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Diffraction-based overlay (DBO) metrology has been suc-
cessfully introduced to deal with the tighter overlay control
in modern semiconductor manufacturing. Moreover, DBO
metrology typically needs to be performed at multiple wave-
lengths to achieve accurate and robust measurement in
the presence of overlay target deformations. In this Let-
ter, we outline a proposal for multi-spectral DBO metrology
based on the linear relation between the overlay errors and
the combinations of off-diagonal-block Mueller matrix ele-
ments ∆M=Mij − (− 1)jMji (i= 1, 2; j= 3, 4) associated with
the zeroth-order diffraction of overlay target gratings. We
propose an approach that can realize snapshot and direct
measurement of ∆M over a broad spectral range without
any rotating or active polarization component. The simu-
lation results demonstrate the capability of the proposed
method for multi-spectral overlay metrology in a single shot.
© 2023 Optica Publishing Group
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In semiconductor manufacturing, the overlay refers to the lat-
eral displacement of a lithographically exposed and developed
feature in one layer with respect to an underlying patterned
layer. The measurement and control of the overlay is of vital
importance to good device performance. As a rule of thumb,
the maximum allowable overlay is about 1/3∼1/5 of the size of
the smallest feature in the integrated circuit, and the associated
measurement precision is expected to be better than 1/5∼1/10
of the permitted overlay error [1]. Currently, the overlay error is
of the order of 1∼2 nm in high-end semiconductor manufactur-
ing, and the associated precision of overlay metrology is at the
sub-nanometer level [2].

In order to deal with the tighter overlay control demands of
today’s semiconductor devices, diffraction-based overlay (DBO)
metrology has been successfully introduced [3,4]. In DBO
metrology, intensities of the +1st and −1st diffraction orders are
usually collected from a specially designed target, which con-
sists of overlapping gratings in the resist layer and an underlying
layer, respectively [5,6]. The difference between the ±1st-order
diffraction intensities ∆I responds approximately linearly to the
shift OV between the gratings (overlay) in a small range, i.e.,

∆I = K · OV , where the slope K is determined by the grat-
ing material, grating profile, and measurement configuration
(the combination of wavelength, polarization, incidence angle,
and azimuthal angle, etc.). To eliminate the dependence on the
unknown K in practice, a pair of target gratings with the same
period are designed along each direction (X and Y directions),
where a small known bias of, respectively, + d and − d is intro-
duced into the two target gratings. To realize better control, the
overlay often needs to be measured on many points on a wafer,
which requires the measurement time to be as short as possi-
ble, typically in the millisecond range [6]. Moreover, the overlay
target size should be as small as possible due to the limited
space reserved for the targets in the pattern on a wafer [7]. In
addition, it is desired that DBO metrology tools could measure
at multiple wavelengths over a broad spectral range in order
to improve accuracy and robustness in the presence of overlay
target deformations [8–10].

Besides the±1st diffraction orders, the zeroth diffraction order
also contains overlay information. It has been demonstrated that
the combination of the off-diagonal-block Mueller matrix ele-
ments ∆M = Mij − (−1)jMji (i = 1, 2; j = 3, 4) associated with
the zeroth diffraction order also responds approximately linearly
to the overlay error OV [11–14]. Therefore, the overlay error can
be measured using the zeroth-order Mueller matrix in a simi-
lar manner to the DBO technique based on the ±1st diffraction
orders (see Section 1 in Supplement 1). Compared with higher
diffraction orders, the zeroth-order diffraction measurement has
striking advantages. First, since the zeroth-order diffraction typ-
ically has a larger intensity than higher orders, the measurement
provides a better signal-to-noise ratio. Additionally, because
the zeroth-order diffraction always exists for gratings with any
period, smaller overlay targets can be measured. Nevertheless,
the key lies in the fast collection of multi-spectral Mueller
matrices.

