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High harmonic generation (HHG) modulated by a weak laser field allows the perturbative wave mixing process
which involves sum and difference frequency generations (SFG and DFG). The relative strengths of SFG and DFG
have been extensively discussed in the literature but are still ambiguous. Here we experimentally study the relative
strengths between SFG and DFG channels by applying a frequency-offset second-harmonic perturbing laser field
collinearly in a thin gaseous nonlinear medium. It shows that SFG is favored for low harmonic orders, but DFG
dominates for high-energy photons, when only short trajectories of high harmonics are considered. A semi-classical
model incorporating both modulations to the tunneling ionization and the electron propagation steps by the
perturbing laser field for a train of attosecond pulses explains the experimental results. © 2024 Optica Publishing

Group

https://doi.org/10.1364/JOSAB.525386

1. INTRODUCTION

High harmonic generation (HHG) driven by an intense laser
pulse is an extremely nonlinear optical process involving three
steps: electron tunneling ionization, free propagation in the laser
field, and recombination with its parental ion [1,2]. Two laser
pulses with different wavelengths are applied in “two-color”
experiments [3–7], to improve the high harmonic conver-
sion efficiency [8–10], to generate isolated attosecond pulses
[11–13], or to probe ultrafast electron dynamics [14,15]. If
one of these two laser pulses is significantly weaker than the
other by 3–4 orders of magnitude in intensity, a high harmonic
wave mixing process happens that new frequency compo-
nents at �= n1ω1 + n2ω2 are observed (ω1 and ω2 are the
central frequencies of the driving and perturbing laser fields,
respectively, and n1 > 0 and n2 are integers) [16].

The perturbative high harmonic wave mixing process has
been applied to measure and control the spectral [17,18] or
spatial [19–21] phase of attosecond pulses using a second-
harmonic perturbing field. Such phase measurement or control
strategies can be interpreted as an interferometer with two
“arms” of different coherent, degenerate wave mixing channels,
and the phase difference between these two arms is adjusted by
tuning the time delay between the driving and perturbing laser
fields. Such interpretation is successful based on the strong field

approximation [22], except that it predicts the same strengths of
degenerate SFG and DFG channels (the same � but opposite
signs of n2), contradicting experimental results in Ref. [16] that
SFG is favored.

The relative strengths between SFG and DFG channels
have been studied. For high harmonics generated by a 790 nm
driving laser pulse and a collinear 500 nm perturbing laser
field, the relative strength between the first-order SFG (n2 = 1)
and DFG (n2 =−1) depends on the type of gaseous medium
[6]. This observation is qualitatively explained that either the
interference between quantum trajectories or the continuum
state dressed by the perturbing laser field is responsible for the
strength difference between SFG and DFG channels [6,23,24].
If the perturbing laser field wavelength is significantly larger
than that of the driving field, a quasi-static perturbing field
approximation is valid [25–27], predicting comparable SFG
and DFG strengths in theory. When the macroscopic propaga-
tion effect of high harmonic generation is taken into account
in a noncollinear perturbing geometry, the DFG channel is
observed to be dominant to the SFG one in experiments [28],
but a more recent study shows that SFG and DFG channels have
similar strengths when the driving and perturbing fields have the
same wavelengths [29].
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In this paper, we have studied the perturbative high harmonic
wave mixing process which is induced by a collinear, frequency-
offset second-harmonic laser field. We choose such a perturbing
laser wavelength for two reasons. First, previous experiments
for high harmonic spectral or spatial phase measurement and
control are closely related to the wave mixing process perturbed
by a second-harmonic laser field. Second, in a collinear geom-
etry, the slightly frequency-offset second-harmonic perturbing
field allows the separation of SFG and DFG channels from the
degenerate even harmonics without the macroscopic propaga-
tion effect. Our results show that the relative strengths between
SFG and DFG channels are not only determined by their
quantum phase difference during the second step of electron
propagation but also affected by the perturbing field modulated
ionization rate in the first step.

