDI in recent years39,40,46–50, but
encounter several formidable challenges, including the
stringent constraints for non-dispersive specimens over
full spectrum, the need for accurate spectrum measure-
ment as input, and the requirement for the solutions to
converge within the band limit to be valid. These issues
severely hamper the advancement in CDI for the ultra-
wide spectrum. At the same time, the proposed approach
can break through these limitations and enable high-
quality CDI even using broadband (i.e., incoherent) illu-
mination without the requirement of any prior spectra
(e.g., broadband illumination, the spectral transfer func-
tion of the specimen, or detector QE).
The aftermost transmission spectrum of the system at

the detector plane (Fig. 5d) can be successfully resolved
from the pre-captured coherent quasi-monochromatic
diffraction pattern (Fig. 5b) and the broadband diffrac-
tion pattern in-situ with a bandwidth of 20%, spanning
from 480 nm to 600 nm (Fig. 5c) by the proposed
method. Then, as demonstrated in Fig. 5e, the mono-
chromatized diffraction pattern can be retrieved from
the corresponding broadband diffraction utilizing a
numerical monochromatization method39 (details in
Supplementary S7). Noting that the broadband pattern
displayed a significant reduction in coherence compared
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Fig. 5 A typical application of broadband CDI using the proposed diffraction-based computational spectrometer. a The schematic layout of
the broadband CDI set-up. b The pre-captured coherent pattern at 532 nm with 5 ms exposure time. c The corresponding broadband pattern
captured in situ with up to 20% bandwidth (spectrum ranging from 480 nm to 600 nm) with only 0.05 ms exposure time. d The aftermost calculated
spectrum components of the system at the detector plane from the diffraction datasets given in (b, c). e The monochromatized pattern recovered
from the broadband data in (c) applying the calculated spectrum components in (d). f CDI results from the broadband data in (c). g CDI results from
the monochromatized data in (e). All diffraction patterns are log-scaled
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to the coherent pattern. This decrease in coherence
ultimately resulted in a convergence failure during the
CDI reconstruction process (Fig. 5f). However, the
monochromatization by the proposed method effectively
addresses this decoherence issue arising from the
broadband radiation. Furthermore, a comparison of CDI
results was eventually performed by 500 iterations of
RAAR51 from the broadband pattern and mono-
chromatized pattern, respectively. Compared with the
CDI result from the broadband pattern (Fig. 5f), the
monochromatized CDI (Fig. 5g) showcases a remarkable
improvement in the quality of the reconstruction with
high fidelity. The good spectral agreement and high
quality of the broadband CDI results demonstrate the
superiority of the proposed approach, implying huge
potential applications not only in broadband spectrum
metrology with high resolution but also in fields of rising
computational imaging techniques.
In summary, we have proposed a novel scheme of

computational spectrometer based on the one-to-
broadband diffraction applying a simplified and arbi-
trarily shaped diffraction microstructure as the dis-
perser, which makes the device ultra-compact and low-
cost and paves the way towards single-shot spectrum
metrology. Different from other computational spec-
trometer designs, the proposed spectrometer is based on
the PSF mapping from a single shot of pre-captured
coherent monochromatic diffraction to generate a full
spectral response function, and it does not require pre-
encoding design, complex fabrication with high preci-
sion, or full spectral response function calibration.
Experiments conducted on a proof-of-concept have
verified the methodology, and results indicate that the
proposed computational spectrometer provides a spec-
tral resolution better than 3 nm and the accuracy of the
spectral peak is better than 1 nm over a 200 nm band-
width. Benefiting from its generality of principle, simple
architecture, and compact size, the proposed approach
has great potential in a huge range of applications in
broadband spectrum metrology and computational
imaging with miniaturized, cost-effective, and lab-on-
chip integration. A broadband CDI prototype is suc-
cessfully implemented based on the proposed approach
to practically demonstrate a fancy application in
broadband lensless imaging, which successfully tackles
all the challenges of the current state-of-the-art broad-
band phase retrieval techniques (e.g., the ultra-
broadband illumination with unknown spectrum, free
of spectral correction of the specimen or detector QE).
The proposed method can be easily extended and
applied to optical techniques and systems related to
multi-state coherent diffraction superposition, such as
phase-retrieval-based computational imaging systems
with broadband or multi-wavelength illumination.