Currently, multi-spectral Mueller matrix measurement typ-
ically adopts a temporal polarization-coding approach, where
either the orientations of fast axes of the retarders vary over time,
such as the dual rotating-compensator Mueller matrix ellipsome-
ter (MME) [15], or the retardances of the retarders vary over
time, such as the MME with four liquid-crystal variable retarders
[16] or with four photoelastic modulators [17]. However, the
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measurement time for the Mueller matrices in a broad spectral
range often takes several seconds at least. In comparison, the
spectral polarization-coding approach relies on a property that
the retardances of some multi-order birefringent crystals—such
as quartz, MgF2, and calcite—change approximately linearly
with the wavenumber (reciprocal of the wavelength) in the vis-
ible to near-infrared band. The above multi-order birefringent
retarders encode polarization information into the intensity spec-
trum without any rotating or active polarization component, and
then we can perform Fourier analysis to decode the polarization
parameters from the modulated spectrum [18]. Consequently,
multi-spectral Mueller matrix measurement can be realized in a
single integration interval of the detector (thus also termed the
snapshot measurement), which could reach up to 10 ns according
to a recent report [19].

In this Letter, we propose an approach to directly achieve
the combination of the off-diagonal-block Mueller matrix ele-
ments ∆M in a broad spectral range based on the spectral
polarization-coding technique. So far, the snapshot Mueller
matrix measurement is usually realized by employing four multi-
order retarders, i.e., two in the polarization state generator (PSG)
and another two in the polarization state analyzer (PSA), with
a proper thickness ratio and proper orientations of the fast
axes [20,21]. Although the full 4× 4 Mueller matrix can be
obtained with the above configuration of the four multi-order
retarders, the measurement process typically involves more than
20 frequency channels. The cross talk between adjacent fre-
quency channels greatly restricts its applications in broadband
measurement and also affects the measurement accuracy of
Mueller matrix elements. In comparison, there are only two
multi-order retarders in our method (one in the PSG and another
in the PSA). By choosing a proper thickness ratio of the two
multi-order retarders as well as proper orientations of their
fast axes, the combination of the off-diagonal-block Mueller
matrix elements ∆M can be directly achieved with only five fre-
quency channels. Fewer frequency channels makes our method
suitable for more accurate measurement in a broader spectral
range.

Working principle. Figure 1 presents the basic system lay-
out for the snapshot measurement of combinations of the

Fig. 1. (a) Schematic of the basic system layout for the snapshot
measurement of combinations of the off-diagonal-block Mueller
matrix elements, where θ and ϕ denote the incidence and azimuthal
angles, respectively; (b) collected intensity spectrum; and (c) chan-
nel structure obtained by taking the Fourier transform of the
intensity spectrum.

off-diagonal-block Mueller matrix elements. The light from a
broadband source passes successively through the polarizer (P),
the first multi-order retarder (R1), and then illuminates the sam-
ple (i.e., the overlay target grating). The diffracted light from
the sample then passes successively through the second multi-
order retarder (R2), the analyzer (A), and finally enters into the
detector, which could be a spectrometer or an imaging spec-
trometer. Other optical components, such as different kinds of
lenses used for beam collimation and convergence, are omitted
here for brevity. According to Fig. 1, the system model in terms
of the Stokes–Mueller formalism can be expressed as

Sout = [MAR(α2)][R(−β2)MR(δ2)R(β2)]MS

[R(−β1)MR(δ1)R(β1)][R(−α1)MP]Sin,
(1)

where MS represents the sample Mueller matrix; MP and MA

denote the Mueller matrices of the polarizer and analyzer,
respectively; MR(δ1) and MR(δ2) are the Mueller matrices of the
first and second multi-order retarders with retardances of δ1 and
δ2, respectively; R(·) represents the Mueller rotation transforma-
tion matrix; α1 and α2 are the transmission-axis orientations of
the polarizer and analyzer, respectively; β1 and β2 are fast-axis
orientations of the two retarders; Sin = [Iin, 0, 0, 0 ]T represents
the Stokes vector of the incident light with an intensity of Iin; and
Sout is the corresponding Stokes vector of the diffracted light.

The wavenumber-dependent phase retardance of the multi-
order retarder can be expressed as [18]

δ(σ) = 2πtB(σ)σ ≈ 2πf0σ, (2)

where σ is the wavenumber; t and B(σ) represent the thick-
ness and birefringence of the retarder, respectively; and f0 =

1
2π

dδ
dσ

|︁|︁
σ=σ0

, with σ0 being the central wavenumber. If we let
δ1 = δ2 = δ, α1 =α2 = 45°, and β1 = β2 = 90° in Eq. (1), by mul-
tiplying the matrices in Eq. (1), we can obtain the irradiance
spectrum at the detector as follows:

