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A B S T R A C T   

Noise, one of the severe challenges in phase retrieval, may bring the algorithms to fall into local minima or even 
disrupt the convergence, thereby adversely affecting the imaging quality and convergence efficiency in the 
ptychography. Here, we propose an adaptive noise-blind-separation (aNBS) algorithm to deal with mixed noises 
of different types without sensitivity discrepancy in ptychography. In the aNBS algorithm, apart from the 
coherent probe of the illumination wavelength, virtual probes of different wavelengths are introduced to capture 
the noise energies, and the coupling mixed noises are adaptively blind-separated into the virtual noise probes in 
ptychography. The proposed algorithm can blindly separate coherent diffraction signals and noises without 
requiring additional regularization constraints, noise prior assumptions or dynamic iteration parameters. Sim
ulations and experiments are comparatively conducted with the momentum-accelerated ptychographical itera
tive engine algorithm without dealing with noises and the least-square maximum-likelihood ptychographical 
iterative engine algorithm using a mixed Poisson-Gaussian likelihood model. Results indicate that the aNBS- 
based ptychography significantly enhances the convergence robustness when the noise intensity increases by 
more than two orders of magnitude. Compared with existing methods, the proposed aNBS algorithm demon
strates superior robustness and generality for the phase retrieval in coherent diffraction imaging and can be 
widely applied to various fields, such as ptychography, holography, and tomography.   

1. Introduction 

Due to the inherent constraints of fabricating optical lenses with 
superior imaging qualities and larger numerical apertures, conventional 
optical microscopes have encountered difficulties in meeting the imag
ing demands of emerging fields, such as cell biology [1], condensed 
matter physics [2], and emerging materials science [3]. Ptychography, a 
lensless imaging technique, inherently falls into the category of phase 
retrieval. Rodenburg et al. proposed the ptychographical iteration en
gine (PIE [4]) for the first time to retrieve phase through alternating 
projections in ptychography. Subsequently, they extended the algorithm 
to address blind problems without the prior probe (i.e., the extended 
PIE, ePIE [5]) and enhanced both the convergence robustness (i.e., the 
regularized PIE, rPIE [6]) and the convergence speed (i.e., the 
momentum-accelerated PIE, mPIE [6]). Simultaneously, alternative 
phase retrieval algorithms, such as the difference map [7], the relaxed 
averaged alternating reflections [8] and others [9,10], based on the 
projection and reflection principle, have also been proposed, and these 

approaches have further refined the results in blind ptychography, 
exhibiting increased convergence speeds and stronger abilities to escape 
the local minima compared with PIE-kernel ptychography. 

Besides the iterative projection algorithms [4–11], several innova
tive proximal algorithms also have also been introduced in the field of 
ptychography, such as proximal gradient methods [12–14] and alter
nating direction methods of multipliers (ADMM) [15–17]. All these al
gorithms, including projection algorithms and proximal algorithms, are 
also referred to as “class 1 algorithms” [18]. Recently, more and more 
researchers have focused on the noise in “class 2 algorithms [19–24]”, 
which constitutes the most fundamental relaxation of the “class 1 al
gorithms”, and reconstruction algorithms for ptychographic noises have 
been developed with an emphasis on enhanced robustness and gener
ality. For instance, by establishing statistical noise models, the available 
results were effectively extracted by Thibault et al. [25] and Odstrčil 
et al. [26] from the raw ptychography data based on 
maximum-likelihood estimation, which minimized the negative loga
rithm of the likelihood function to maximize the likelihood of measured 
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intensity or amplitude for the noise distribution functions essentially. 
However, these maximum-likelihood algorithms often require prior as
sumptions [27,28] or appropriate regularization requirement [29] to 
ensure the iterative convergence. Zhang et al. [30] removed the regu
larization demand by combining generalized Anscombe transform 
approximation of mixed Poisson-Gaussian models with 
maximum-likelihood principle, but the algorithm still needed prior as
sumptions model to approximate noises. By further combining 
variance-stabilizing transforms with maximum-likelihood estimation 
method, Konijnenberg et al. [31] improved the cost function of pty
chography using the adaptive intensity constraint, which made the al
gorithm more general by removing the constraint of noise prior 
assumptions. Due to the presence of noise, the ptychography has been 
actually transformed into a more complicated non-convex optimization 
problem, and Zuo et al. [32] and Wu et al. [33] applied an adaptive step 
size method to suppress the decline of convergent accuracies. Those 
noise-optimization algorithms that minimize the ptychographic cost 
function can only reduce the impact of noises on the reconstruction 
accuracy but cannot completely separate the noises from the convergent 
images. 