Materials and methods
PSFs calculation
The bandwidth of the incident spectrum is uniformly

divided into n slices λ1, λ2,…, λn, the PSF at an arbitrary
wavelength λi distributes as a scale from a monochromatic
diffraction pattern Im at a wavelength λm:

PSFðλi; xi; yiÞ ¼
c
λiz

λi=λm 0 Mðλm � λiÞ=λm
0 λi=λm Nðλm � λiÞ=λm

� � xm
ym
1

2
64

3
75

ð5Þ
where xi, yi denotes the coordinates of the diffraction
pattern at a wavelength λi, andM, N is the total number of
pixels in the captured diffraction pattern along the X, Y
direction, respectively. Seeing that the PSF(λi) is an affine
transformation from a reference diffraction field

ffiffiffiffiffi
Im

p
where λi/λm is the scaling factor to describe the PSF
mapping and (M(λm− λi)/λm, N(λm− λi)/λm) is the
translation factor to center the scaled diffraction orders.
It is worth noting that since each pixel’s readout value
represents the sum of diffraction intensities across all
spectral channels, the PSF mapping matrix should be
resampled by performing interpolation such that the
spatial resolution of PSF(λi) matches the sensor pixel size.
Additionally, λm would be carefully selected around the
mass of the center of the broadband spectrum to reduce
the PSF mapping error from interpolation (details in
Supplementary S8).

Spectrum reconstruction
A broadband diffraction IB is the integral of ω(λ)

[PSF(λi)]
2 over the wavelength range, which can be per-

formed as an MLR model by summing n discrete slices in
spectra range for approximation, rewritten to a matrix
form in simplicity:

IB ¼
Xn
i¼1

ωðλiÞ½PSFðλiÞ�2 )Simplicity
Aω ¼ b ð6Þ

Note that the formula of Eq. (6) is a system of M×N
multi-linear simultaneous equations with n-dimen-
sional parameter vector, where A is a given M×N × n
matrix with elements of each column of a flattened
PSF(λi) matrix in 1D array corresponding to the ith slice
of spectrum and b is a known vector of a recorded
broadband diffraction flattened in 1D array, ω is the
vector of unknown spectrum coefficients for the func-
tion. Practically, it is usually impossible to solve the
MLR by ordinary noniterative methods due to its ill-
posed nature. To tackle such instabilities, a method of
residual norm minimization is applied with a weighting
regularization factor, as known as Tikhonov regular-
ization, to reconstruct the power spectrum ω and
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suppress the noise signals during reconstruction. The
least square of the sum of squared residuals with a
regularization item is minimized as

ω̂ ¼ argmin
ω

kAω� bk22 þ Γ2kωk22; Γ > 0 ð7Þ

where Г is the regularization coefficient, ‖.‖2 is the l2
norm. Note that the efficiency of these estimates depends
on the appropriate choice of the regularization coefficient
Г, which should be carefully selected to balance the results
of robustness and resolution. Here, we use the GCV
statistic to select the regularization coefficient adap-
tively52. As a result, we can have the power spectrum
estimates ω̂ from Tikhonov regularization Eq. (7).
Since the total components in a measurement of power

spectrum ω̂ distributes sparsely, corresponding to its
spectral sampling interval δλ in Eq. (3), a linear fitting
with a uniform interval is processed to resample the cal-
culated dataset. Finally, the finer reconstruction of an
incident spectrum is optimized by a convolution operator
with a Hann window to suppress high-frequency inter-
ference. The workflow of the proposed computational
diffraction-based microspectrometer is detailed in Sup-
plementary S2.
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S1 Broadband Fraunhofer diffraction approximation from PSF superposition 

Consider a monochromatic plane wave with a wavelength 𝜆 propagated from a hollow 
microstructure (constant transmission over full spectrum) couples the amplitude and 
phase of a diffraction field 𝜓𝜆(𝑥, 𝑦, 𝑧) by traveling a distance of 𝑧, in the paraxial 
approximation, given by the Fraunhofer diffraction formula1: 

 ( )
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2 22 /
/ z
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where ℱ  denotes the 2D spatial Fourier transform of the exit wave function 
𝑈(𝑥′, 𝑦′, 0) at z = 0, with 𝑢  and 𝑣  the spatial frequencies. In case of broadband 
radiation, the broadband diffracted field Φ can be written as: 

 ( )( ) ( )x, y,z   = ψ  (S2) 

where ω(λ) is the power spectrum density of the incident radiation. The broadband 

diffraction field in spatial domain can be obtained by an inverse Fourier transform: 
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Since only the amplitude of diffraction is recorded by the detector, while the phase 

information is dropped, the detector integrates over time to produce the broadband 

diffraction pattern 𝐼𝐵: 