2. EXPERIMENTAL SETUPS AND RESULTS

The experimental setup is shown in Fig. 1(a). An 800 nm, 40 fs
laser pulse is focused by a spherical mirror (300 mm focal length)
to a 100-µm-thick gas jet, generating high harmonics which
are measured by a spectrometer consisting of an incident slit, a
flat-field extreme ultraviolet grating, and a microchannel plate
detector. Limited by the spectrometer slit, only small-diverging
short-trajectory components of high harmonic radiation are
captured [30]. Although long trajectories in solid high harmonic
generation may also contribute to small-divergence compo-
nents [31], those we measured are only due to short trajectories
because a positive atto-chirp is observed when a standard in situ
measurement scheme is applied with a 400 nm perturbing field
[17]. The perturbing field is generated by frequency-doubling
the fundamental beam in a 3-mm-thick barium borate (BBO)
crystal and combined with the driving laser beam collinearly
with a dichroic mirror. The central wavelength of the perturbing
field can be tuned from 390 to 415 nm with a narrow bandwidth
of <3 nm by rotating the thick BBO crystal for a different
phase-matching angle. Figure 1(b) shows the spectra of the per-
turbing laser centered at 411 nm and 396 nm. The perturbing
laser intensity is 4 orders of magnitude lower than the driving
one. The driving laser pulse energy is tuned to 0.38 mJ for argon
gas medium and 0.80 mJ for neon with an adjustable neutral
density filter.

Figure 2(a) shows high harmonic generation from argon [the
driving laser intensity I1 = (1.78± 0.08)× 1014 W/cm2,
the perturbing and driving laser intensity ratio I2/I1 ∼ 10−4]

Fig. 1. (a) Schematic diagram of the experimental setup. BS for
50/50 beam splitter, HWP for half-wave plate, DM for dichroic
mirror, and SM for spherical mirror. (b) The spectra of the perturbing
laser field centered at 396 nm (solid line) and 411 nm (dashed line) are
obtained by rotating the BBO crystal.

Fig. 2. High harmonic spectra from different gases with differ-
ent perturbing laser wavelengths. (a) and (b) show high harmonic
spectra in argon; the perturbative laser wavelengths are (a) 411 nm
and (b) 396 nm. Insets show the zoomed-in spectra at �∼ 20ω1 and
22ω1. (c) High harmonic spectra from neon with perturbative laser
wavelengths of 413 nm. Zoomed-in spectra at �∼ 24ω1 (left), 36ω1

(middle), and 48ω1 (right) are shown in the bottom panels.

with a 411 nm perturbing laser field (ω2 = 1.95ω1). Besides
odd-order harmonics, new wave mixing components are gen-
erated around even orders. For example, separated spectral
peaks at �= 19.95ω1 and 20.05ω1 are observed around the
20th order [Fig. 2(a) inset, left panel], corresponding to SFG
[(n1, n2)= (18,+1)] and DFG [(n1, n2)= (22,−1)] chan-
nels, respectively. For wave mixing components around 16,
18, 20ω1, the SFG strengths are higher than the corresponding
DFG ones. However, for that around 22 ω1 [Fig. 2(a) inset,
right panel], the DFG channel at 22.05 ω1 is dominant to the
SFG at 21.95ω1. We then rotate the BBO crystal and tune the
perturbing laser central wavelength to 396 nm (ω2 = 2.03ω1);
wave mixing components are still observed [Fig. 2(b)]. Though
it is different from the previous ω2 < 2ω1 case that high-
frequency components around even harmonic orders are due to
SFG and low-frequency ones are due to DFG, the experimental
results that SFG is stronger than DFG for�≤ 20ω1 and DFG
is stronger than SFG for �≥ 22ω1 are still valid [Fig. 2(b)
inset]. The relative strengths between SFG and DFG are inde-
pendent of the time delay between the driving and perturbing
laser fields once they overlap, because SFG and DFG channels
are separated in the spectra.