Recently, noise-separation algorithms have attracted great interest 
from researchers in the field of ptychography. As presented by Wang 
et al. [34], the mixed noises, approximated as the background noise, 
were directly removed from the measurement signals by using the 
minimization method, threshold method, and localized erasing method, 
while these methods may directly cause the loss of high spatial fre
quencies in diffraction signals. By combining guided filtering with the 
ePIE algorithm, an adaptive guided filtering method to inhibit the 
background noise was proposed by Qiao et al. [35], but their method 
still needed to adjust the constraint factor in the iteration process yet. A 
more advanced algorithm to optimize and remove mixed noise in pty
chography was also presented by Chang et al. [36] based on the forward 
physical model of background noise and the shift-Poisson method with 
the maximum a posteriori estimation. 

In this paper, an innovative adaptive noise-blind-separation (aNBS) 
algorithm is presented to effectively deal with mixed noises in ptycho
graphic reconstructions while maintaining consistent sensitivity to 
different noise types. By constructing scalar diffraction propagation of 
the virtual probes and the illumination probe based on the “Fractional” 
Fourier transform [37], the coupled mixed noises in the diffraction 
signals could be adaptively separated into the noise probes in the pty
chographic iterative process. Unlike existing algorithms [6,26], the 
proposed aNBS algorithm does not need additional regularization nor 
noise prior assumptions. Furthermore, the algorithm does not need to 
adjust the iteration parameters [35] in the convergence process and can 
blindly separate different mixed noises without any sensitivity discrep
ancy as the noise intensity increases by several orders of magnitude. 
These advantages make the proposed aNBS algorithm more robust and 
general than state-of-the-art algorithms, enabling its application in 
various fields of coherent diffraction imaging including the ptychog
raphy, holography, and tomography. 

2. Theory and algorithm 

As a fundamental optical propagation model, the scalar diffraction 
propagation based on the discrete Fourier transform has been widely 
applied in holography [37,38], ptychography [18,39,40], ankylography 
[41,42] and tomography [24]. Limited by the scale constraints of the 
sampling interval and optical field size between the source plane and the 
observation plane [43], the angular spectrum propagation and the 
Fresnel integral model only adapt to the near-field optical diffraction. 
However, in the far-field optical diffraction, the Fraunhofer integral, 
which maintains the constant factor (λz) of a scale constraint between 
the source plane and the observation plane, encounters difficulties in 
upholding the alignment of the sampling interval and optical field size 
during multi-wavelength propagation. 

2.1. The variable scale Fresnel convolution integral 

The Fresnel convolution integral, based on the “Fractional” Fourier 
transform [37], breaks the sampling interval and optical field size con
straints imposed by the Fresnel and Fraunhofer diffraction integrals, and 
thus provides an impeccable solution for the free-space propagation of 
diffraction fields over multiple wavelengths. The conventional Fresnel 
diffraction integral can be expressed by 

u2(x2, y2) =
exp(ikz)

iλz

∫ ∫

u1(x1, y1)exp
{

ik
2z
[
(x2 − x1)

2
+(y2 − y1)

2]
}

dx1dy1,

(1)  

where, k is the wave number, λ is the optical vacuum wavelength, z is the 
propagation distance between the source plane and the observation 
plane, and x1, y1 and x2, y2 are the coordinate variables of the source 
plane and the observation plane respectively, u1(x1, y1) and u2(x2, y2) 
are the optical distributions of the source plane and the observation 
plane respectively. 

