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Bootstrap Method for Uncertainty Evaluation
in Critical Dimension Small-Angle

X-Ray Scattering
Tianjuan Yang , Xiuguo Chen , Shuo Liu , Jiahao Zhang , and Shiyuan Liu

Abstract— Uncertainty evaluation is essential in critical dimen-
sion small-angle X-ray scattering (CD-SAXS) as it reflects the
reliability of the measurement results. In this work, we introduce
a new version of the bootstrap method for uncertainty evaluation
in CD-SAXS to obtain both mean values and their associated
uncertainties of nanostructure parameters. We further incorpo-
rate a more suitable centered bootstrap percentile method and
a bias correction procedure for skewed bootstrap distributions
in CD-SAXS. Subsequently, we conduct simulations and mea-
surements on CD-SAXS using both 1-D and 2-D gratings. The
accuracy of the proposed method is verified by comparison with
the optical critical dimension (OCD), and the precision of the
proposed method is verified by comparison with the Markov
chain Monte Carlo (MCMC) method. The results indicate that
the proposed bootstrap method is an effective candidate for
uncertainty evaluation in CD-SAXS and other model-based
measurement techniques.

Index Terms— Bootstrap method, critical dimension small-
angle X-ray scattering (CD-SAXS), inverse problem, nanostruc-
ture reconstruction, uncertainty evaluation.

I. INTRODUCTION

CRITICAL dimension (CD) metrology plays a pivotal role
in ensuring precise process control within the realm of

integrated circuit (IC) manufacturing [1], [2], [3]. CD small-
angle X-ray scattering (CD-SAXS) emerges as promising
metrology for in-line measurement of future technology nodes,
particularly in monitoring high-aspect-ratio and buried fea-
tures. It is essentially a model-based measurement technique
that uses subnanometer wavelength radiation in transmission
mode [4], [5], [6] to extract the nanostructure profiles by
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solving the inverse problem [7], [8], [9]. In this inverse
problem, the predicted signature, calculated by a trial shape
function, is compared to the measured signature. The trial
shape undergoes modulation until the predicted signature
closely matches the observed one.

Measurement errors are inevitable in any metrology, intro-
ducing uncertainties in the measured results. To enhance the
reliability of the measured results, it is essential to consider
not only the accuracy but also the precision of the measured
results. The accuracy reflects the influence of systematic error,
while the precision reflects the influence of random error. The
error propagation theory is applicable for evaluating param-
eter uncertainties when explicit knowledge of measurement
error sources is available. For instance, if measurement errors
follow a Gauss distribution, parameter uncertainties can be
assessed by extracting the square root of the main diagonal
entries from the covariance matrix of the parameters. This
approach is commonly utilized for uncertainty evaluation in
optical CD (OCD) [10], [11]. However, it is not applicable to
CD-SAXS, as the measurement accounts for Poisson statistical
noise associated with complex error sources, such as the
divergence of the incident beam and the inhomogeneity of the
detector [12]. It appears to be a myth that considers all known
or suspected error components and evaluates them correctly
and appropriately by the error propagation theory.

According to the Guide to the Expression of Uncertainty
in Measurement (GUM), a powerful technique to characterize
the uncertainties of parameters directly and simply is the sam-
pling method [13]. The Markov chain Monte Carlo (MCMC)
method is popular in CD-SAXS for assessing parameter uncer-
tainties [14], [15], [16], [17]. It generates a population of
models to estimate parameter uncertainties. This is accom-
plished by an initial model, generally the best-known fit, and
then introducing random perturbations to the initial model for
model updating. The updated model is accepted or rejected
based on the change in the goodness-of-fit (GoF) metric. If the
current GoF is smaller than the previous one, the updated
model is accepted into the population. Otherwise, a weighted
probability P is calculated, and a random variable α is gener-
ated from the interval [0, 1]. The acceptance or rejection of
the updated model is then determined by comparing P and α.
This process is repeated until a sufficient number of accepted
models in the population reach equilibrium. While MCMC is
widely adopted in CD-SAXS, it requires good initial values,
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broad parameter boundaries, and multiple independent chains
to guarantee algorithm convergence. Meanwhile, it is unable
to distinguish some defective or invalid samples, resulting in
larger uncertainty estimates [9]. Furthermore, the choice of
weighted probability significantly influences parameter accep-
tance and rejection, thereby impacting uncertainty evaluation.
The determination of the parameter step size also warrants
careful consideration in MCMC. A large step may cause
significant jumps in model parameters, resulting in a low
acceptance rate, while a small step may lead to prolonged
wandering in the parameter space, reducing efficiency. There-
fore, it is of great significance to develop a more convenient
and effective uncertainty evaluation method that can account
for complex error sources. Such a method would be a valu-
able supplement to existing uncertainty evaluation methods
in CD-SAXS.