 2 21( ) ( )
2BI t dt d 


=  =    (S4) 

with using Parseval’s theorem. By Eq. (S2) substituted into Eq. (S4), we have 𝐼𝐵: 
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Known that a recorded monochromatic diffraction pattern 𝐼𝜆 can be written as: 
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Seeing that Fraunhofer diffraction intensity distribution depends only on the 

propagation distance 𝑧 and wavelength 𝜆 in an identical way, showing a wavelength-

dependent factor 𝑐/𝜆𝑧, which allows us to map a coherent diffraction 𝐼𝜆 at an arbitrary 

wavelength from a single coherent diffraction shot 𝐼𝑚 at a given wavelength 𝜆𝑚 by 

PSF propagation between different spectral components. Introducing the scaling factor 

𝜆𝑖 𝜆𝑚⁄ , the PSF mapping can be described as: 
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where 𝑥𝑖 , 𝑦𝑖 denotes the coordinates of the diffraction field |𝜓𝑖| at a wavelength 𝜆𝑖, 

and 𝑀, 𝑁 is the total number of pixels in the captured diffraction pattern. Seeing that 

the 𝑃𝑆𝐹(𝜆𝑖) is an affine transformation from a reference diffraction filed √𝐼𝑚 where 

𝜆𝑖 𝜆𝑚⁄   is the scaling factor to describe the PSF mapping and ( 𝑀(𝜆𝑚 − 𝜆𝑖) 𝜆𝑚⁄ , 
𝑁(𝜆𝑚 − 𝜆𝑖) 𝜆𝑚⁄ ) is the translation factor to center the scaled diffraction orders. 

Thus, combined with Eq. (S5~S7), the broadband diffraction pattern 𝐼𝐵  can be 

approximately rewritten as an integration of PSFs from the reference diffraction filed 

√𝐼𝑚, weighted by the power spectrum ω(𝜆) over full spectral bandwidth of radiation: 

  
2( ) ( )BI PSF d   =  . (S8) 

 
  



S2 Spectrum measurement workflow from a single-shot broadband diffraction 

Input:  

 𝐼𝑚 : Pre-captured quasi-monochromatic diffraction pattern at a wavelength 𝜆𝑚 
(Fig. S1a). 

 QE(𝜆): Detector’s absolute QE (Fig. S1d). 

Step 1: Single-shot broadband diffraction measurement 

Capture a single-shot broadband diffraction pattern 𝐼𝐵 at an unknown wide spectrum, 

as shown in Fig. S1b. Noting that the zero-order diffractions are overexposed and the 

background noise of detector is removed to better utilize the detector sensor's dynamic 

range2, the central fringe saturation is consequently filtered from the detector before 

data processing, as demonstrated in Fig. S1 a, b.  
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Figure S1 Inputs for the spectrum measurement. a, the pre-captured quasi-monochromatic diffraction 

pattern 𝐼𝑚  at 532 nm with 3 nm FWHM. b, the Measured broadband diffraction from unknown 

spectrum radiation. c plots vertical line cuts along the center of the diffraction patterns in a and b, 

respectively. d, the absolute QE of the detector with spectral response >0.2 ranging from 400nm to 800nm  

Step 2: Calculate PSFs  

Give an initial prediction of the spectrum range, where the bandwidth is usually large 

than the ground truth. Then, the spectrum is divided uniformly into n slices 𝜆1, 𝜆2, … 𝜆𝑛 
by the interval δ𝜆 uniformly. Practically, δ𝜆 is limited by the detector pixel size 𝑑𝑝, 

the recorded diffraction length 𝐷 with high SNR, and the referenced wavelength 𝜆𝑚, 
given by: 



 m pd
D


 =  (S9) 

Then, a series of PSFs is calculated from the pre-captured 𝐼𝑚 by Eq. (S7). Figure S2 

plots the distribution of n slices of calculated PSFs in 1D case over ranges of spectrum 

components. It is worth noting that the PSF mapping matrix should be resampled by 

performing interpolation such that the spatial resolution of 𝑃𝑆𝐹(𝜆𝑖)  matches the 

sensor pixel size. In this work, a linear interpolation3 is performed to resample the PSFs 

with the interval steps the same as the pixel size of the detector. 
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Figure S2 Distribution of PSFs in 1D-case by scanning the wavelength over ranges of spectrum 
components. 

Step 3 Solving spectrum via MLR scheme 

Due to the measurement noise in both 𝐼𝐵 and 𝐼𝑚 combined with the approximation 

errors in PSF mapping which make the Eq. (S8) ill-posed, it is generally impossible to 

solve these equations straightforwardly by ordinary noniterative methods. Note that the 

formula of Eq. (S8) is a system of M × N multi-linear simultaneous equations with n-

dimensional parameter vector. We rewrite Eq. (S8) to a matrix form in simplicity as: 

 =A b  (S10) 
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Note that Eq. (S10) is a form of MLR scheme, which is often fitted by minimizing a 

penalized version of the least squares cost function, as known as Tikhonov 
regularization4, to reconstruct the power spectrum 𝛚 and suppress the noise signals 
during reconstruction, given by 

 
2 22
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ˆ argmin , 0
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where 𝛤 is the regularization coefficient, ‖. ‖2 is the 𝑙2 norm. Since the efficiency 

of these estimates depends on an appropriate choice of the regularization coefficient Γ, 

which should be carefully selected to balance the results of robustness and resolution. 