Iout(σ) =
1
4

Iin(σ)

{︃
M11 +

1
2
(M33 − M44)+

1
2
[(M13 +M31) + i(M41 − M14)]eiδ(σ) +

1
2
[(M13 +M31) − i(M41 − M14)]e−iδ(σ)+

1
4
[(M33 +M44) + i(M43 − M34)]ei2δ(σ) +

1
4
[(M33 +M44) − i(M43 − M34)]e−i2δ(σ)

}︃
,

(3)
where Mij (i, j= 1, 2, 3, 4) denotes the sample Mueller matrix
elements. After substituting Eq. (2) into Eq. (3), we can see
that the combinations of the sample Mueller matrix elements,
especially the combinations of the off-diagonal-block Mueller
matrix elements M13 +M31 and M41 − M14, are modulated into
different frequency channels in the Fourier domain as follows:

Ci(h) = F {Iout(σ)} · Wi(h), (4)

where i (i= 0,± 1,± 2) is the channel number, h is the optical
path difference (OPD), F {·} denotes the Fourier transform, and
Wi(h) is a rectangular windowing function. The window width
of Wi(h) is generally less than the channel spacings and greater
than the bandwidth of sample signal in the OPD domain. Since
δ1 = δ2 = δ, the channel spacings between adjacent channels are
equal and given by ∆h = [δ(σmax) − δ(σmin)]/[2π(σmax − σmin)].
Note that too wide a window width will introduce additional
random noise, while too narrow a window width will exclude
effective sample information. The combinations of off-diagonal-
block Mueller matrix elements M13 +M31 and M41 − M14 can
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Fig. 2. Schematic of the overlay target grating.

then be acquired by taking the inverse Fourier transform of the
channels in the OPD domain as

M13 +M31 = Re{8F −1{C1(h)}e−iδ(σ)}/Iin(σ), (5a)

M41 − M14 = Im{8F −1{C1(h)}e−iδ(σ)}/Iin(σ), (5b)

where Re{·} and Im{·} represent the real and imaginary parts
of a complex number, respectively.

Compared with the traditional snapshot full Mueller matrix
polarimetry, which typically involves more than 20 frequency
channels in measurement [20,21], as presented in Eq. (3), the
proposed method only involves five channels and thus is more
suitable for broadband measurement with a loose requirement
on spectral resolution of the detector. It is noted that, besides
the configuration of δ1 = δ2 = δ,α1 =α2 = 45°, and β1 = β2 = 90°,
there are some other configurations that can also be used for the
snapshot measurement of combinations of off-diagonal-block
Mueller matrix elements (see Section 2 in Supplement 1). In
addition, we analyze the measurement results of combinations of
the off-diagonal-block Mueller matrix elements in the presence
of alignment errors in orientations of the polarization compo-
nents (see Section 3 in Supplement 1). We find that the real
part of C1(h) contains contributions from not only M13 +M31

but also the elements M12, M21, M23, and M32 in the presence of
alignment errors. Meanwhile, the imaginary part of C1(h) con-
tains contributions from both M41 − M14 and elements M24 and
M42. Considering that the elements M12 and M21 are generally
not equal to zero at any azimuthal configurations of the target
grating, which will ultimately lead to a nonzero intercept in the
linear relation for overlay metrology and affect the measurement
accuracy of overlay errors, the imaginary part of C1(h) thereby
seems to be better than its real part.

Results and discussion. Figure 2 depicts the schematic of
the overlay target grating investigated in the simulation. The
materials from top to bottom are photoresist (Resist), bottom
anti-reflective coating (BARC), silicon dioxide (SiO2), and sili-
con (Si). The pitch of the target grating is 400 nm. We assume
that the target grating has a symmetrical profile. The crit-
ical dimension (CD), height, and sidewall angle (SWA) of
the top photoresist grating are CD1 = 200 nm, H1 = 110 nm,
and SWA1 = 87°, respectively. The CD, height, and SWA of
the bottom Si grating are CD2 = 140 nm, H2 = 150 nm, and
SWA2 = 87°, respectively. The thicknesses of the middle BARC
and SiO2 layers are H3 = 15 nm and H4 = 100 nm, respectively.
The intentional bias of the target grating was set to be d = 10 nm.