Bootstrap method emerges as a powerful sampling method
that allows for Monte Carlo simulations based on the actual
data in hand, and making inferences from those data. This
method maximizes the utilization of existing data without
necessitating additional model assumptions or the acquisition
of new data [18], [19]. It exhibits robustness and simplic-
ity, making it extensively employed in many fields such as
machine learning, especially in situations, where understand-
ing of the underlying process or measurement errors is limited.
However, the application of the bootstrap method in IC metrol-
ogy is not widespread. One possible reason is the existence of
numerous bootstrap methods, each with its distinct strengths
and weaknesses, which may not be clear to nonstatisticians.
Another reason could be the relatively slower nature of the
bootstrap method in solving inverse problems compared to the
error propagation theory-based uncertainty analysis approach.
The earlier work on applying the bootstrap method in IC
metrology was implemented in ellipsometry [20], subsequently
followed by several studies, as referenced in [21] and [22].
While the application of the bootstrap method in CD-SAXS
is rarely mentioned. As described in previous work [20],
the parameter uncertainty was estimated using the bootstrap
percentile method simply and naturally, which relies on the
assumption of a symmetric distribution. However, this can
introduce bias or inaccuracy when dealing with asymmetric
distribution.

In this work, we present a new version of the bootstrap
method to address the inverse problem of CD-SAXS by
bootstrapping measured data (i.e., the measured intensity),
calculating their mean values, and subsequently using these
mean values to solve the inverse problem and obtain a boot-
strap estimate. Furthermore, we introduce a centered bootstrap
percentile method and incorporate a bias correction procedure
to enhance the accuracy of measurement results, specifically
considering the skewed distribution observed in CD-SAXS.
Subsequently, we conduct simulations and measurements
using both 1-D and 2-D gratings. The accuracy of the method
is verified by comparing the extracted parameters with those
obtained from OCD. Furthermore, the precision of the method
is verified by comparing the parameter uncertainties with those
obtained from MCMC. We should emphasize that the pro-
posed method is not limited to CD-SAXS metrology but also

Fig. 1. Schematic for the CD-SAXS geometry illustrating the scattering
angle 2θ , the rotation angle ω, and the definitions of the q vectors for both
the nanostructure and the detector.

holds applicability in other related model-based measurement
techniques.

The remainder of this article is organized as follows.
In Section II, we begin by briefly introducing the inverse
problem of CD-SAXS. Following that, we present the pro-
posed bootstrap method and apply it to the inverse problem
of CD-SAXS. In Sections III and IV, we provide some
simulated and experimental results, along with discussions,
to illustrate the validity of the proposed method. Section V
gives some conclusions.

II. METHODOLOGY

A. CD-SAXS Metrology

The schematic for CD-SAXS measurement is illustrated
in Fig. 1. The nanostructure is positioned on a rotation stage,
with the line grating aligned parallel to the rotation axis.
X-rays impinge on the nanostructure and scatter at small
angles of the primary beam. The scattering intensity I is
recorded as a function of the scattering vector q = 4π sin θ /λ ,
where 2θ represents the scattering angle, and λ denotes
the wavelength. The definitions of the q vectors for both
the nanostructure (qx , qy , qz) and the detector (qxz , qy)

are provided in Fig. 1. The nanostructure is rotated at a
series of angles to generate a reciprocal space map (RSM).
The inverse problem is addressed by selectively fitting the
scattering intensity I versus qz at each diffraction order
(referred to as qz slice), or by fitting the scattering intensity I
versus qxz at each rotation angle ω, resulting in the extraction
of nanostructure parameters [5].