In this work, we employ a GCV (Generalized Cross-Validation) statistic to make the 

balanced choice of 𝛤 adaptively5: 
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where 𝐼  is the identity matrix and the operator 𝑇𝑟  sums elements on the main 

diagonal of a matrix. As a result, we can have the power spectrum estimates 𝝎̂ from 
solving Eq. (S11)  

 ( )
1

ˆ T T T−

=  + A A A b  (S13) 

 

Figure S3 a, the distribution of PSFs in 1D-case by scanning the wavelength over ranges of spectrum 
components. b, the resampled results from a with a uniform interval Δ𝜆 

Note that the final power spectrum is obtained by distorting the detector’s QE ω(𝜆) =

𝝎̂/ 𝑄𝐸(𝜆). Fig. S3a plots the calculated discrete power spectrum solutions. Since these 

scatters distribute irregularly along the wavelength axis, we resample the results with a 

uniform interval Δ𝜆, which is several times of initial interval δλ in Eq. (S9), as seen 

in Fig. S3b. 

Step 4 Optimization via convolution process 

a b 



We perform a convolution operator to the reconstructed data from step 3 with a Hann 

window to suppress high-frequency interference and reduce the effects of spectral 

leakage. 

 ( ) ( ) ( )ˆS h   =   (S14) 

where * denotes convolution operator, ℎ(𝜆) is a Hann kernel with a size of 𝑁 as: 
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Figure S4 a, optimized result (red) which is convolved from the calculated resampled dataset (blue dots) 
with a Hann widow. b, a comparison of optimized results with different sizes of Hann kernels in the 
convolution process. The shape of Hann window and the corresponding Fourier transform is plotted in c 
and d, respectively. 

Fig. S4a plots the results from a Hann windowing procedure. Seeing that the power 
spectrum profiles are accurately reconstructed and match well with the measurement. 
The high-frequency fluctuation is perfectly suppressed compared with the resampling 
data. However, it should be noticed that the windowing operator introduces somehow 
a decrease in resolution, which is very sensitive to the kernel size, where resolution of 
the reconstructions decreases when the kernel size increases (Fig. S4b). Thus, in 
practical applications, the kernel size should be carefully selected to balance the results 
of robustness and resolution. 

a b 

Hann Window 
Fourier  

Transform 

c d 



 
Figure S5 a, the calculated discrete spectrum components by the proposed diffraction-based 
computational spectrometer. b, the reconstructed spectrum mismatches with the measurement at the 
truncation points (blue boxes). c, the effect of mismatch is reduced by applying an intensive interpolation 
operator at the truncation points (pink boxes). 

Additionally, the windowing operator may lead to matching errors in cases of transient 

signal, step signal, impulse response, or pulse signal applications. Fig. 5a gives an 

example of a truncated broadband spectrum reconstruction, seeing that there are 

mismatches at the truncation points (blue boxes). To tackle such mismatching, an 

intensive interpolation operator is applied to the truncation points to reduce the effects 

of match errors from convolution (pink boxes in Fig. S5b). 
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Figure S6 Spectrum measurement workflow from a single-shot broadband diffraction. 

  



S3 Experimental set-up of the diffraction-based computational spectrometer 

 

Figure S7 Experimental set up for the spectra measurements. A supercontinuum (YSL Photonics SC-

Pro-M) is used to generate an ultra-broadband spectrum from 450nm to 1100nm. A set of optical filters 
(Thorlabs F series) is applied to the optical path to modulate the shape of incident spectra to different 

spectra profiles s as mentioned in the main test. The in-lab spectrometer is very compact in size to a ∅1" 

lens. All the spectra are pre-measured by a Horiba iHR 550 spectrometer as the measurements in ground 

truth. 
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S4 Nonlinearities of detector in the diffraction-based computational spectrometer 

The proposed computational spectrometer relies on the coherent mode decomposition 

of broadband incoherent diffraction intensity. Since the diffraction intensity distribution 

exhibit an inherent characteristics of exceptionally bright central region alongside 

significantly dark high-order areas. This imposes critical demands on the detector for 

achieving high SNR during diffraction signal readout. It primarily involves three key 

aspects:  

a) The dynamic range and spectral quantum efficiency of the detector sensor. 

b) The suppression of detector noise in diffraction recording process. 

c) Sensor size truncation on the active detector pixel array. 

