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ABSTRACT

Photo modulated optical reflectance (PMOR) is an ideal ultra-shallow junction area metrology technique for measurement of transistor
dopant distribution in integrated circuit fabrication, and the characterization of process parameters such as implant energy, implant angle,
and implant dose has a significant impact on the accuracy of the ion implantation process. This study utilized deep learning to analyze
various process parameters concurrently and assessed its performance on boron-doped silicon samples, the data were obtained from the
power curves measured from Carrier Illumination (CI) experiments in PMOR, a deep learning model with multi-task learning architecture
was developed and trained to characterize multiple process parameters, and the PMOR model incorporating a multi-task learning architec-
ture for process parameters demonstrated superior performance in terms of accuracy and speed of characterization. The analyses indicated
that applying deep learning methods to CI metrology in PMOR technology is feasible. In particular, compared with the conventional carrier
irradiation technique, the ability to obtain the implantation dose and doping profile along with other process parameters such as implanta-
tion energy, implantation angle, and implantation type can better assist in the accurate realization of the ion implantation process with
acceptable accuracy and time cost.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0210816

I. INTRODUCTION

Photo modulated optical reflectance1,2 (PMOR) is a pump–
probe technology where the light intensity serves as the external
modulation variable. The strength of the pump laser is varied at a
specific frequency, which alters the sample’s reflectivity by interact-
ing with light and matter. The probing laser uses a locking-based
detection technique to measure the change in reflectance at the
same modulation frequency or a higher harmonic. With a very
high sensitivity level, measuring reflectivity changes down to 10�6,
PMOR initially showed the ability to determine various transport
parameters (e.g., thermal conductivity, carrier diffusivity, and
carrier lifetime) for bulk materials and thin-film metals, semicon-
ductors, or superconductors,3–7 with engineering realizations focus-
ing on the monitoring of ion implantation by statistical process
control (SPC).8–16

Carrier Illumination (CI) is a special implementation of
PMOR, described as “devices and methods for determining the dis-
tribution of active dopants in semiconductor wafers.” The pump
laser operates in a quasi-static state (2 kHz) at a fixed pump modu-
lation frequency and is characterized by its pump power (or irradi-
ance) varying over a range. The relationship between the
differential probe reflectance and pump power, called as the “power
curve,”17 provides insights into the deep active doping distribution;
one of the main challenges in the manufacturing of CMOS devices
is the need for increasingly tight control of implantation parame-
ters such as dose, energy, and tilt angle for a given implant, where
the dose determines the final concentration in the ion implantation
process and where the energy determines the range (i.e., depth) of
the ions, and where different implantation angles affect the
implanted samples (furrowing and shadowing effects). Therefore,
to ensure the accuracy of the ion implantation process, it is
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necessary to characterize the process parameters, such as dose and
energy, simultaneously. Based on CI theory, methods for extracting
wafer implantation dose and active doping profiles from power
curves are well established. However, extracting process parameters
such as energy, angle, and species is still challenging, so an algo-
rithm is needed to extract the process parameters of ion implanta-
tion quickly and accurately.

Deep learning algorithms are a machine learning type trained
to recognize complex mappings between inputs and outputs,
making them suitable for identifying ion implantation process
parameters from power profiles measured by PMOR technology
and predicting specific ion implantation parameters based on indi-
vidual wafer power profiles. Deep learning models have been suc-
cessfully employed in numerous real-world, large-scale applications
due to their robust feature extraction capabilities. Many large rec-
ommender systems18 have used multi-task learning with deep
neural network (DNN) models.19 Loew and Bradley20 employed
deep learning (artificial neural network—ANN) to estimate
parameters for patterns resulting from ion bombardment on solid
surface development. These studies are instructive for multi-process
parameter extraction in CI signals. Migrating deep learning-based
approaches to CI metrology is problematic due to the diversity of
samples, accuracy requirements, and time consumption in IC manu-
facture. This study seeks to build a deep learning-based system to
predict ion implantation process parameters using measurement data
from CI signals. A multi-task learning architecture for process
parameters (PPMTL)-based deep learning model was created and
utilized. Carrier Illumination experiments were conducted to provide
a dataset for training, validation, and testing the model. A logical
training approach was devised to instruct this model. The practicality
of the deep learning strategy is assessed by analyzing the recognition
results in the presence of noise and considering the time consumed.