A general outline of the process for solving the inverse
problem is depicted in Fig. 2. The main steps include the
following.

1) Collecting the measured intensity Imeas of the nanos-
tructure.

2) Parameterizing the profile of the nanostructure under
test and establishing a forward model to calculate the
predicted intensity related to the profile. Generally,
the predicted intensity I sim is calculated using (1)
and (2) [9]. The scattering intensity Ĩ sim is calcu-
lated through the Fourier transform of the scattering
length density profile, cf. (1), where ρ(r) represents
the shape function including electron density contrast.
Here, L denotes the pitch, l represents the dimension
along the pitch, and ∗ indicates the convolution. Subse-
quently, a scaling factor I s , a Debye–Waller factor DW,
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Fig. 2. Flowchart of the inverse problem in CD-SAXS.

an average background term Ibk, and a Poisson noise
Inoise are incorporated to align the predicted intensity
with the experimental data, as shown in (2).

3) Performing the intensity fitting procedure using an
optimization algorithm such as a genetic algorithm,
to extract nanostructure parameters r. This step is
repeated until a convergence criterion is reached, either
when the GoF is less than or equal to a predetermined
threshold goodness-of-fit (GoFCrit) (GoF ≤ GoFCrit) or
when the number of iterations reaches a preset limit
(N = NCrit)

Ĩ sim(q) =

∣∣∣∣∣
∫

V
ρ(r) ∗

∑
n

δ(l − nL)e−iqr dr

∣∣∣∣∣
2

(1)

I sim(q) = I s Ĩ sim(q) × e−q2 DW 2
+ Ibk + Inoise. (2)

To extract an optimal set of parameters, it is necessary
to select an objective function that effectively captures the
GoF. In this work, we adopt a standard objective function
that compares the mean absolute error (MAE) between the
logarithmic values of the measured and predicted intensities,
as detailed in [9]. The specific form of this objective function
used is as follows:

GoF =
1

Nq − 1

∑ ∣∣log10 I sim(q) − log10 Imeas(q)
∣∣ (3)

where Nq is the number of measured data, I sim is the predicted
intensity, and Imeas is the measured intensity. This objective
function is well suited for situations, where the data span
many orders of magnitude, as is often the case with scattering
intensity data, where the primary peak can be significantly
larger than the high peak.

B. Bootstrap Method for the Inverse Problem
The bootstrap method is based on the plug-in principle

to obtain the estimates when other methods are failed [18].
To enhance the accuracy of measurement results, it is a com-
mon practice to repeat the measurement multiple times and
obtain the results by calculating the averages of the extracted
parameters. As the number of measurements increases indefi-
nitely, the average is considered the closest to the true value.
However, in practice, only a finite number of measurements
can be obtained. The bootstrap method offers a way to utilize
the measured data at hand to not only approximate the desired
quantity but also obtain the associated uncertainty. Fig. 3 illus-
trates the general flow of the bootstrap method. Suppose that
the parameter r is some interesting estimate of the population I,
such as mean, variance, proportion, or other characteristics of
the population. We denote the statistical operation F as the
function that transforms the population I to the estimate r. The
original sample I0 with N observed data I0i (i = 1, 2, . . . , N )
is distributed according to the population I, and suppose the
corresponding estimate computed from this original sample
is r̂ . The idea behind the bootstrap method is to summarize
the distribution of r based on studying the distribution of r̂
using the observed data at hand. To do this, the bootstrap
method follows a prescribed process: First, several bootstrap
samples, I1, I2, . . . , I B , are generated. Each bootstrap sample
Im consists of N data points I∗