High harmonic wave mixing is also experimentally observed
with a different gas medium of neon [I1 = (3.75± 0.08)×
1014 W/cm2] [Fig. 2(c)], with the perturbing laser central
wavelength at 413 nm (ω2 = 1.94ω1, I2/I1 ∼ 10−4). For
low harmonic orders (�≤ 32ω1), SFG components are
more intense than DFG ones, for example, the SFG inten-
sity at �= 23.94ω1 = 22ω1 +ω2 is higher than DFG at
�= 24.06ω1 = 26ω1 −ω2 [Fig. 2(c), bottom left panel]. For
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harmonic orders �≥ 36ω1, DFG channels with larger pho-
ton energies are favored compared to SFG channels [Fig. 2(c),
bottom middle panel]. Though SFG and DFG cannot be sepa-
rated for higher-order harmonics (e.g.,�∼ 48ω1) due to their
broader bandwidths and the resolution limit of the spectrom-
eter, it is still observed that DFG is dominant because the peak
of the merged wave mixing components shifts from �= 48ω1

toward the high photon energy end.
When we discuss the relative significance of SFG and DFG

channels, it is necessary to exclude the influence of the macro-
scopic propagation effect [23,28,29]. In our experiments with
a loosely focused laser beam interacting with a short, tenuous
gas medium (<200 µm) from a supersonic jet, the difference
between the total phase accumulations in the medium for SFG
and DFG channels around the same even harmonic order is less
than 4 mrad. Thus, we take only the single-atom response into
account in the following analysis.

3. THEORETICAL ANALYSIS

We next theoretically analyze the experimental results
based on the strong field approximation [22]. The dipole
moment emitting high harmonics in a time-varying laser field
E(t)= E0 cos(ω1t) is

d(t)=−i
∫

dti

∫
dkb∗(t)

[
E(ti ) · b(ti )

]
× exp[−i S(t, ti , k)] + c.c., (1)

where b(t) is the bound-free transition dipole matrix element
between the continuum Volkov state and the bound ground
state, and S(t, ti , k)= 1

2

∫ t
ti
[k+ A(τ )]2dτ + Ip(t − ti ) is

the semi-classical action of the quantum trajectory with emis-
sion time t , ionization time ti , and canonical momentum k.
Here Ip is the ionization potential of the gas medium, and
A(t)=− E0

ω1
sin(ω1t) is the vector potential of the total laser

field including the driving and perturbing components. A
saddle-point analysis scheme uniquely determines the domi-
nant quantum trajectory contributing to the integral of d(t),
corresponding to the stationary quantum phase saddle point
with ionization time t (s )i and canonical momentum k(s ) that
satisfy ∇S(t, t (s )i , k(s ))= 0. We first integrate over k around
k(s ) =−(t − ti )−1

∫ t
ti

A(τ )dτ and obtain a factor proportional

to |t − ti |−3/2, which describes the quantum diffusion and
is realistic because the singularity case (t = ti ) corresponds to
zero ionization rate. To integrate over the ionization time ti , we
follow the strategy in Refs. [32,33] by introducing an imaginary
part of the saddle ionization time, and the integration over its
real part t (s )i satisfying A(t (s )i )+ k(s ) = 0 leads to another factor

ai (t
(s )
i )= [E(t (s )i ) · b(t (s )i )]|E(t (s )i )|−1/2 exp[− (2Ip )

3/2

3|E(t(s )i )|
] related

to the ionization rate. The dipole moment is as follows (a brief
derivation can be found in Appendix A):

d(t)∝
b∗(t)

[
E(t (s )i ) · b(t (s )i )

]
|t − t (s )i |

3
2
√
|E(t (s )i )|

exp

(
−
(2Ip)

3
2

3|E(t (s )i )|

)

× exp[−i S(t, t (s )i , k(s ))] + c.c. (2)

If the perturbing laser field δE (t)= εE0 cos(ω2t + ϕ)
related to the perturbing field vector potential δA(t) is applied
(ε� 1 and the arbitrary phase delay ϕ is irrelevant), both the
quantum phase S(t, t (s )i , k(s )) and the dipole moment ampli-
tude ∝ |t − t (s )i |

−3/2ai (t
(s )
i ) are modulated. The quantum

phase modulation can be calculated according to Ref. [17], i.e.,

δS
(

t, t (s )i , k(s)
)
=

∫ t

t(s )i

[
k(s ) + A(τ )+

Ip

E (t (s )i )
(
t − t (s )i

)]

× δA(τ )dτ −
IpδA(t (s )i )

E (t (s )i )
,

(3)

but extra terms Ip [E (t
(s )
i )(t − t (s )i )]−1 and

IpδA(t (s )i )E−1(t (s )i ) are due to the saddle ionization time
variation.