By introducing the scaling factors m and n, which are not limited to 
the λz scale constraint in the Fraunhofer diffraction integral, the Fresnel 
integral on Eq. (1) can be rewritten as 
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assuming that the intermediate variable u(x1, y1) related to the source 
plane optical field distribution can be expressed as 

u(x1, y1) = u1(x1, y1)exp
{

ik
2z

[

(1 − m)x2
1 + (1 − n)y2

1)]}, (3)  

the variable scale Fresnel convolution integral u2(x′
2, y′

2) can be obtained 
as 

u2
(
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2, y
′
2

)
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exp
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u(x1, y1) × h
(
x′

2 − x1, y′
2 − y1

)
dx1dy1,

(4)  

where, the scaled sampling interval x′
2 and y′

2 of the observation plane 
and the convolution function h(x′

2-x1, y′
2-y1) can be calculated according 

to Eq. (2) as respectively 

x′
2 =

x2

m
, y′

2 =
y2

n
, (5)  

h
(
x′

2 − x1, y′
2 − y1

)
= exp[

ikm
2z
(
x′

2 − x1
)2

+
ikn
2z
(
y′

2 − y1
)2
] (6) 

By carefully selecting appropriate scale factors (m and n) on the 
source plane to account for varying wavelengths, the optical field dis
tribution at the observation plane can be calculated using the “Frac
tional” Fourier transform in conjunction with the Fresnel convolution 
integral. Compared with conventional Fresnel and Fraunhofer diffrac
tion integrals, the computational complexity of the variable scale Fres
nel convolution integral is maintained at a comparable level. Therefore, 
the method provides a fast and effective solution for tackling the com
plexities of diffraction propagation involving multi-wavelength optical 
fields. 
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2.2. The aNBS algorithm for mixed noises 

The experimental setup and iterative algorithms of ptychography 
have been described in previous literature [18,39], and will not be 
discussed in detail here. Diffraction signals are collected at different 
offsets between the probe and the specimen in finite offsets S, and the jth 
diffraction signal Iqj is recorded according to Eq. (7) 

Iqj =
⃒
⃒F
[
Pr × Or+rj

]⃒
⃒2, ∀ rj ∈ S, (7)  

where, q and r are reciprocal-space and real-space coordinate variables, 
Pr is the complex function of the illumination beam called the “probe” 
and Or+rj is the complex refractive function of the specimen called the 
“object”. rj is the jth object relative offset (xj, yj) in the set S, and F is the 
two-dimensional scalar diffraction model. According to the real-space 
overlap constraints and the reciprocal-space modulus constraints, the 
ptychographic phase retrieval minimizes the Euclidean norm ε as 

ε = arg min
Pr ,Or+rj

∑

j
‖

̅̅̅̅̅
Iqj

√
− F

[
Pr × Or+rj

]
‖2, ∀ rj ∈ S. (8) 

However, during the data acquisition process, the diffraction signals 
Iqj are inevitably contaminated by the existing noise. The measured 
diffraction signals IMeas

qj 
can be obtained in practice as 

IMeas
qj

=
⃒
⃒F
[
Pr × Or+rj

]⃒
⃒2 + Nj(q), ∀ rj ∈ S, (9)  

where, Nj(q) are noise signals attached on the ideal diffraction signals 
Iqj. Therefore, the problem of Eq. (8) is actually a complex non-convex 
optimization, and the minimum of the Euclidean norm has been trans
formed into the minimum of the density functional analysis ε[Nj(q)] 

min ε
[
Nj(q)

]
= arg min

Pr ,Or+rj

∑

j
‖

̅̅̅̅̅̅̅̅̅̅
IMeas

qj

√
− F

[
Pr × Or+rj

]
‖

2
, ∀ rj ∈ S. (10) 

Usually, the noises in ptychography are mixed, not in a single form, 
mainly including the background noises (Direct-current distribution), 
the photon shot noises (Poisson distribution) and the reading noises 
(Gaussian distribution), etc., which are coupled with diffraction signals 
and seriously affect the convergence speed and reconstruction accuracy 
of iterative algorithms. Based on the ptychographic information multi
plexing (PIM) algorithm [20] and the “Fractional” Fourier transform 
with Fresnel convolution integral [37], the proposed aNBS algorithm 
constructs the mixed noise density function by other virtual 
non-illumination wavelengths and synchronously updates the object 
function, the illumination probe and noise probes in the iteration loop, 
which adaptively blindly separates the coupled mixed noise into the 
virtual noise probes. The iteration steps of the algorithm are as follows:  

1) Raw data acquisition. Raw measurement diffraction signals IMeas
qj 

are 
collected directly by CCD or CMOS cameras, and any pre-processing 
operations for raw signals need not to be done, where mixed noises 
are coupled in the raw data.  

2) Initial guess of the object Or+rj, the illumination probe Pillu
r (λ1) and 

the virtual noise probes Pnois
r (λn). Where, λ1 is the illumination 

wavelength and λn are other wavelengths. The matrix dimensions of 
the noise probes and the illumination probe are same, only the 
wavelengths are independent of each other.  