In the simulation, the materials of the two multi-order
retarders R1 and R2 in Fig. 1 were chosen to be MgF2 due
to the good linearity of the retardance of MgF2 with respect to
wavenumber in the visible to near-infrared band [22]. The thick-
nesses of the two multi-order retarders R1 and R2 were chosen to
be t= 6.4 mm. The relation between the thicknesses of the multi-
order retarders and the spectral resolution of the detector can be

Fig. 3. Comparison between the theoretical and recovered spectra
of M13 +M31 and M41 − M14 for the two target gratings: (a) OV + d
and (b) OV − d at the incidence angle of θ = 65° and azimuthal
angle of ϕ= 90°, where the overlay error was set to be OV = 5 nm;
and (c) and (d) the corresponding recovery errors.

determined according to the sampling theorem (see Section 4 in
Supplement 1). Rigorous coupled-wave analysis (RCWA) [23]
was adopted to calculate the zeroth-order Mueller matrices of
the target grating at different measurement configurations. To
simulate the detection noise, Gaussian random noise was added
to the intensity spectrum Iout(σ) calculated by Eq. (3) with a
standard deviation of 1% of Iout(σ) (about 40 dB). Averaging the
simulated intensity spectra multiple times can mimic different
exposure time settings of the detector in practice. We averaged
the simulated intensity spectrum ten times in the simulation. For
the above overlay target grating and thickness setting of the two
multi-order retarders, we found that a window width of ∆h/3
was appropriate for accurate recovery of M13 +M31 and M41 −

M14 from the intensity spectrum by simulation.
Figure 3 presents the comparison between the recovered and

the RCWA-calculated theoretical spectra of M13 +M31 and M41

− M14 for the two target gratings (OV + d and OV − d) at the
incidence angle of θ = 65° and azimuthal angle of ϕ= 90°. The
recovery results at other measurement configurations are pre-
sented in Fig. S3 in Supplement 1. As can be observed, the
recovered spectra exhibit good agreement with the theoretical
spectra within a broad spectral range from about 430 nm to
710 nm. The recovery errors defined as the differences between
the recovered and theoretical spectra are mainly attributed to the
random noise in the intensity spectrum, the recovery algorithm,
and the actual nonlinear dispersion of the retardance of MgF2

[22].
The recovered combinations of the off-diagonal-block

Mueller matrix elements M13 +M31 and M41 − M14 were then
used to measure overlay errors (see Section 1 in Supplement 1
for the measurement principle). Figure 4 presents the compari-
son between the preset (input) and the measured overlay errors
from the recovered M13 +M31 and M41 − M14 spectra at θ = 65°

Fig. 4. (a) Comparison between the preset and measured overlay
errors from the M13 +M31 and M41 − M14 spectra, and (b) the
corresponding measurement errors.
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and ϕ= 90°. Although a single wavelength value of M13 +M31

or M41 − M14 was enough to measure overlay errors, we aver-
aged the values of M13 +M31 and M41 − M14 over a randomly
selected spectral range from about 500 nm to 550 nm and then
used the averaged value to measure overlay errors to demonstrate
the capability of our proposed method for multi-spectral overlay
metrology. Note that the above multi-wavelength averaging also
improves measurement accuracy of overlay errors (see Fig. S5
in Supplement 1). The measurement results of overlay errors at
other measurement configurations are presented in Fig. S4 in
Supplement 1. As can be observed, the measured overlay errors
from M13 +M31 and M41 − M14 both show good agreement with
the corresponding preset values. Higher measurement accuracy
of overlay errors could be achieved if we further average the
measured results from M13 +M31 and M41 − M14.

The results presented in Figs. 3 and 4, as well as in Figs.
S3 and S4 in Supplement 1, clearly demonstrate the capability
of the proposed method for multi-spectral overlay metrology in
a single shot. In the above simulation, the source intensity I in

was assumed to be constant with wavelength. We should note
that in practice, I in will not only vary with wavelength but also
fluctuate over time. The accurate calibration of I in is thereby of
importance for the accurate recovery of Mueller matrix elements
and measurement of overlay errors. In addition, attention should
be paid to the retardances of multi-order retarders which are
susceptible to ambient temperature [24].