The amplitude modulation is

δ

[
|t − t (s )i |

−
3
2 ai (t

(s )
i )

]

= ∂
t(s )i

[
|t − t (s )i |

−
3
2 ai (t

(s )
i )

]
· δt (s )i

+

∣∣∣t − t (s )i

∣∣∣−3/2
∂E ai

[
∂

t(s )i
E (t (s )i ) · δt (s )i + δE (t (s )i )

]
, (4)

with the first two terms due to the ionization time variation. The
first term is∼ ε|t − t (s )i |

−3/2ai (t
(s )
i ), while the second and third

terms are ∼ ε|t − t (s )i |
−3/2ai (t

(s )
i )(2Ip)

3/2
|E (t (s )i )|−1 much

larger than the first term because the ponderomotive potential
Up ∼ E 2

0/ω
2
1 ∼ Ip �ω1. So the perturbed dipole moment is as

follows (a brief derivation can be found in Appendix B):

dper(t)

= d(t)

1+
(2Ip)

3
2

3
∣∣∣E (t (s )i )

∣∣∣ E (t (s )i )

[
δE (t (s )i )+

∂E (t (s )i )

∂t (s )i

δt (s )i

]
× exp

{
−i
∫ t

t(s )i

[
k(s ) + A(τ )+

Ip

E (t (s )i )
(
t − t (s )i

)] δA(τ )dτ

+
i IpδA(t (s )i )

E (t (s )i )

}
+ c.c.

(5)

Now we define the effective emission time t ′ within a half of
an optical cycle for the nth attosecond pulse, so t ′ = t − nT0/2,
where T0 = 2π/ω1 and the driving field reaches its extremum
at t ′ = 0. Then a Fourier transformation scheme applied to
dper(n, t ′) with respect to the emission time t ′ for a long laser
pulse yields the spectrum of the perturbed high harmonic
generation is given by
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d̃per(�)

=

∫
e i�

(
nT0

2 +t ′
)
dper(n, t ′)dt ′

=

∑
n

e i� nT0
2 (−1)n

∫
e i�t ′d n

per(t
′)dt ′

=

∑
n

e i(�−ω1)
nT0

2

∫
dt ′e i�t ′d(t ′)

×

{
1+

ε

2

[
u −

ω2

i

(
t ′ − t (s )

′

i

)
v + v

]
e i nT0

2 (ω2−ω1)+iϕ+iω2t(s )
′

i

+
ε

2

[
u +

ω2

i

(
t ′ − t (s )

′

i

)
v + v

]
e−i nT0

2 (ω2−ω1)−iϕ−iω2t(s )
′

i

−
ε

2
ve i nT0

2 (ω2−ω1)+iϕ+iω2t ′
−
ε

2
ve−i nT0

2 (ω2−ω1)−iϕ−iω2t ′
}

×

∞∑
m1=−∞

Jm1

[
εE 2

0

ω1ω2

∣∣g (t ′)∣∣] e im1
nT0

2 (ω2−ω1)+im1ϕ+im1 arg[g (t ′)]

×

∞∑
m2=−∞

Jm2

− εIp

ω2 cos
(
ω1t (s )

′

i

)


× e im2
nT0

2 (ω2−ω1)+im2ϕ+im2ω2t(s )
′

i + c.c.,
(6)

where u = (2Ip )
3
2

3E0cos2(ω1t(s )
′

i )
, v =

−(2Ip )
3
2 ω1 sin(ω1t(s )

′

i )

3E0ω
2
2cos3(ω1t(s )

′

i )(t ′−t(s )
′

i )
,

g =
∫ t ′

t(s )
′

i
[sin(ω1t (s )

′

i )− sin(ω1τ
′)+

Ipω1

E 2
0 cos(ω1t(s )

′

i )(t ′−t(s )
′

i )
]e iω2τ

′

dτ ′. And Jm1 , Jm2 are the Bessel

functions of the first kind.
We only keep the first-order terms corresponding to wave

mixing components for |n2| = 1 that (a brief derivation can be
found in Appendix C)

d̃ (1)per (�)∝

∫
dt ′e

i�(=n1ω1−ω2)t
′
+iϕ

d(t ′)