Dynamic range. In the context of Fraunhofer diffraction, most of the photon energy is 

concentrated within the central diffraction orders, while the higher-order diffracted 

photons are notably weaker. However, most of the redundant spectral dispersion 

information is mostly concentrated in the higher-order diffraction where the diffracted 

photons are dim. Hence, the commonly used detectors with 8-bit, 12-bit, or 16-bit 

analog-to-digital converter (ADC) dynamic ranges all prove inadequate in capturing 

the high-order diffraction signals without overexposure, as the simulations 

demonstrated in Fig. S8 a1~c1. To better use the detector sensor’s dynamic range, we 

employ a specialized filter to eliminate central fringe saturations on the detector. This 

leads to a significant enhanced SNR for capturing high-order diffractions, as a 

comparison shown in Fig. S8 a2~c2. 

 
Figure S8 Simulation of the detector sensor dynamic range for diffraction recording. Rows a ~ c 

shows the captured monochromatic diffraction (left) and broadband diffraction (right) from the detector 

with varying dynamic ranges of 8 bits, 12 bits, and 16 bits, respectively. Column a1~c1 displays the 

under sampled diffraction data with no central stop, as a comparison in column a2~c2, a specialized filter 

is employed to eliminate the first several orders of overexposed diffractions. 



 

Figure S9 Simulation for varying levels of diffraction noises in spectrum measurement. a. varying 
levels of diffraction noises ranging from 50dB to 10dB (log scaled). Top row shows the corresponding 
broadband diffractions. Bottom row shows the monochromatic diffractions. Rows b~d plot the typical 
recovered spectra form the varying levels of noised diffractions in a, respectively. Row b shows the 
recovered spectra from the varying levels of noise in the pre-captured monochromatic diffraction and 
broadband diffraction ranging from 50dB to 10dB, respectively. Row c shows the recovered spectra from 
the varying levels of noise in the broadband diffraction ranging from 50dB to 10dB, respectively, while 
the pre-captured monochromatic diffraction is constant with 50dB noise. Row d shows the recovered 
spectra from the varying levels of noise in the pre-captured monochromatic diffraction ranging from 
50dB to 10dB, respectively, while the broadband diffraction is constant with 50dB noise.  



Detector noise. The presence of detector noise decreases the SNR in diffraction signal 

recording and therefore weakens the spectrum measurement accuracy. To this end, we 

utilized a widely-used noise model in HDR photography to analyze the primary noise 

sources in the acquisition of diffraction images6,7. The noise model includes several 

critical factors of camera noise, such as input scene radiant flux Ф, dark current 𝐷, 

sensor QE 𝛼 , exposure time  𝑡 , readout analog voltage (with saturation), analog 

amplifier 𝑔, and ADC, which can be simply modeled as a mixture of Gaussian noise 

and Poisson noise.  

 2 2 2( ) ( ,( 0)~ )read ADCI Poisson t g Poisson t g D Normal g     +   +  +
 (S16) 

Thus, the SNR in the detector can be qualified as the following formula: 

 2
SNR t

t t g D R




 
=

  +   +
 (S17) 

where R denotes the readout noise, which follows a Gaussian distribution. It's worth 

noting that the readout photon signal is constrained by the ADC dynamic range of the 

detector sensor.  

Herein, we simulated detector noise in the proposed spectrometer by incorporating a 

combination of Gaussian and Poisson noise to the recording diffractions, with SNRs 

ranging from 50dB to 10dB, respectively, as demonstrated in Fig. S9 a. And the 

corresponding recovered spectra is plotted in Fig. S9 row b. Seeing that the proposed 

diffraction-based computational spectrometer reveals high robustness to noise. We 

observe that the reconstructed spectrum remains consistent with the ground truth, even 

under conditions of heavy noise, only tiny mismatches occur on steep turning points of 

the spectra, as indicated with the red dashed box in Fig. S9 row b.  

 

Figure S10 Number of the calculated spectra discrete and the prediction MSE corresponding to the 
measurements in broadband diffraction with varying noises in a and monochromatic diffraction with 
varying noises in b, respectively. 

Additionally, we carried out a more extensive analysis to evaluate the noise robustness 

in the context of recording broadband diffractions and monochromatic diffractions. Fig. 