II. PHOTO MODULATED OPTICAL REFLECTANCE
(PMOR) EXPERIMENT

The CI experimental setup in this study is built using pump–
probe technology, illustrated in Fig. 1; the pump and probe lasers

are semiconductor lasers in the UV and red wavelength bands,
respectively, with a beam diameter of 1.2 mm, the pump light is
used to excite plasma and heat waves in the sample, and the detec-
tor light is used to detect the change of the surface properties of
the sample. The pump and probe beams are merged through
dichroic mirrors to form the superimposed beam, which is then
turned into parallel light through a collimator. Through the colli-
mator into parallel light, the superposition of the beam, through
the polarizer, polarization beam splitter and beam sampling plate.
The sampling plate directs part of the beam to the detector (silicon
PIN photodiode), and the rest of the beam passes through the
beam quarter-wave plate and the objective lens, which focuses the
beam on the wafer. The cross-polarization method is used in this
experimental setup, where the incident and reflected superimposed
light passes through the quarter-wave plate twice before and after
passing through the objective lens. The superimposed light
reflected to the polarizing beam splitter is in orthogonal polariza-
tion to the incident light passing through the polarizing beam split-
ter, and the superimposed beam, which carries the information
about the sample, is reflected to the detector as it passes through
the polarizing beam splitter.

During the measurements, the modulation amplitude of the
pump power was increased from 0 to 22 mW, typically in each of
the 22 steps (Figs. 2 and 3), and the signals (dc, first and second
harmonics) were recorded at each step. The first harmonic compo-
nents at each delay time were recorded sequentially using a com-
puter and normalized by dividing by dc to obtain ΔR=R vs pump
laser power (power curve).

In order to obtain the required measurement signals for the
study, B was implanted into 300 mm P-type single-sided polished
silicon wafers, and CI experiments were performed on them in this
study. These samples consisted of silicon wafers implanted with
doses ranging from 1� 1013 to 5� 1015 ion/cm2, energies ranging
from 2 to 50 keV, and angles ranging from �10� to 10�, with a
supplier-guaranteed implant angle accuracy of +0:5�. Figure 4
shows the power curves of silicon wafers derived from carrier illu-
mination experiments performed at different ion implantation
process parameters. These curves describe the power response of

FIG. 1. CI experimental setup.
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silicon wafers to different implantation angles, energies, and doses.
At the laser wavelength of this experimental setup, all samples
absorbed and converted enough light to produce relatively strong
CI signals. From the measured power curves above, a power bulge
near 12 mW and saturation at about 20 mW can be observed.
These phenomena are mainly due to the slowing down of the CI
signal change when the pump laser power reaches 12 mW, as well
as the decrease in the linearity of the power regulation as the semi-
conductor laser approaches its maximum output power (about

22 mW). Despite these nonlinear features, the deep learning model
could identify and exploit subtle differences in the power profile
through the training process, thereby extracting multiple indepen-
dent ion implantation process parameters and ensuring the accu-
racy and reliability of the analysis results. In general, the traditional
extraction of ion implantation process parameters in PMOR mea-
surement uses the controlled variable method, i.e., controlling a
single variable to test a group of wafers and distinguishing them
according to the strength of the signal value, which is not only
time-consuming and laborious but also requires a group of wafers
for each process parameter, making it impossible to extract multi-
ple process parameters for a single wafer at the same time. The tra-
ditional method is also easily affected by noise signals, and the
accuracy cannot be guaranteed. Therefore, this paper proposes a
deep learning-based process parameter extraction method, which
can quickly and accurately extract multiple process parameters of
ion implantation from the power curve simultaneously.