×


[
u − ω2

i

(
t ′ − t (s )

′

i

)
v + v

]
e iω2t(s )

′

i

−ve iω2t ′
+

E 2
0

ω1ω2
g (t ′)− Ip e iω2t(s )

′

i

ω2 cos
(
ω1t(s )

′

i

)


+

∫
dt ′e

i�(=n1ω1+ω2)t
′
−iϕ

d(t ′)

×


[
u + ω2

i

(
t ′ − t (s )

′

i

)
v + v

]
e−iω2t(s )

′

i

−ve−iω2t ′
−

E 2
0

ω1ω2
g ∗(t ′)+ Ip e−iω2t(s )

′

i

ω2 cos
(
ω1t(s )

′

i

)

+ c.c.

(7)

Equation (7) explicitly includes two terms corresponding
to the SFG (�= n1ω1 +ω2) and DFG (�= n1ω1 −ω2)
channels, and their relative intensities depend on the two

terms of [u − ω2
i (t
′
− t (s )

′

i )v + v]e iω2t(s )
′

i − ve iω2t ′ and

E0
2g (t ′)
ω1ω2

−
Ip e iω2t(s )

′

i

ω2 cos(ω1t(s )
′

i )
, which are due to perturbing field modu-

lation of the electron ionization and the election propagation
steps. Though Eq. (5) has also been extensively studied [17],
only the quantum phase modulation in the second line describ-
ing the change of electron propagation trajectory (the second
step in the three-step model) has been carefully considered.

It diminishes the [u − ω2
i (t
′
− t (s )

′

i )v + v]e iω2t(s )
′

i − ve iω2t ′

terms in Eq. (7), leading to the conclusion that the SFG and
DFG channels have the same intensities. However, if the
perturbing-field-induced modulation on the electron ion-
ization process (the first step in the three-step model) is taken

into account, the opposite signs of the ω2
i (t
′
− t (s )

′

i )ve iω2t(s )
′

i ,

E0
2g (t ′)
ω1ω2

, and Ip e iω2t(s )
′

i

ω2 cos(ω1t(s )
′

i )
terms in Eq. (7) determine the relative

strengths between the SFG and DFG channels.
We have calculated high harmonic generation with only

short trajectory components based on Eq. (7) using parameters
in our experiments. Figure 3(a) shows the intensities of SFG
(open circles) and DFG (solid circles) components for high
harmonic wave mixing in argon with the driving laser intensity
of 1.85× 1014 W/cm2 and the perturbing field wavelengths
are at 411 nm (blue) and 396 nm (red). It is clearly shown that
SFG is dominant for low harmonic orders and DFG is more
significant for high orders, and the transition happens at the
harmonic order of 24, consistent with experimental results
in Figs. 2(a) and 2(b) qualitatively. Figure 3(b) shows the cal-
culation results of SFG and DFG in neon with the driving
laser intensity 3.70× 1014 W/cm2 and the perturbing laser
wavelengths at 413 nm. SFG components are stronger than
corresponding DFG ones for low harmonic orders and vice
versa. The boundary between these two regimes is around 36th
harmonic orders, again explaining experimental observations
in Fig. 2(c). In addition, the calculation results show that the
signal intensity ratio IDFG/ISFG is less than 0.35 below the
26th harmonic order, consistent with experimental results that
corresponding DFG components are hardly measured in the
experiment [Fig. 2(c), bottom left].

Fig. 3. Theoretical calculations of SFG (open circles) and DFG
(solid dots) wave mixing components at even orders based on
Eq. (7). (a) High harmonic spectra in argon with the perturbing
laser wavelengths at 411 nm (blue, solid line) and 396 nm (red, dashed
line). (b) High harmonic spectra in neon with the perturbing laser
wavelengths at 413 nm.
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We have also studied the effect of the driving laser intensity
on the relative intensity between SFG and DFG channels.
Figure 4(a) shows the measured intensity ratios between
the DFG and SFG channels at different driving laser inten-
sities ranging from I1 = (1.45± 0.08)× 1014 W/cm2 to
(2.01± 0.08)× 1014 W/cm2 while keeping the perturbing
and driving laser intensity ratio constant (I2/I1 ∼ 10−4). As
the driving laser intensity increases, the relative significance of
SFG channels to corresponding DFG channels is enhanced for
harmonic orders larger than 20, and the boundary between the
SFG- and DFG-dominating regimes shifts to a higher harmonic
order. For low harmonic orders smaller than 20, its dependence
on the driving laser intensity is insignificant. We have compared
the experimental results with theoretical calculations based on
Eq. (7) as shown in Fig. 4(b), and their qualitative consistency
confirms the role played by the ionization rate modulation
induced by the perturbing laser field during the process of high
harmonic wave mixing.