3) Make the finite offsets S random. Cutting out the current area of the 
object Or+rj, which is identical in size to the probes, generates the 
exit-wave ψillu

r (λ1) by interacting with the illumination probe 
Pillu

r (λ1). Noise probes Pnois
r (λn) do not interact with any objects, so 

exit-waves ψnois
r (λn) are themselves. Therefore, exit-waves with 

different wavelengths are expressed as 

ψillu
r (λ1) = Pillu

r (λ1) × Or+rj , ∀rj ∈ S ,

ψnois
r (λn) = Pnois

r (λn), n ≥ 2 .
(11)    

4) The exit-waves with different wavelengths are propagated by the 
“Fractional” Fresnel convolution integral, and the estimated 
diffraction distributions, including the illumination probe and noise 
probes, with different wavelengths can be expressed as 

ΦEst
q (λn) = ℑ[ψr(λn)], n ≥ 1 , (12)  

where, ℑ is the “Fractional” Fourier transform with Fresnel convo
lution diffraction integral. 

5) The modulus constraint at different wavelengths. Replace the esti
mated diffraction distribution with the measured raw data and keep 
the phases unchanged. The updated diffraction distributions ΦEst′

q (λn) 
can be obtained as 

ΦEst
q

′
(λn) =

̅̅̅̅̅̅̅̅̅̅
IMeas

qj

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

n

⃒
⃒
⃒ΦEst

q (λn)

⃒
⃒
⃒

2
√ ΦEst

q (λn), n ≥ 1 (13)    

6) The updated diffraction distributions are propagated by the inverse 
Fresnel convolution diffraction integral ℑ¡1, the updated exit-waves 
ψ′

r(λn) with different wavelengths are calculated as 

ψ′
r(λn) = ℑ− 1

[
ΦEst

q
′
(λn)

]
, n ≥ 1 , (14)  

and the object, the illumination probe and noise probes are also 
updated based on exit-waves before and after the update at the jth 
position in the set S    

where, α, β and γ are the step sizes between 0 and 1. In general, β and 
γ are larger than α [6] in the iteration process.  

7) Take the updated object, illumination probe and noise probes as the 
initial guess of the j+1th position, and repeat steps 3)− 6) until all 
positions in the set S have been traversed, in which case only one 
iteration is completed.  

8) Repeat iterations N times until the algorithm converges. 

j+1Or+rj =
jOr+rj +

jP∗illu
r (λ1)

α
⃒
⃒jPillu

r (λ1)
⃒
⃒2

max + (1 − α)
⃒
⃒jPillu

r (λ1)
⃒
⃒2

(

ψillu
r

′
(λ1) − ψillu

r (λ1)

)

, ∀rj ∈ S,

j+1Pillu
r (λ1)=

jPillu
r (λ1) +

jO∗
r+rj

β
⃒
⃒jOr+rj

⃒
⃒2

max + (1 − β)
⃒
⃒jOr+rj

⃒
⃒2

(

ψillu
r

′
(λ1) − ψillu

r (λ1)

)

, ∀rj ∈ S ,

j+1Pnois
r (λn)= jPnois

r (λn) + γ
(
ψnois

r
′
(λn) − ψnois

r (λn)
)
, n ≥ 2 ,

(15)   
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The complete algorithm can be summarized as Table 1, and other 
details remain need to be considered to ensure the performance of the 
algorithm.  

a) Compatibility with different ptychography algorithms. The aNBS 
algorithm for mixed noises is described in detail by an alternating 
projection based on the PIE kernel. In fact, the algorithm is also 
compatible with the reflection projection algorithms [7], proximal 
gradient algorithms [13], ADMM algorithms [16] and others [10].  

b) Calibration of system parameters in ptychography. Calibration and 
compensation system parameters are the prerequisites for ensuring 
the convergence of ptychography. Therefore, the ptychography 

system parameters must be calibrated in advance by autofocusing 
strategy [21] for axial distance or by angle calibration method [22] 
for reflection ptychography in low-noise conditions.  

c) Correction of translational position errors. To avoid the influence of 
translation position errors, or angle errors of the LED illumination in 
Fourier ptychography, on the convergence of the proposed algo
rithm, the cross-correlation method [23] is also applied in low-noise 
ptychography. 