mi (m = 1, 2, . . . , B and
i = 1, 2, . . . , N ) drawn with replacement from the original
sample I0. Due to this replacement, some observed data
I0i (i = 1, 2, . . . , N ) may appear multiple times or not at all in
each bootstrap sample. Subsequently, the corresponding esti-
mates r̂∗

m are computed from each bootstrap sample. Finally,
a histogram of the bootstrap distribution of the estimates r̂∗

m
can be constructed. Bootstrap method points out that the
variability of r̂ around r can be mimicked by the variability
of r̂∗

m around r̂ [19].
In this work, we introduce a new version of the bootstrap

method on the inverse problem of CD-SAXS. The approach
is defined as follows.

1) Generate an “original sample” I0 = {I01, I02, . . . , I0N }

that comprises N sets of measured data from N repeated
measurements, with each I0i (i = 1, 2, . . . , N ) being a
vector of measured intensity.

2) Compute the average of this original sample I0 =

{I01, I02, . . . , I0N } to obtain the average data Ĩ0, which
is of the same size as I01, I02, . . . , I0N . Then, solve the
inverse problem using the average data Ĩ0 to obtain an
original estimate r̂ , i.e., the extracted parameters. In this
way, the traditional concept of the bootstrap method
has been extended, allowing the statistical operation F
to be generalized from conventional operations such as
mean, variance, and median, to encompass the mean and
inverse problem-solving operations demonstrated in this
work.

3) By drawing with replacement from I0 N times, a boot-
strap sample I1 = {I∗

11, . . . , I∗

1N } is obtained, with each
I∗

1i (i = 1, 2, . . . , N ) being one of I01, I02, . . . , I0N .
4) Compute the average of this bootstrap sample I1 =

{I∗

11, . . . , I∗

1N } to obtain the average data Ĩ1. Then, solve
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Fig. 3. Flowchart of the bootstrap method.

the inverse problem using the average Ĩ1 to obtain a
bootstrap estimate r̂∗

1.
5) Repeat the above Steps 3 and 4 B times, generating B

sets of bootstrap estimates: {r̂∗

1, r̂∗

2, . . . , r̂∗

B}.
6) Rank these bootstrap estimates in ascending order,

obtaining an order {r̂∗

(1), r̂∗

(2), . . . , r̂∗

(B)}.
7) Compute the average of these bootstrap estimates,

obtaining the final extracted parameters

r̂∗
=

∑B
m=1 r̂∗

m

B
. (4)

The determination of the confidence interval conventionally
relies on the bootstrap percentile method

r∗

α/2 ≤ r ≤ r∗

1−α/2 (5)

where r∗
α denotes the α-percentile of the distribution of

r̂∗

(m)(m = 1, 2, . . . , B). However, this estimation is associated

with a symmetrical distribution, which is not commonly
observed in CD-SAXS. To address this, we adopt a more
suitable centered bootstrap percentile method and employ
a bias correction procedure, if necessary, to achieve more
accurate results. The centered bootstrap confidence interval
is based on the bootstrap sampling principle, this means that
we could obtain the distribution of r̂ − r robustly by those
of r̂∗

(m) − r̂ . Suppose that s∗
α denotes the α-percentile of the

distribution of r̂ − r , and then, a probability statement for
r̂ − r is

P
(
s∗

α/2 ≤ r̂ − r ≤ s∗

1−α/2

)
= 1 − α. (6)

After rearranging, we get the following interval:

r̂ − s∗

1−α/2 ≤ r ≤ r̂ − s∗

α/2. (7)
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Fig. 4. (a) Model parameterization of the grating. (b) Simulated RSM of grating. (c) Fitting results of the qz slices in the inverse problem of CD-SAXS
(intensities are arbitrarily scaled for visualization). (d)–(f) Violin plots representing the bootstrap distributions of three parameters of TCD, Hgt, and BCD,
respectively. The median value is indicated by the dotted red line.