Not only short trajectory components of high harmon-
ics are studied in experiments and theoretically analyzed,
but the theoretical model in Eq. (7) is also applicable to
high harmonics with both long and short trajectory compo-
nents. Figures 5(a)–5(c) show the calculated DFG and SFG
intensities taking both two trajectories into account in xenon
(I1 = 1.22× 1014 W/cm2), argon (I1 = 1.76× 1014 W/cm2),
and neon (I1 = 3.14× 1014 W/cm2), and Figs. 5(d)–5(f )
correspond to the situations where only the short trajectory is
considered. When both long and short trajectories are consid-
ered, the DFG and SFG channels are comparable for xenon
[Fig. 5(a)] and argon [Fig. 5(b)], while DFG channel is domi-
nant for neon [Fig. 5(c)]. The behaviors are different from the
case in that only short trajectories are considered [Figs. 5(d)–
5(f )], because interference between short and long trajectories
emissions has significant impact on the relative strengths
between SFG and DFG channels. The long and short trajectory

Fig. 4. Relative strengths between DFG and SFG channels at
different driving laser intensities. (a) Measured IDFG/ISFG of � close
to 16, 18, 20, 22, 24 ω1 as a function of the driving laser intensity.
(b) Calculated results based on Eq. (7) for different driving laser
intensities, as a comparison to experiments.

interference effect was proposed to explain previous experimen-
tal results [6,23,24], consistent with our calculation results in
Figs. 5(a)–5(c).

4. CONCLUSION

In summary, we have experimentally and theoretically studied
the relative strengths between SFG and DFG channels in the
process of perturbative high harmonic wave mixing. The dif-
ference between SFG and DFG intensities and its dependence
on the harmonic order, the driving laser intensity, and so on
suggests that it is insufficient to only consider the quantum
phase modulation by the perturbing laser field within the second
electron propagation step of the three-step model. Instead,
the ionization rate changes due to the perturbing laser field
during the first photoionization step should be considered to
explain our experimental results of high harmonic wave mixing.
This new insight into the high harmonic wave mixing process

Fig. 5. Theoretical calculations of SFG (open circles) and DFG (solid dots) intensities generated by the 790 nm driving laser field and 500 nm per-
turbing laser field. The top row shows the results considering both long and short trajectories in (a) xenon, (b) argon, and (c) neon, while in the bot-
tom row (d)–(f ) only the short trajectory is considered in the three gases, respectively. The calculation parameters are similar to the experiments in Ref.
[6].
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not only enables one to spatiotemporally measure attosecond
pulses with a more complete theoretical model [17], but also
defines the working conditions of wavefront control for extreme
ultraviolet high harmonic radiations [19,34].

APPENDIX A: SOLVING THE INTEGRAL OF THE
DIPOLE MOMENT

Assuming that d(t) is a slowly changing function, we can use the
saddle point analysis [32,33] to find the stationary phase points
that contribute the most to solve this double integral.

The stationary phase point k(s ) satisfies k(s )(t, ti )=
−

1
(t−ti )

∫ t
ti

A(τ )dτ . And the second derivative of S(t, ti , k)

to k is ∂2 S(t,ti ,k)
∂k2 |k(s ) =

∫ t
ti

dτ = t − ti . The stationary phase

evaluation around k(s ) gives

d(t)=−i e
i3π

4

∫ t

t0

dti

(
2π
|t − ti |

) 3
2

b∗(t)
[
E(ti ) · b(ti )

]
× exp

[
−i S

(
t, ti , k(s )

)]
+ c.c. (A1)

The saddle points for ti satisfy the equation ∂S(t,ti ,k
(s ))