S9 rows c, d presents the comparison of recovered spectra under different levels of 

monochromatic and broadband diffraction noises. Meanwhile, we have monitored the 



number of solved discrete power spectrum counts and the MSE in prediction during the 

spectrum calculation, as shown in Fig. S10. Seeing that the number of solved power 

spectrum counts increases with the noise power in broadband diffraction, whereas the 

MSE decreases simultaneously. In comparison, the computational spectrometer shows 

consistent robustness against varying noise power to the pre-captured monochromatic 

diffraction image. It is evident that the quality of spectrum measurement is more 

susceptible to noise in the presence of broadband diffraction images. This sensitivity 

arises from the spectrum's expansion, which results in diffraction aliasing, significantly 

reducing the coherence of the broadband diffraction signal and making it more 

vulnerable to noise. To this end, we practically employ a commonly used background 

noise minimization approach to suppress the detector noise in the diffraction image 

recording process8.  

 

Figure S11 Truncation effect of the diffraction pattern by the finite detector array size in spectrum 
measurement. a~d showcase varying array size truncations by the finite detector in spectrum 
measurement. e plots the relationship of spectral measurement resolution with the number of sampling 
pixels. f shows the total number of the calculated spectra discrete and the prediction MSE corresponding 
to the measurements in broadband diffraction with varying sensor size truncations. 

Sensor size truncation. As described in Eq. (3) in the main text, the spectral resolution 

of the proposed spectrometer ideally shows a reciprocal relationship with the number 

of sampling pixels in the active detector sensor array, primarily determined by the 

detector's dynamic range. In our pursuit of understanding the truncation effect caused 

by the finite detector array size in our spectrometer, a series of simulated analyses has 

been meticulously executed. As clearly depicted in Figures S11 a-d, a reduction in the 

effective detection target area results in fewer sampling pixels, which, in turn, leads to 

a marked decline in spectral measurement precision and a notable degradation in 

spectral peak resolution. However, the expansion of sampling pixel count results in an 



exponential increase in computational time for spectrum calculations. This is primarily 

due to a significant rise in both the number of MLE sets and the elements of discrete 

spectra vectors in the MLR solving model. Herein, we quantified the truncation effect 

of the diffraction pattern by the finite detector array size in spectrum measurement, as 

plotted in Fig. S11 e. It's evident that when the number of truncation pixels exceeds 

1000, the enhancement in spectral resolution becomes less pronounced, while the 

computational cost significantly increases. To strike the balance between the spectrum 

measurement resolution and the computational cost, here we select 1024 pixels as the 

optimal sensor array size, providing a 1nm resolution, as demonstrated in Fig. S11 f. 

To sum up, the camera’s nonlinearities have several key effects on the quality of 

diffraction recording, thereby impacting the performance of recovered spectrum, as 

discussed in detail in the following. 

1) Quantum efficiency (QE) nonlinearity 

The QE refers to the detector’s ability to efficiently convert incoming photons of 

broadband light into measurable electrical signals. In the proposed spectrometer, the 

QE of the detector is a critical factor in determining the spectrometer’s overall 

performance. 

 Firstly, the spectral response bandwidth of the spectrometer is predominantly 
limited by the QE of the detector. 

 Secondly, the QE nonlinearity introduces inaccuracies in the power intensity of 
spectral measurements. These inaccuracies can be corrected by calibrating the 
detector's QE. 

 Thirdly, a high-QE detector has a broader dynamic range, allows to capture higher-
SNR diffraction signals, and thus can improve the quality of the spectra 
measurements. 

2) ADC nonlinearity 

The ADC nonlinearity in detector refers to deviations from a perfect linear response in 

the process of converting analog signals into digital values. This nonlinearity introduces 

errors in the digital representation of the analog signal and affects accuracy of the 

diffraction intensity. The ADC nonlinearity also introduces inaccuracies in the 

measurement of spectral power intensity. Moreover, different from the QE nonlinearity, 

these inaccuracies resulted from the ADC nonlinearity cannot be corrected. Good news 

is that the performance of the CCD/CMOS sensor device has seen substantial 

improvement, with the ADC nonlinearity typically being reduced to less than 5% across 

the full QE bandwidth. 

3) Saturation and clipping 

The saturation and shadow clipping effects lead to a decrease in the SNR of the sampled 

diffraction signals. This is because most of the photon energy is concentrated within the 

central diffraction orders, making them prone to saturation, while the higher-order 



diffracted photons are much weaker and more susceptible to noise-induced blurring. As 

a result, these effects diminish the quality of the recovered spectra. In this work, we use 

a filter to remove the central fringe saturations to better utilize the ADC dynamic range 

of the detector.  

 
  



S5 Spectral resolution with temporal decoherence of the reference diffraction 𝑰𝒎 

As discussed in the main text, the resolution of peak separation of the bimodal spectrum 

degenerates from the decoherence of the quasi-monochromatic diffraction which is 

used to generate the PSFs over full spectrum range. This is caused by the wavelength-

multiplexing of diffraction distributions of different spectral components, as described 

in Eq. S6. The better monochromaticity of quasi-monochromatic diffraction, the lower 

level of the multiplexing effect, which makes the higher resolution of spectral peak 

separation.  