Conclusion. We have proposed an approach for the snapshot
and direct measurement of combinations of off-diagonal-block
Mueller matrix elements associated with the zeroth-order
diffraction of overlay target gratings. The simulation results
have demonstrated the capability of the proposed method for
multi-spectral overlay metrology in a single shot. Due to the
compact size in polarization modulation and demodulation, the
proposed method can be further combined with angle-resolved
scatterometry based on a high-numerical-aperture objective [5]
by replacing the detector with an imaging spectrometer to
achieve snapshot measurement at multiple wavelengths, mul-
tiple incidence angles, and multiple azimuthal angles for more
accurate and robust overlay metrology. It should be pointed out
that this work is a report of the first step of the research where the
proposal and preliminary verification of the proposed method
in realizing multi-spectral snapshot overlay metrology were pri-
marily focused. The combination of the proposed method with
angle-resolved scatterometry will be investigated in the next
step of our research. In addition, the exploration of the col-
lected multi-spectral Mueller matrix elements for accurate and
robust overlay measurement in the presence of target defor-
mations will be carried out as future work, which involves
the optimization of target designs [25] and measurement
configurations [26].
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1. Overview of DBO metrology based on the zeroth-order Mueller matrix 
The overlay metrology using the zeroth-order Mueller matrix is based on an empirical linear 
relation, that is, the combination of the off-diagonal-block Mueller matrix elements ∆M 
associated with the zeroth-order diffraction of the overlay target grating is approximately linear 
with respect to the overlay error OV when OV is in a small range, i.e., 

 ( 1) ( 1, 2; 3, 4)j
ij jiM M M K OV i j∆ = − − ≈ ⋅ = = . (S1) 

As schematically shown in Fig.S1, to realize overlay metrology, two target gratings with the 
same period are designed along each direction (X or Y direction), where d and −d are known 
values that represent the designed bias and OV is the actual overlay error induced in the 
manufacturing processes. Therefore, the total overlay displacement in the two target gratings 
will be OV + d and OV − d, respectively. By collecting the zeroth-order Mueller matrices 
associated with the two target gratings, and according to Eq. (S1), we will have 

 ( )dM K OV d+∆ ≈ ⋅ + , (S2a) 

 ( )dM K OV d−∆ ≈ ⋅ − . (S2b) 

According to Eq. (S2), we can finally obtain the overlay error OV as 

 d d

d d

M M
OV d

M M
+ −

+ −

∆ + ∆
= ⋅
∆ − ∆

. (S3) 

Note that the Mueller matrix elements in Eq. (S3) can be normalized or unnormalized to the 
M11 element. 

 
Fig.S1 Principle of the DBO metrology based on the zeroth-order Mueller matrix 

2. Other configurations for the snapshot measurement of combinations of off-
diagonal-block Mueller matrix elements 

According to Eq. (1), by letting δ1 = δ2 = δ and adjusting the orientations of the polarization 
components, α1, α2, β1, β2, we can obtain some other configurations for the snapshot 



measurement of combinations of off-diagonal-block Mueller matrix elements, as summarized 
in Table S1. 

Table S1. Other configurations for the snapshot measurement of combinations of off-
diagonal-block Mueller matrix elements 

Configurations Combinations of off-diagonal-
block Mueller matrix elements 

Associated 
frequency channels 

α1 = 0°, β1 = ±45°, β2 = 0°, α2 = 45° M41 − M14 C1(h) 

α1 = 90°, β1 = ±45°, β2 = 90°, α2 = 45° M41 − M14 C1(h) 

α1 = ±45°, β1 = 0°, β2 = 45°, α2 = 0° M41 − M14 C1(h) 

α1 = ±45°, β1 = 90°, β2 = 45°, α2 = 90° M41 − M14 C1(h) 
α1 = 0°, β1 = ±45°, β2 = ±45°, α2 = 0° M41 − M14, M42 − M24 C1(h), C2(h) 
α1 = 90°, β1 = ±45°, β2 = ±45°, α2 = 90° M41 − M14, M42 − M24 C1(h), C2(h) 
α1 = ±45°, β1 = 0°, β2 = 0°, α2 = ±45° M13 + M31, M41 − M14 C1(h) 
α1 = ±45°, β1 = 90°, β2 = 90°, α2 = ±45° M13 + M31, M41 − M14 C1(h) 

 

3. Analysis in the presence of systematic errors 
The measurement of the combination of the off-diagonal-block Mueller matrix elements M13 + 
M31 or M41 − M14 according to Eqs. (1)-(5) relies on the accurate alignment of orientations of 
the polarization components. Nevertheless, note that the measurement results are ultimately 
used for overlay metrology. According to Section 1 of this Supplement, the key of the DBO 
metrology based on the zeroth-order Mueller matrix lies in the linear relation between the 
combination of the off-diagonal-block Mueller matrix elements ∆M and the overlay error OV. 
Therefore, minor alignment errors in orientations of the polarization components could be 
acceptable, provided that the final measurement results of the combinations of the off-diagonal-
block Mueller matrix elements do not affect the above linear relation in DBO metrology. 