If r∗
α denotes the α-percentile of the distribution of r̂∗

(m) and s∗
α

of r̂∗

(m) − r̂ , then s∗
α is related to r∗

α by

s∗

α = r∗

α − r̂. (8)

Inserting (8) into (7) gives

2r̂ − r∗

1−α/2 ≤ r ≤ 2r̂ − r∗

α/2. (9)

The estimate of the standard uncertainty can be defined as
half the length of this interval

σ = 2r̂ − r∗

α/2 −
(
2r̂ − r∗

1−α/2

)
= r∗

1−α/2 − r∗

α/2. (10)

Comparing (5) and (10), we can observe that the two
estimation methods differ only by an offset for confidence
interval estimation, which does not impact the estimate of
uncertainty. We emphasize that the centered bootstrap method
is suitable for both symmetric and asymmetric distributions,
adhering to the principles of the bootstrap method. This
approach is particularly well suited for accurately capturing
the skewness of the distribution.

In addition to the bias of the interval, the point esti-
mate r̂∗ could also exhibit bias when using (4), which may
exceed the confidence interval. If this happens, the following
bootstrap-based approximation for this bias can be taken:

b̂iasB = r̂∗
− r̂ (11)

i.e., the difference between the average of the bootstrap esti-
mate and the original estimate. Then, the following corrected
bootstrap estimate can be used [18]:

r̂∗

c = r̂ − b̂iasB = 2r̂ − r̂∗. (12)

III. SIMULATION

To validate the effectiveness of the proposed bootstrap
method in CD-SAXS, we conducted a simulation on 1-D
grating and analyzed the bootstrap estimates obtained from
CD-SAXS. The grating is characterized by a symmetrical
trapezoidal model with top CD (TCD), grating height (Hgt),
bottom CD (BCD), and a fixed period of 125 nm, as illustrated
in Fig. 4(a). The nominal dimensions of the testing sample are
TCD = 37 nm, Hgt = 91 nm, and BCD = 70 nm. We should
note that the proposed method is not limited to the investigated
sample and can be readily used for complex nanostructures
with more structural parameters under measurement.

In CD-SAXS simulation, the predicted intensity is gener-
ated from the forward model and then transformed into the
“measured” one by adding the following Poisson noise [9]:

ζ (q) =
√

I sim(q)/6Ibkrand([−1, 1]). (13)

Given that the Poisson noise is proportional to the square root
of the observed intensity. Here, Isim represents the predicted
intensity, and Ibk corresponds to the background scattering
intensity. Fig. 4(b) depicts the intensity distribution with
qx and qz values ranging from −1 to 1 nm−1. Blue areas
signify low-intensity regions, while yellow areas indicate
high-intensity regions. In the simulation, we performed five
repeated “measurements” by randomly generating five groups
of “measured” data using (13) to obtain the original sample I0
in the bootstrap method. Fig. 4(c) presents the fitting results
using qz slices at qx diffraction orders ranging from 1 to 4,
obtained from the average of the original sample I0 using
a genetic algorithm. The intensities are arbitrarily scaled
for visualization. Following the acquisition of the original
sample I0, the bootstrap method was implemented according
to the aforementioned procedure. While there are no strict
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TABLE I
BOOTSTRAP ESTIMATIONS OF THREE PARAMETERS

OBTAINED FROM CD-SAXS

guidelines for selecting the bootstrap number B, it is generally
advised to increase B rather than decrease B, as the observed
sample size grows [18]. The general recommendation of the
bootstrap number is 100–500. In this work, we adopted a
bootstrap number of B = 500.

Fig. 4(d)–(f) illustrates the bootstrap distributions of three
parameters (TCD, Hgt, and BCD). It is evident that, under
the Poisson noise model, the bootstrap distributions are asym-
metrical and mainly distributed in two intervals for each
parameter. Therefore, the centered bootstrap percentile method
is suitable, and we employed a bias correction procedure.
In addition, we assessed the parameter uncertainties obtained
from MCMC for comparison. In this study, we typically
employed 50 chains with 100 000 steps in the MCMC method,
and the chains were resampled every 50 steps to remove
interchain correlations. The weighted probability of accepting
the model is determined by the following equation:

Pi = e−0.5(GoFi −GoFi−1). (14)

Additional details of the MCMC have been described
previously [9].