 

Figure S12 Simulated resolution performance with increased temporal decoherence of pre-

captured diffraction. a，the simulated FWHMs of radiation for diffractions with different levels 
of decoherence. b-d, reconstructions using different pre-captured diffractions with 0.1nm, 1nm, 
3nm, and 7nm FWHM, respectively. f, total number of the calculated spectrum discrete and the 
prediction MSE corresponding to the measurements in b-d, respectively.  

To illustrate the temporal decoherence of pre-captured 𝐼𝑚  in resolution, we have 

carried out simulations for the measurement of a bimodal spectrum at a 3nm separation 

from the broadband diffraction corresponding to the measured spectrum, with a set of 

pre-captured diffractions illuminated from varying levels of FWHMs (0.1nm, 1nm, 

3nm, and 7nm) as the input data, respectively, as shown in Fig. S12a. The 

reconstructions have been simulated via the proposed spectrum measurement workflow 

as detailed in S2. For the reference diffraction illuminated with a FWHM of 0.1nm, the 

peaks of the measured spectrum can be clearly distinguished and with high alignment 

with the ground truth (Fig. S12 b). With the FWHM increasing, the reconstructed 

resolution begins to break down (Fig. S12 c-e). Seeing that the peaks of the bimodal 

spectrum of 3nm are separated successfully for the reference diffraction illuminated 

with FWHMs less than 1nm, which match well with the experimental results (as 

demonstrated in the Figure 3c, and 3d in the main text). Meanwhile, we have monitored 

a b c 

d e f 



the number of solved discrete power spectrum counts and the MSE in prediction by 

solving Eq. S13, shown in Fig. S12 e. Seeing that the number of solved power spectrum 

counts decreases with the increase of FWHM, whereas the MSE increases 

simultaneously. 
  



S6 Experimental set-up of the broadband CDI 

 

Figure S13 Schematic of broadband CDI setup. we use a 600 nm short pass filter to select a broadband 

spectrum (YSL Photonics SC-5) from the supercontinuum source. A 90° Flip narrowband filter at 532nm 

(Thorlabs FL532-3) is settled on the optical path to generate a quasi-monochromatic radiation. A pinhole 

with 100μm in diameter (Thorlabs P100K) is placed in front of the Siemens star resolution target 

(Thorlabs R1L1S1N) to filter the radiation to a plane wave with 100μm in diameter. A CMOS detector 

(QHY268M) is placed behind the sample at 30mm to record the diffractions. The sample is mounted on 

a X-Y stage (Thorlabs MTS25/M-Z8).  

 

  



S7 Monochromatization from a broadband diffraction 

This section describes how we monochromatize the broadband diffraction from an 

unknown spectrum intensity. As we have mentioned in S1, the wavelength-dependent 

scaling and weighting spectrum of copies of the pre-captured coherent diffraction 

pattern is perfectly suited for a matrix-vector product. As referred to Julius’s previous 

work on numerical monochromatization of the broadband diffraction pattern, a 

monochromatized diffraction pattern can be retrieved based on a regularized inversion 

of a matrix that depends only on the spectrum of the diffracted radiation Defining the 

monochromatic pattern as a vector 𝐦, the broadband diffraction pattern as vector 𝐛 

and the scaling matrix as 𝐂, Eq. S8 can be rewritten for simplicity as: 

 =b Cm  (S16) 

where 𝐂 is regarded as containing the copies of PSF in Eq. S7 times a corresponding 

power spectrum profile. Eq. S16 maps a point in 𝐦 to the profiles of power spectrum 

in 𝐛. For a 2D diffraction pattern, C is a 4D tensor in shape. Note that matrix 𝐂 is 

fully determined by only the spectrum of illumination system and the size of detector. 

in 1D case of 𝐂 can be calculated as follows: 
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Since the matrix 𝐂 is calculated from the measured spectrum ω(𝜆) combined with 𝐛 

and 𝐦. The monochromatization of a broadband diffraction pattern can be reduced to 

the inversion of matrix 𝐂 in Eq. S16. As the inversion is extremely sensitive to noise, 

which is generally unsolvable by ordinary noniterative methods. To mitigate this 

problem, a regularization method of BiCGStab scheme is performed to reconstruct the 

monochromatized diffraction9,10. BICGStab is performed with two additional 

constraints in this work: non-negativity of 𝒎𝑘 (diffracted photon counts should not be 

negative) and a support constraint on the initial guess of 𝒎0  set to the measured 

broadband pattern b. These constraints help to prevent overfitting and further improve 

the regularizing power of the method.  