Aside from the fundamental construction mentioned, the
experimental setup incorporates a lock-in amplification approach
and a focusing module (not visible in the optical channel) to
achieve a relatively high signal-to-noise ratio. The experimental
setup contains two detector modules, each consisting of two photo-
detectors and a dichroic mirror, which separates the pump light
from the detector light and a filter to filter stray light. A signal gen-
erator modulates the pump beam at 2 kHz. The signal generator
modifies the pump beam at a frequency of 2 kHz. The lock-in
amplifier isolates and boosts the 2 kHz signal from the photodetec-
tor output that corresponds to the modulation frequency.

III. DEEP LEARNING MODELS FOR
CHARACTERIZATION OF MULTIPLE PROCESS
PARAMETERS

The goal of the research is to create a unified model capable of
learning numerous objectives and tasks simultaneously. The power
curve measured by the CI is essentially a sequential sequence, so
RNN models commonly used to process sequential data can be
employed. We achieve multitask learning by appending multiple
fully connected layers on top of the RNN output, with each fully
connected layer corresponding to a specific multitask. Multitask
learning models have been demonstrated to improve predictions for
all tasks through the use of regularization and transfer learning.21

Nevertheless, commonly used multitask models like DNN and RNN
are often affected by the inter-task relationships,22,23 leading to con-
flicts that may hinder predictions, especially when model parameters
are widely distributed across tasks. This study utilizes the PPMTL
model [24], which explicitly represents task connections. The model
adjusts the parameterization by utilizing modulation and gating net-
works to balance shared information and task-specific information.

The PPMTL model has been shown to perform well under
different task relationships;24 the model takes as input a one-
dimensional array created from the power curves obtained by the
CI, and the input dimension is set to 22 since each power curve
measures 22 points, in this study, the extracted parameters for the
ion implantation are the implant energy, implant dose, and
implant angle. Therefore, the model output dimension should be 3.
It is worth mentioning that the method of extracting the

FIG. 2. Time-dependent curve of pump and probe lasers.

FIG. 3. Principle of CI power curve measurement in PMOR technology.
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implantation dose from the power curve has been very well devel-
oped, but it is still included in this study. First, it can be cross-
referenced with the traditional method. Furthermore, in future
studies of simultaneous extraction of multiple ion implantation
process parameters, it is essential to omit the traditional dose
extraction step to ensure the integrity of the extraction process.
While it is theoretically possible to jointly investigate the implant
ion species, the absence of samples featuring ion implants other
than boron precludes their inclusion in this study.

A. PPMTL-based model

The PPMTL architecture is mostly based on the widely known
Collaborative Bottom multi-task deep neural network architec-
ture.25 The Collaborative Bottom model structure has several
bottom layers that are shared among all tasks after the input layer.
Then, each task has a separate network “tower” above the bottom
representation. The PPMTL approach does not utilize a single
bottom network for all tasks, as depicted in Fig. 5. Instead, it

FIG. 4. Experimentally measured power profiles of silicon wafers with different ion implantation process parameters.

FIG. 5. PPMTL model architecture.
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employs a collection of bottom networks, each referred to as an
expert. Every expert in our document is a feed-forward network.
Next, we will establish a gated network for each task. The gated
network uses input characteristics and output softmax gates to inte-
grate experts with different weights, allowing various tasks to utilize
the experts in unique ways. The conclusions from the assembled
experts are then sent to a tower network created for this particular
purpose. Gated networks for various tasks can learn distinct mixing
patterns of expert combinations to capture task relationships and,
more precisely, the output of task k,

yk ¼ hk f k(x)
� �

, (1)

f k(x) ¼
Xn

i¼1

gki (x)fi(x (2)),

gk(x) ¼ softmax(Wgkx), (3)

where fi, i ¼ 1, . . . , n, are n expert networks, hk, k ¼ 1, 2, 3, corre-
spond to each task (i.e., three ion implantation parameters), and
the model is implemented using the same multilayer perceptron
with ReLU activation. The gating network involves a linear trans-
formation of the input through a softmax layer, with the trainable
matrix Wgk [ R(n�22).