We analyze the measurement results of the combinations of the off-diagonal-block Mueller 
matrix elements in the presence of alignment errors. Considering that the alignment errors are 
typically small values, we adopt the following approximations in the analysis, i.e., sinε ≈ ε, 
cosε ≈ 1 − ε2/2, and ignore high-order error terms. We denote the alignment errors in the 
orientations of the polarizer, the analyzer, and the two retarders as δα1, δα1, δβ1, and δβ2, 
respectively. In the presence of alignment errors, the system model given in Eq. (1) can be 
rewritten as 

 
[ ] [ ]
[ ] [ ]

out A 2 2 2 2 R 2 2 2 S

1 1 R 1 1 1 1 1 P in

( + ) ( ) ( ) ( + )

( ) ( ) ( + ) ( )

α δα β δβ δ β δβ

β δβ δ β δβ α δα

= ⋅ − − ⋅ ⋅

− − ⋅ − − ⋅

S M R R M R M

R M R R M S
. (S4) 

According to Eq. (S4), we have 
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,

   (S5) 

By taking the inverse Fourier transform of the channels in the OPD domain, we will have 

 
{ }1 i ( )

1 in
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Re 8 { ( )} ( )

2 2 2( ) 2( )

C h e I

M M M M M M

δ σ σ

δβ δβ δβ δα δβ δα
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, (S6a) 
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Im 8 { ( )} ( )

2( ) 2( )

C h e I

M M M M

δ σ σ

δβ δα δβ δα
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. (S6b) 

As can be observed from Eq. (S6), in the presence of alignment errors, the real part of the 
channel C1(h) contains both the combination M13 + M31 and the contributions from the elements 
M12, M21, M23, and M32. Meanwhile, the imaginary part of the channel C1(h) contains both the 
combination M41 − M14 and the contributions from the elements M24 and M42. In the absence of 
overlay errors, the off-diagonal-block Mueller matrix elements M23, M32, M24, and M42 are equal 
to zero when the plane of incidence parallel to grating lines. However, the elements M12 and 
M21 are generally not equal to zero at any azimuthal configurations of the target grating, which 
will ultimately lead to a nonzero intercept in the linear relation for overlay metrology. From 
this aspect, the imaginary part the channel C1(h), i.e., Eq. (S6b), seems to be better than its 
counterpart, i.e., Eq. (S6a). 

4. Relation between thicknesses of the multi-order retarders and spectral 
resolution of the detector 

The multi-order retarders are critical components in the spectral polarization-coding technique. 
As schematically shown in Fig. 1, there are totally 5 frequency channels in the collected 
intensity spectrum. The frequency channels can be separated from each other by selecting 
proper thicknesses of the multi-order retarders. Generally, as the thickness of the multi-order 
retarder increases, the distance between adjacent frequency channels becomes larger, which is 
beneficial to avoid channel crosstalk. From another aspect, with the increase of the thickness 
of the multi-order retarder, the spectral resolution of the detector also needs to be improved in 
order to satisfy the well-known Nyquist-Shannon sample theorem. In other words, there should 
be a constraint relation between thicknesses of the multi-order retarders and spectral resolution 
of the detector. 

To derive the above constraint relation, without loss of generality, we denote the thicknesses 
of the two multi-order retarders (R1 and R2 in Fig. 1) as t. We assume that the detector is a 
wavelength evenly sampling system (such as a spectrometer) with an effective spectral range 



of [λmin, λmax] and a spectral resolution of ∆λ. Note that the following results can be readily 
adjusted to a wavenumber evenly sampling system (such as a Fourier transform spectrometer). 