Table I provides the mean values of three parameters associ-
ated with their uncertainties (with a confidence level of 95%)
obtained from different methods. It is observed that under the
influence of Poisson noise, the extracted parameters obtained
from both the centered bootstrap percentile method (µ1) and
the bootstrap percentile method (µ2) deviate from the nominal
values [37, 91, 70] nm, with a notable difference in TCD
(a deviation of 2.98 nm for µ1 and 1.99 nm for µ2) and
a minor difference in BCD (a deviation of 0.72 nm for µ1
and 0.46 nm for µ2). The differences between the uncorrected
mean values (µ2) and the corrected mean values (µ1) of the
three parameters are minimal, with a notable difference in
TCD (∼1 nm) and a minor difference in Hgt (0.02 nm). How-
ever, the uncorrected mean values (µ2) exceed the confidence
interval due to the skewed distribution. Specifically, the uncor-
rected mean value of TCD is 38.99 nm, falling outside the 95%
confidence interval [39.45, 41.87] nm, while the corrected
mean value is 39.98 nm, falling within the confidence interval.
Similarly, for the BCD parameter, the uncorrected mean value
is 69.54 nm, falling outside the 95% confidence interval
[68.74, 69.46] nm, while the corrected mean value is 69.28 nm,
falling within the confidence interval. This demonstrates the

effectiveness of the proposed bootstrap method in accurately
capturing the skewness of the distribution.

By comparing the parameter uncertainties estimated by the
proposed bootstrap method (σ1) and the MCMC method (σ2),
it can be observed that the uncertainties of three param-
eters estimated by the MCMC method show relatively
small differences, while the uncertainties estimated by the
proposed method show relatively large differences. In addi-
tion, the parameter uncertainties estimated by the MCMC
method are larger than those estimated by the bootstrap
method. Specifically for BCD, although its mean closely
approaches the nominal value, the uncertainty estimated by
the MCMC method remains large. As previously discussed,
the MCMC method does not inherently distinguish potential
defect samples, while the proposed bootstrap method can
comprehensively capture the variability in the measurement,
offering a more thorough evaluation. This simulation demon-
strates the effectiveness of the proposed bootstrap method
in addressing the inverse problem of CD-SAXS, obtaining
both the mean values of parameters and their associated
uncertainties.

IV. EXPERIMENT

To further validate the proposed method, we car-
ried out a series of repeated experiments on a 1-D Si
grating and a 2-D cylindrical Si grating. Subsequently,
we analyzed the bootstrap estimates obtained from these
CD-SAXS measurements. To validate the accuracy of the
proposed bootstrap method, we compared the extracted
parameters obtained from OCD. The OCD measurement
was conducted using an industrial dual-rotating-compensator
Mueller matrix scatterometry (ME-L, Wuhan Eoptics Tech-
nology Company China) [23], [24]. The spectral range varied
from 200 to 800 nm with increments of 10 nm. The
full 15 Mueller matrix elements can be obtained and nor-
malized by the first element. To validate the precision of the
proposed method, we compared the parameter uncertainties
estimated by MCMC.

CD-SAXS measurements were performed at the small-
angle X-ray scattering (SAXS) beamline of the Shanghai
Synchrotron Radiation Facility (SSRF) [25]. The data were
collected by transmitting X-rays through the silicon substrate
with an energy of 10 keV. Scattered X-rays were collected on a
2-D detector (Pilatus 2 M) with a sample-to-detector distance
of 1.97 m. Due to the limitations of experimental conditions,
the repeated measurements were conducted only at 0◦ and 30◦

incidence angles for the 1-D Si grating and 0◦ incidence
angle for the 2-D Si grating. Despite the constrained incidence
angles, satisfactory fitting results were still achieved due to the
relatively simple profiles of these two samples and good prior
knowledge of the samples.