IV. MODEL TESTING

After finalizing the design of the deep learning model archi-
tecture, it is essential to create a dataset with diverse data samples
and an effective training approach for model training. Training will
determine all adjustable parameters in the model, enabling it to
derive ion implantation process parameters from CI signals.

A. Key functions for training the model

When developing the training approach, it is crucial to focus
on the loss and evaluation index functions. The backpropagation
technique updates all trainable parameters in the model during the
training process. The loss function, which quantifies the discrep-
ancy between the model’s output and the real data, is fundamental
to the backpropagation method. The choice of this function deter-
mines how the model parameters are updated. On the other hand,
evaluating the indicator function helps to select the optimal combi-
nation of model performance parameters.

Since the identification of ion implantation process parameters
in this paper is a regression problem, the loss function commonly
used in regression scenarios is the mean square error (MSE). The
value is calculated by averaging the sum of the squares of the dis-
crepancies between the estimated values and the real values using
the following expression:

Loss ¼ 1
n

Xn

i¼1

(yi � ŷi)
2, (4)

where n is the number of tasks to be studied, y denotes the process

parameter’s actual value, and ŷ is the process parameter’s predicted
value.

Considering that the same algorithmic model is used in this
work to solve different problems, the root mean square error
(RMSE) and the coefficient of determination (R2) are used as eval-
uation metrics. R2 is also evaluated as the best measure of the
linear regression method with the expression

R2 ¼ 1�
P

i ŷ
(i) � y(i)

� �2
P

i �y � y(i)ð Þ2 (5),

where ŷ is the prediction result, y is the actual value, and �y is the
mean of the prediction result. The denominator represents the
error in the baseline (mean), and the numerator represents the
error generated by the model’s prediction results.

B. Model training implementation

The dataset acquired from the experimental procedure out-
lined in Sec. II comprises 360 samples for training, validation, and
testing the model. Out of the total, 226 samples were allocated to
the training set, while the remaining samples were evenly divided
between the validation and testing sets. In addition, a design was
made to ensure that the distribution of samples was the same for
all three sets. The construction and development of the descriptive
model were carried out in Python 3.6 utilizing TensorFlow 2.5. The
backpropagation technique was implemented using the Adam opti-
mizer with an initial learning rate of 0.001. After 300 epochs, the
model reached a steady state regarding the evaluation metrics on
the test set, and the optimal combination of model parameters was
trained.

During the training process, RMSE and R2 stabilized at 300
epochs for all three subtasks, and the model did not exhibit signifi-
cant overfitting when comparing the evaluation metrics of the
training and validation sets. Using R2 in conjunction with RMSE
helps fully assess the model’s accuracy and generalization capabili-
ties. In contrast, R2 assesses overall explanatory power, while RMSE
focuses on the magnitude of specific prediction errors. Combining
these two metrics provides a more complete picture of model per-
formance in different areas, helping to make more accurate model
selection and optimization decisions.

V. RESULT AND DISCUSSION

This work evaluates the parameter extraction accuracy and
recognition speed of the PPMTL model and a typical single-task
model recurrent neural network (RNN) in order to determine the
utility of the proposed deep learning-based technique after obtain-
ing the training model. The overall performance of the two training
models is also evaluated and compared, followed by a detailed dis-
cussion on how the accuracy of the models can be improved, thus
comprehensively analyzing the utility of the proposed deep
learning-based strategy.