The number of sampling points of the collected intensity spectrum by the detector is N = 
(λmax − λmin)/∆λ. The highest frequency of the channeled spectrum in the OPD domain can be 
expressed as 

 max max2 ( )f B tσ= ⋅ , (S7) 

where max( )B σ  represents the maximum birefringence of the multi-order retarders in the 
spectral range of [λmin, λmax]. Since the wavenumber resolution is not uniform at both ends of 
the spectrum, we use the geometric mean 

 min max
max min

λσ σ σ
λ λ

∆
∆ ≈ ∆ ⋅∆ =

⋅
 (S8) 

as the resolution of the spectrum in the wavenumber domain. Hence, the sampling frequency 
of the spectrum in the OPD domain is 

 
1

sf σ
=
∆

. (S9) 

According to the sampling theorem (fs > 2fmax), the minimum number of sampling points 
required for the detector can be calculated as 

 max max min

max min

4 ( ) ( )B t
N

σ λ λ
λ λ

−
>

⋅
. (S10) 

For the multi-order retarders made of MgF2 with thicknesses of t = 6.4 mm, according to Eq. 
(S10), we can know that the minimum number of sampling points is N = 374 for a detector with 
an effective spectral range of 400~800 nm. In other words, the spectral resolution of the detector 
should be higher than 1.07 nm. 

 
Fig.S2 Recovery results of (a) M13 + M31 and (b) M41 − M14 with different numbers of sampling 
points N = 350, 374, 500, and 800, respectively, (c) and (d) the corresponding recovery errors to (a) 
and (b), respectively. The M13 + M31 and M41 − M14 spectra were calculated for the OV − d target 
grating at the incidence angle of θ = 65° and azimuthal angle of φ = 90°. 
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Figure S2 presents the recovery results of M13 + M31 and M41 − M14 with the number of 
sampling points N = 350, 674, 500, and 800, respectively. As can be observed, although M13 + 
M31 and M41 − M14 can be recovered when N = 350, the recovery errors at some wavelengths 
are relatively large due to the under-sampling rate. In comparison, a better recovery 
performance can be achieved when N ≥ 374. Moreover, with the increase of the number of 
sampling points, the recovery accuracy can be increased to a certain extent. The residual 
recovery errors are attributed to the random noise in the intensity spectrum, the recovery 
algorithm, as well as the actual nonlinear dispersion of the retardance of MgF2. 

5. Other simulation results 
Figure S3 presents the comparison between the recovered and the RCWA-calculated theoretical 
spectra of M13 + M31 and M41 − M14 for the two target gratings (OV + d and OV − d) at the 
incidence angle of θ = 65° and azimuthal angle of φ = 75°. Figure S4 presents the comparison 
between the preset (input) and the measured overlay errors from the recovered M13 + M31 and 
M41 − M14 spectra at θ = 65° and φ = 75°. The values of M13 + M31 and M41 − M14 were first 
averaged over the spectral range from about 500 nm to 550 nm, respectively, and then used to 
measure overlay errors. 

 
Fig.S3 Comparison between the theoretical and recovered spectra of M13 + M31 and M41 − M14 for 
the two target gratings: (a) OV + d and (b) OV − d at the incidence angle of θ = 65° and azimuthal 
angle of φ = 75°, where the overlay error was set to be OV = 5 nm; (c) and (d) the corresponding 
recovery errors. 
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Fig.S4 (a) Comparison between the preset and measured overlay errors from the M13 + M31 and M41 
− M14 spectra collected at the incidence angle of θ = 65° and azimuthal angle of φ = 75°, (b) the 
corresponding measurement errors. 

Figure S5 presents the comparison between the preset (input) and the measured overlay 
errors from the recovered M13 + M31 and M41 − M14 at θ = 65°, φ = 75°, and at the wavelengths 
of λ = 500 nm and λ = 550 nm, respectively. The comparison between Figs. 4 and S5 
demonstrates that multi-wavelength averaging yields higher accuracy than single wavelength 
in overlay measurement, since multi-wavelength averaging reduces errors induced by random 
noise and recovery errors in the recovered M13 + M31 and M41 − M14. 

 
Fig.S5 Comparison between the preset and measured overlay errors from the M13 + M31 and M41 − 
M14 collected at the wavelengths of (a) λ = 500 nm and (b) λ = 550 nm and at the incidence angle of 
θ = 65° and azimuthal angle of φ = 90°; (c) and (d) the corresponding measurement errors. 
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