Fig. 5(a) provides the SEM image and parametric modeling
of the 1-D grating used for analyzing the bootstrap estimates
in CD-SAXS measurements. The SEM image reveals that the
local width of the grating structure is 61.26 nm. However,
SEM only captures local features of the structure under
test and does not provide the average size of the structure.
In contrast, CD-SAXS and OCD can provide statistical
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Fig. 5. (a) SEM image and parametric modeling of the 1-D Si grating. (b) Subset of scattering patterns obtained from five repeated CD-SAXS measurements
at two incident angles. (c) Fitting results of the measured and predicted intensities at two incident angles. (d)–(f) Violin plots representing the bootstrap
distributions of three parameters of TCD, Hgt, and BCD, respectively. The median value is indicated by the dotted red line.

information about the structure under test within the illu-
minated area [2]. Fig. 5(b) displays a subset of scattering
patterns from five repeated measurements at incidence angles
of 0◦ and 30◦, respectively. Fig. 5(c) presents the fitting results
of the measured and predicted intensities obtained from the
average of the five repeated measurements under two incidence
angles. Fig. 5(d)–(f) illustrates the bootstrap distributions
of three parameters (TCD, Hgt, and BCD). Similar to the
Poisson noise assumed in the simulation, the bootstrap dis-
tributions are asymmetrical. Therefore, the centered bootstrap
percentile method is suitable, and a bias correction procedure
is employed to correct the mean values and prevent them from
exceeding the confidence interval.

Fig. 6 presents the OCD fitting results of the measured
spectra and the predicted spectra for the 1-D Si grating at
the measurement configuration of incident angle θ = 65◦ and
azimuth angle ϕ = 30◦. The fitting results show a good match.

Table II provides extracted parameters associated with their
uncertainties (with a confidence level of 95%) obtained from
different methods. The extracted parameters obtained from
CD-SAXS (µ1) and OCD (µ2) align closely, with a maximum
difference of 1.88 nm in TCD and a minimum difference
of 0.98 nm in BCD. The results demonstrate the feasibility
and accuracy of the proposed bootstrap method in estimating
mean values in CD-SAXS. Table II also presents the parameter
uncertainties estimated by the proposed bootstrap method
(σ1) and the MCMC method (σ2). The parameter uncertain-
ties estimated by the two methods are relatively consistent,

Fig. 6. Fitting results of the measured and calculated Mueller matrix spectra
of 1-D Si grating.

TABLE II
EXTRACT PARAMETERS AND UNCERTAINTIES OF 1-D Si

GRATING OBTAINED FROM DIFFERENT METHODS

demonstrating the feasibility and precision of the pro-
posed bootstrap method in evaluating parameter uncertainties
in CD-SAXS.
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Fig. 7. (a) SEM image and parametric modeling of the 2-D cylindrical grating. (b) Subset of scattering patterns of five repeated CD-SAXS measurements.
(c) Fitting results of the measured and calculated intensities obtained from the average data of five repeated measurements. (d)–(f) Violin plots representing
the bootstrap distributions of three parameters of R1, Hgt, and R2, respectively. The median value is indicated by the dotted red line.

Fig. 7(a) provides the SEM image and parametric modeling
of the 2-D cylindrical grating used for analyzing the bootstrap
estimates in CD-SAXS measurements. Fig. 7(b) displays a
subset of scattering patterns from five repeated measurements
at normal incidence. Fig. 7(c) presents the fitting results of the
measured and predicted intensities obtained from the average
of the five repeated measurements. The bootstrap method was
employed to obtain the mean values and uncertainties of the
parameters. Fig. 7(d)–(f) illustrates the bootstrap distributions
of three parameters (R1, Hgt, and R2). Similarly, the bootstrap
distributions are asymmetrical and spread across large intervals
for three parameters. Therefore, we employed the centered
bootstrap percentile method and a bias correction procedure
to correct the mean values and prevent them from exceeding
the confidence interval.

For comparison, OCD measurements were also conducted
on the 2-D cylindrical grating. Fig. 8 presents the fitting results
of the measured spectra and the predicted spectra for the
grating at the measurement configuration of incident angle
θ = 65◦ and azimuth angle ϕ = 60◦, the fitting results exhibit
a good match.