A. Model comparison

This paper first estimates the process parameters from the CI
power curve data, including three regression variables (energy,
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angle, and dose). Figure 6 shows the performance of the proposed
PPMTL method, compared with using various single-task models.
A recurrent neural network (RNN) is a classical neural network
structure with a recursive structure that performs well when pro-
cessing sequential data. Long short-term memory (LSTM) is a
special type of recurrent neural network (RNN) architecture that
typically outperforms RNNs in dealing with long-term

dependencies and time series prediction tasks. In the PPMTL
model, the implantation dose is the primary job, while the implan-
tation angle and implantation energy are secondary tasks. For
hyperparameter tuning, the root mean square error (RMSE) of the
principal task on the validation set serves as the target metric. We
performed thousands of experiments for each method using the
hyperparameter tuner to find the optimal hyperparameter settings.

FIG. 6. Actual and predicted values of the PPMTL model, the RNN model, and LSTM for the three process parameters, with blue representing the actual points and red
representing the perfectly consistent curve.
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After the hyperparameter tuner identifies the optimal hyperpara-
meters for each approach, we perform 300 training iterations on
the training dataset for each method using random parameter ini-
tialization. The results are assessed on the test dataset using the
same experimental conditions to compare the two models.

The overall recognition effect of the trained models is reflected
in the performance of the parameter extraction ability on the
dataset; Fig. 6 shows the predicted parameter values vs the actual
parameter values for the PPMTL model, the RNN model, and the
LSTM model after training and tuning using the 67 data points in
the test set. For convenience, the root mean square errors of the
three ion implantation process parameters are compiled in Table I.
As seen from Table I and Fig. 6, for each of the three process
parameters, all three models agree with the red 1:1 line. However,
the PPMTL model consistently outperforms both the RNN and
LSTM models, particularly in predicting ion implantation process
parameters. The PPMTL model achieves an implantation energy
RMSE of 0.767 keV, an implantation angle RMSE of 0.127�, and an
implantation dose RMSE of 1:7� 1013 ions/cm2, representing only
1.59%, 0.63%, and 0.34% of the training range, respectively. In con-
trast, the RNN model shows RMSE values of 1.284 keV for energy,
0.118� for angle, and 4:6� 1013 ions/cm2 for dose, which are 2.6%,
0.59%, and 0.92% of the training range. Similarly, the LSTM model
demonstrates RMSE values of 1.106 keV for energy, 0.108� for
angle, and 3:12� 1013 ions/cm2 for dose, corresponding to 2.2%,
0.54%, and 0.62% of the training range, respectively. It can be seen
that the PPMTL model performs better in terms of the accuracy of
other ion implantation parameters, except for the implantation
angle error, which is slightly higher than that of the single-task
model. The multi-task model is not optimized for the implantation

angle task on the validation set, while the single-task model is opti-
mized. The single-task model excels in the auxiliary task, leading to
the conclusion that PPMTL performs exceptionally well and sur-
passes the single-task model in overall performance. It accurately
predicts the three parameters in the CI power curve within a 1.6%
margin of the training range. Another metric commonly evaluated
in machine learning is R2. We utilized this metric to evaluate our
model’s performance. Figure 7 illustrates the comparison between
the multi-task model and the single-task model’s performance on
each subtask. This supports the effectiveness of our model on the
test set and its precise prediction of the parameters in the CI power
curve.

B. Inference time

PMOR is usually widely used in online measurement scenar-
ios that require high speed. Therefore, when selecting an ion
implantation parameter extraction algorithm for CI metrology, it is
crucial to take into account the algorithm’s time cost. The time cost
of the deep learning-based approach in this study is mostly driven
by the inference time of the model, which is the time needed for
the model to calculate the inputs to the appropriate outputs.

In practical uses of CI metrology, parameter extraction algo-
rithms typically analyze individual signals rather than multiple
signals at once. Thus, the focus is on the processing time of a
single signal. Figure 8 displays a comparison of the processing
times of the two models, with computations performed on an
AMD Ryzen 7 4800H CPU.