∂ti
=

−
1
2 [k

(s )
+ A(ti )]2 − Ip = 0. Since the ionization potential

Ip is positive, the solutions lead to complex ionization time
t (s c )
i = t (s )i +1. The real part t (s )i has the real physical mean-

ing of the continuum electron birth time, and we perform the
integration of Eq. (A1) around t (s )i , which satisfies

k(s ) + A(t (s )i )= 0. (A2)

We expand S(t, ti , k(s)) in a Taylor series around t (s )i that
S(t, ti , k(s ))= S(t, t (s )i , k(s ))− Ip(ti − t (s )i )− 1

6 |E(t
(s )
i )|2

(ti − t (s )i )3. And the integration of Eq. (A1) now is

d(t)=−i e
i3π

4

 2π∣∣∣t − t (s )i

∣∣∣
 3

2

exp
[
−i S

(
t, t (s )i , k(s )

)]
b∗(t)

×

[
E(t (s )i ) · b(t (s )i )

] 1

2π

 2

Ip

∣∣∣E(t (s )i )

∣∣∣2


1
4

× exp

− (2Ip)
3
2

3
∣∣∣E(t (s )i )

∣∣∣
+ c.c.,

(A3)

where the second line uses an asymptotic formula of
∫
∞

−∞
dti

e i[Ip (ti−t(s )i )+ 1
6 |E(t

(s )
i )|

2
(ti−t(s )i )

3
]
=

21/3

|E(t(s )i )|
2/3 Ai

( 21/3 Ip

|E(t(s )i )|
2/3

)
, where

Ai(z) is the Airy function.
The dipole moment finally is written as Eq. (2).

APPENDIX B: THE PERTURBED DIPOLE
MOMENT

Recall the perturbing field introduced of δE(t)=
εE0 cos(ω2t + ϕ)x̂, and the vector potential is δA(t)=
−
εE0
ω2

sin(ω2t + ϕ)x̂. Assuming the fields are polarized along
x̂ and omit vector notation because all vector quantities will be
parallel to x̂.

From Appendix A there is A(t (s )i )= 1

(t−t(s )i )

∫ t
t(s )i

A(τ )dτ

according to k(s ) =− 1

(t−t(s )i )

∫ t
t(s )i

A(τ )dτ and k(s ) + A(t (s )i )=

0. Then we have

δA(t (s )i )(t − t (s )i )+

[
∂ A(t (s )i )

∂t (s )i

(t − t (s )i )− A(t (s )i )

]
δt (s )i

=

∫ t

t(s )i

δA(τ )dτ − A(t (s )i )δt (s )i .

(B1)

And the variation of the ionization time due to the perturbing
laser field is

δt (s )i =

∫ t
t(s )i

[
δA(t (s )i )− δA(τ )

]
dτ

E (t (s )i )
(

t − t (s )i

) . (B2)

We estimate the amount of the ionization time variation for
observable high harmonics where the continuum electrons are
ionized when the driving laser field reaches its maxima and the
acceleration time t − t (s )i is finite, so |δt (s )i | ∼

ε
ω2

.

Thus, the first term of Eq. (4) ∼ ε|t − t (s )i |
−3/2ai (t

(s )
i ) is

much smaller than the second and the third terms as mentioned
in Section 3, which is negligible. The amplitude modulation is

δ

[∣∣∣t − t (s )i

∣∣∣− 3
2
ai (t

(s )
i )

]
≈

∣∣∣t − t (s )i

∣∣∣− 3
2
ai (t

(s )
i )

(2Ip)
3
2

3
∣∣∣E (t (s )i )

∣∣∣
×

[
δE (t (s )i )

E (t (s )i )
+

δt (s )i

E (t (s )i )

∂E (t (s )i )

∂t (s )i

]
.

(B3)

By incorporating both the amplitude modulation of Eq. (B3)
and quantum phase modulations of Eq. (3) into account, the
dipole momentum in the presence of the perturbing field can be
expressed as Eq. (5).