Besides, there is a spectral deviation between the power spectrum of the original source 

radiation S(𝜆) and the aftermost power spectrum of the diffraction pattern ω(𝜆) on 

the detector, since the transmittance of the sample T(𝜆)  or the QE of the detector 

QE(𝜆) is not constant over the source bandwidth, as 



 ( ) ( ) ( ) ( )S T QE    =  (S18) 

It should be mentioned that only if all these power spectrum profiles are measured 

precisely, Eq. S18 can be executed with satisfactory. Yet, in most practical applications, 

the aftermost power spectrum ω(𝜆) is generally very difficult to be measured, which 

brings the limitation on monochromatization of ultra-broadband diffraction 

applications. Our proposed spectrometer can be successfully used to tackle such 

instabilities, from which the aftermost power spectrum ω(𝜆) can be straightforwardly 

reconstructed, as detailed in S2. By performing the numerical BiCGStab algorithm to 

monochromatize the broadband diffraction pattern applying with the proposed 

spectrum reconstruction method, a monochromatized diffraction pattern can be 

successfully retrieved without any requirement of prior spectra of broadband 

illumination, detector QE or sample’s transmittance.  

 
  



S8 Spectral resolution with the wavelength 𝝀𝒎  of the pre-captured coherent 

diffraction 𝑰𝒎 

a

b c d

e f g

h i j

 

Figure S14 Simulated resolution performance with the wavelength 𝝀𝒎 of the reference diffraction 

𝑰𝒎 a, the simulated pre-captured diffraction pattern with different radiation of spectrum from 300nm to 
900nm by 100nm interval, respectively. b, the broadband spectrum in simulation and the quasi-

monochromatic spectrums corresponding to Fig. S14 a, orange dotted line plots the mass of the center 
of the broadband spectrum. c-i, reconstructions using different pre-captured diffractions in Fig. S14 a at 
wavelengths in Fig. S14 b, respectively. j, total number of the calculated spectrum discrete and the 
prediction MSE corresponding to the measurements in Fig. S14 c - Fig. S14 i, respectively. 

Relating to our computational strategy, as detailed in section S2, to reconstruct the full 

spectrum from the corresponding single-shot broadband diffraction 𝐼𝐵, we used a PSF 

mapping scheme to generate 𝑛 slices of wavelength-dependent quasi-monochromatic 

diffraction components by a uniform spectrum interval δλ over full spectrum range 

from only one shot of pre-captured coherent diffraction 𝐼𝑚 at a wavelength 𝜆𝑚. As 

described in Eq. S7, the PSF mapping scheme is performed by scaling the reference 



diffraction 𝐼𝑚  with a wavelength-dependent factor 𝜆𝑖 𝜆𝑚⁄  . Thus, an interpolation 

approach is required to be implemented on the PSFs to match with the broadband 

diffraction 𝐼𝐵 with the same pixel size, which may introduce interpolation errors to the 

reconstructions. It is obvious that the level of interpolation errors is associated with the 

wavelength-dependent scaling factors, the values of  𝜆𝑖 𝜆𝑚⁄  closer to 1, the smaller the 

interpolation errors. Thus, the choice of wavelength 𝜆𝑚 should better be around of the 

mass of the center of the broadband spectrum to suppress the interpolation errors in PSF 

mapping. 

To illustrate the interpolation error of PSF mapping in reconstructed resolution, we have 
carried out simulations for the measurement of an ultra-broadband spectrum from 
350nm to 850nm (black line in Fig. S14 b) with a series of pre-captured quasi-

monochromatic diffractions at wavelengths from 300 nm to 900 nm by 100nm interval, 
respectively, as shown in Fig. S12 a, and the corresponding spectrum distributes in Fig. 
S14 b. Additionally, we calculated the weighted spectrum center of the broadband 
spectrum at 580 nm, as plotted with orange dotted line in Fig. S14 b. The calculated 
discrete results are plotted in Fig. S14 c- Fig. S14 i, respectively. Simulations shows 
that the results calculated from the pre-captured diffraction at a 600 nm wavelength, 
which is closest to 580nm, have the best resolution in measurement. With the 

wavelength of the pre-captured diffraction being father from the weighted spectrum 
center of the broadband spectrum, the reconstructed resolution begins to break down. 

Meanwhile, we have monitored the number of solved discrete power spectrum counts 

and the MSE in prediction by solving Eq. S13, shown in Fig. S14 j. Seeing that the 

number of solved power spectrum counts increases with the wavelength of the pre-
captured diffraction close to the weighted spectrum center of the broadband spectrum, 

whereas the MSE decreases simultaneously. 
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