According to the results in Fig. 8 , the single-task model has a
shorter inference time than the PPMTL model. The single-task
model requires fewer operations to perform a single inference com-
pared to the PPMTL model due to its lower complexity. However,
it is essential to note that the sum of the reasoning times for the
single-task model is much more significant than the reasoning time
for the PPMTL model. This further demonstrates the advantage of
the PPMTL model for parameter extraction in CI metrology. The
single-task model is also a good choice if only a single implant
parameter is of interest. However, in online monitoring of the
implant level of ion implantation equipment, accurate

TABLE I. RMSE of three trained models on different subtasks.

Dose (ions/cmEnergy (keV)Angle (deg) 2)

1.713 × 100.7670.127PPMTL 13

3.12 × 101.1060.108LSTM 13

4.602 × 101.2840.118RNN 13

FIG. 7. Comparison of the three model assessment metrics R2. FIG. 8. Comparison of inference times for two models for a single power curve.
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characterization of multiple parameters can better reflect the
changes in the implant level. Therefore, simultaneous multi-task
characterization is of practical interest in this context.

C. Discussion of model accuracy improvement

One may wonder if the predicted accuracy of PPMTL may be
enhanced by increasing dataset training, incorporating more data
(such as power curves and corresponding parameters), or expand-
ing the network’s number of layers. We first assess whether more
training could enhance the model’s performance. Figure 9 shows
the trend of the R2 evaluation metrics with epochs for the three
subtasks. The blue line represents the training set, and the yellow
line represents the validation set. The graphs indicate a notable
improvement in R2 at the start of training. By 300 epochs, further
training reaches a point of diminishing returns, with no substantial
enhancement in the overall R2.

Second, we will explore the option of augmenting the dataset
size utilized for training PPMTL. Increasing the amount of data
can effectively decrease the root mean square error (RMSE) on the
validation set. In any analysis, having more data is consistently ben-
eficial. The network can accurately estimate parameters within the
training parameter range with an accuracy of up to 1.6%. We rate
the model performance positively; however, in cases where higher
accuracy is required, expanding the dataset by conducting experi-
ments is a viable way. As the study progresses, we will continue to
expand the dataset by testing more and more samples. This has sig-
nificant implications for engineering applications, allowing us to
meet the needs of our customers for large-scale test samples and to
generate richer datasets.

Finally, consider whether increasing the depth of the network
is beneficial. Overall, PPMTL needs help fully understand the data
patterns at the beginning of training, i.e., it is in an underfitting
state.26 Through ongoing training, the network learns patterns and
decreases the root mean square error (RMSE) on both the training
and validation datasets. Eventually, the model may overfit the
unique characteristics of the training set, leading to overfitting.
Overfitting is challenging since it causes a reduction in RMSE on
the training set while increasing RMSE on the validation set.

Additional layers aid in more accurately recognizing patterns and
characteristics within the data, contributing to the success of deep
learning. Deeper networks may not always be superior as increasing
the number of layers can result in overfitting, causing the model to
underperform on the test data.27 In this study, we used ResNet 25
because when comparing the results of ResNet 25 (25 layers of
neurons) and ResNet 50 (50 layers), it was found that the more
extensive network showed more overfitting.

VI. CONCLUSION

We investigated a deep learning-based approach for extracting
multiple parameters from CI signals. We successfully applied deep
learning techniques to the field of CI metrology. Specifically, we
conducted a series of Carrier Illumination experiments for different
implantation parameters to obtain the data required for deep learn-
ing. Based on this, we trained and compared two deep-learning
models and found that the PPMTL model demonstrated excellent
overall performance in training accuracy and recognition speed.
Thus, deep learning provides an effective solution for fast and accu-
rate extraction of ion implantation process parameters in CI
metrology. Although our study mainly focuses on CI metrology, we
also found that this approach is potentially feasible in another
special implementation of PMOR technology, Therma-Probe (TP),
which extracts ion implant process parameters from offset curves.
The PPMTL model is anticipated to be beneficial for PMOR
metrology in manufacturing intricate structured integrated circuits
as more data samples are collected.
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