APPENDIX C: THE PERTURBED DIPOLE
SPECTRUM

The nth perturbed dipole moment of the attosecond pulse
trains is
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dn
per(t

′)= (−1)nd(t ′)

1+
ε(2Ip)

3
2

3E0cos2
(
ω1t (s )

′

i

) cos

[
nT0

2
(ω2 −ω1)+ω2t (s )

′

i + ϕ

]

+

ε(2Ip)
3
2

[
−ω1 sin

(
ω1t (s )

′

i

)]
3E0cos2

(
ω1t (s )

′

i

)
−ω2 sin

[
nT0

2 (ω2 −ω1)+ω2t (s )
′

i + ϕ
] (

t ′ − t (s )
′

i

)
ω2

2 cos
(
ω1t (s )

′

i

) (
t ′ − t (s )

′

i

)

+

cos
[

nT0
2 (ω2 −ω1)+ω2t (s )

′

i + ϕ
]
− cos

[ nT0
2 (ω2 −ω1)+ω2t ′ + ϕ

]
ω2

2 cos
(
ω1t (s )

′

i

) (
t ′ − t (s )

′

i

)



× exp

i
∫ t ′

t(s )
′

i

εE 2
0

ω1ω2

sin
(
ω1t (s )

′

i

)
− sin

(
ω1τ

′
)
+

Ipω1

E 2
0 cos

(
ω1t (s )

′

i

) (
t ′ − t (s )

′

i

)


× sin

[
nT0

2
(ω2 −ω1)+ω2τ

′
+ ϕ

]
dτ ′ − i

εIp sin
[

nT0
2 (ω2 −ω1)+ω2t (s )

′

i + ϕ
]

ω2 cos
(
ω1t (s )

′

i

)
+ c.c., (B4)

where (−1)n cos(ω2
nT0

2 )= cos( nT0
2 ω2 −

nT0
2 ω1).

Defining the u, v, and g as mentioned in Section 3, the HHG spectrum is then given by a Fourier transform as Eq. (6).
For the zeroth-order approximation (m1,m2 = 0) of Eq. (6), the dipole spectrum corresponds to high harmonic generation without

the perturbing field, and there is only odd-order harmonics of the driving laser field:

d̃ (0)per (�)=
∑

n

e i(�−ω1)
nT0

2

∫
e i�dt ′d(t ′)J0

[
εE 2

0

ω1ω2
|g (t ′)|

]
J0

− εIp

ω2 cos
(
ω1t (s )

′

i

)
 dt ′ + c.c.

= δ [�− (2x + 1)ω1]
∫

e i�t ′d(t ′)dt ′ + c.c., (B5)

where x is a positive integer.
For the first-order approximation, the spectrum of the dipole momentum is expressed as

d̃ (1)per (�)=
∑

n

e i(�−ω1)
nT0

2

∫
dt ′e i�t ′d(t ′)

{ε
2

[
u −

ω2

i

(
t ′ − t (s )

′

i

)
v + v

]
e i nT0

2 (ω2−ω1)+iϕ+iω2t(s )
′

i

+
ε

2

[
u +

ω2

i

(
t ′ − t (s )

′

i

)
v + v

]
e−i nT0

2 (ω2−ω1)−iϕ−iω2t(s )
′

i −
ε

2
ve i nT0

2 (ω2−ω1)+iϕ+iω2t ′
−
ε

2
ve−i nT0

2 (ω2−ω1)−iϕ−iω2t ′
}

+ J1

[
εE 2

0

ω1ω2
|g (t ′)|

]
e i nT0

2 (ω2−ω1)+iϕ+i arg[g (t ′)]
+ J−1

[
εE 2

0

ω1ω2
|g (t ′)|

]
e−i nT0

2 (ω2−ω1)−iϕ−i arg[g (t ′)]

+ J1

− εIp

ω2 cos
(
ω1t (s )

′

i

)
 e i nT0

2 (ω2−ω1)+iϕ+iω2t(s )
′

i + J−1

− εIp

ω2 cos
(
ω1t (s )

′

i

)
 e−i nT0

2 (ω2−ω1)−iϕ−iω2t(s )
′

i

+ c.c.,

(B6)

where limx→0 J1(x )→ 1
2 x . The amplitude and phase terms can be rearranged according to the exponential terms.

The spectrum of the first-order perturbed dipole momentum is finally given by Eq. (7).
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