Table III provides extracted parameters associated with their
uncertainties (with a confidence level of 95%) obtained from
different methods. The extracted parameters obtained from
CD-SAXS (µ1) and OCD (µ2) align with each other, with
a maximum difference of 3.75 nm in Hgt and a minimum
difference of 2.96 nm in R1. In addition to the differences in
extracted parameters resulting from the utilization of different
metrologies, another factor may stem from our utilization
of measured data obtained from only one incidence angle
in CD-SAXS.

Fig. 8. Fitting results of the measured and calculated Mueller matrix spectra
of 2-D Si grating.

TABLE III
EXTRACT PARAMETERS AND UNCERTAINTIES OF 2-D Si

GRATING OBTAINED FROM DIFFERENT METHODS

Table III also presents the parameter uncertainties estimated
by the proposed bootstrap method (σ1) and the MCMC
method (σ2). It is observed that the uncertainties estimated by
the MCMC method show relatively small differences, while
the uncertainties estimated by the proposed method show
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relatively large differences. In addition, the parameter uncer-
tainties estimated by the MCMC method are larger than those
estimated by the bootstrap method, except for Hgt. The larger
uncertainty of Hgt in CD-SAXS can be attributed to the fact
that its mean value differs more significantly from the value
obtained from OCD, resulting in relatively greater uncertainty.
This further demonstrates the effectiveness of the proposed
bootstrap method in solving the inverse problem of CD-SAXS.
The proposed bootstrap method can comprehensively capture
the variability in the measurement, offering a more thorough
evaluation. It can provide both the mean values of parameters
and their associated uncertainties without any explicit analysis
of error source and error propagation.

V. CONCLUSION

The application of the bootstrap method in the inverse prob-
lem of CD-SAXS has showcased its capability to assess both
the mean values of parameters and the associated uncertainties
by leveraging measured data, serving as a supplement to the
existing evaluation methods in CD-SAXS. The full article is
summarized as follows.

1) A new version of the bootstrap method is designed by
bootstrapping measured data, i.e., the measured inten-
sity, calculating their mean values, and then solving the
inverse problem using these mean values to obtain a
bootstrap estimate. In this way, the traditional concept
of the bootstrap method has been extended, allowing the
statistical operation F to be generalized from conven-
tional operations such as mean, variance, and median,
to encompass the mean and inverse problem-solving
operations demonstrated in this work.

2) Based on the bootstrap principle, a more appropri-
ate centered bootstrap percentile method is adopted in
the inverse problem of CD-SAXS along with a bias
correction procedure to achieve more accurate results,
suitable for both normal and nonnormal distribution
situations.

3) Simulations and experiments are conducted on both 1-D
and 2-D Si gratings. The accuracy of the proposed
method is verified by comparison with OCD, and the
precision of the proposed method is verified by compar-
ison with the MCMC method. The results demonstrate
that the MCMC method does not inherently distinguish
potential defect samples, while the proposed bootstrap
method can comprehensively capture the variability in
the measurement, providing a more thorough evaluation
and obtaining both the mean values of parameters and
their associated uncertainties without any explicit analy-
sis of error source and error propagation. The proposed
method significantly broadens the uncertainty evaluation
methods in CD-SAXS, OCD, and other model-based
measurement techniques.

It should be noted that the accuracy of the estimate is
influenced by the size of the original sample. Therefore,
a careful selection of sample size is crucial to ensure the
reliability of the results. Due to the limited measurement
time and sufficient prior knowledge about the tested nanos-
tructure, only five repeated measurements were conducted.

Despite employing just five sets of original samples in this
study, reasonable results were obtained and that does the trick.
Moreover, the bootstrap method employed in this work does
not explicitly consider the data interdependence or identify
outliers during the resampling process. For future research, it is
worth considering the utilization of the parametric bootstrap
method or the integration of data outlier detection techniques
in the inverse problem of CD-SAXS.
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