3. Numerical simulations 

Numerical simulations were carried out to validate the performance 
of the proposed aNBS ptychography algorithm. A two-dimensional 
complex sample, referred to as the “object” in Fig. 1(a), was synthe
sized with the amplitude and phase derived from “Siemens” and 
“resChart”, respectively. Similarly, the amplitude and phase of the 
“probe” were structured, where a parallel beam of 632.8 nm wavelength 
was propagated a finite distance in free space and then focused on the 
back focal plane by a 50 mm focal length lens. This complicated phase 
curvature requires increased robustness from the ptychography algo
rithm, bringing the numerical simulations closer to the physical reality. 
A 2048×2048 pixel camera collected 441 diffraction fields at a 50 mm 
position far from the object, and the object was driven in 21×21 grid 
sizes by the x-y translation stage with 20 pixels having 10% random 
offsets. Mixed noises with varying intensities were introduced into the 
diffraction fields to emulate coupled noises on ideal signals, taking into 
account the 16-bit dynamic range of the camera and 109 photon fluxes, 
where mixed noises intensities were quantified with the peak signal-to- 
noise ratio (PSNR). 

In ptychographic imaging, noise rarely appears in a singular form. 
Instead, several types of mixed noise interact and interfere within ideal 
diffraction fields, and each ptychography algorithm has a different 
sensitivity to the different noise types and intensities [26,29,30]. 
Therefore, three mixed noises of 30 dB were added to raw signals, 
including the background noises coupled to Gaussian random noises (BG 

Table 1 
The aNBS ptychography algorithm for mixed noises.  

Input: Initial guess Or+rj
, Pillu

r and Pnois
r , Shift set S and Raw data IMeas

qj 

1 α, β, γ∈(0,1)% Initial parameters 
2 fori = 1:N 
3 K = rand(S) % Disorder randomly 
4 forj = 1: K 
5 j

iψillu
r =

j
iP

illu
r ×

j
iOr+rj ,

j
iψnois

r =
j
iP

nois
r 

6 j
iΦ

illu
q = ℑ(

j
iP

illu
r ×

j
iOr+rj ),

j
iΦ

nois
q = ℑ(

j
iP

nois
r )

7 j+1
i Φn

q
= (

̅̅̅̅̅̅̅̅̅̅
IMeas

qj

√
/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

n |
j
iΦ

n
q
|
2

√

)
j
iΦ

n
q 

8 j+1
i ψn

r
′ = ℑ− 1(

j+1
i Φn

q
)

9 j+1
i Or+rj =

j
iOr+rj +

j
iP

∗illu
r /(α

⃒
⃒
⃒
j
iP

illu
r (λ1)|

2
max + (1 − α)|jiP

illu
r (λ1)|

2
)(ψillu

r
′
−

ψillu
r )

10 j+1
i Pillu

r =
j
iP

illu
r +

j
iO∗

r+r j /(β
⃒
⃒
⃒
j
iOr+rj |

2
max + (1 − β)|jiOr+rj |

2
)(ψillu

r
′
− ψillu

r )

11 j+1
i Pnois

r =
j
iP

nois
r + γ(ψnois

r
′
− ψnois

r )

12 End 
13 Auxiliary programs 
14 End 
Output: Reconstruction object Or+rj

, illumination probe Pillu
r and noise probes 

Pnois
r  

Fig. 1. Simulation results of different mixed noises with 30 dB noise intensity: (a) the amplitude and phase of the object and probe; (b) the mPIE algorithm; (c) the 
LSQML-PIE algorithm; (d) the aNBS ptychography algorithm. 
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and Gauss), the background noises coupled to Poisson random noises 
(BG and Poiss), and the background noises coupled to Gaussian-Poisson 
random noises (BG, Gauss and Poiss). After 500 iterations, the simula
tion results in Figs. 1(b)− 1(d) show that the conventional mPIE algo
rithm exhibits perfect convergence performance in the three mixed 
noises scenarios. In particular, the line pair of Group 1 can be clearly 
distinguished in the results of each reconstruction phase image of the 
localized magnified views. In the case of the LSQML-PIE algorithm, the 
results also show remarkable reconstruction effects with clear amplitude 
and phase features identified. In addition, the image contrast is signifi
cantly better than that of the mPIE algorithm, which can be attributed to 
the noise optimization strategy provided by the mixed Poisson-Gaussian 
likelihood model in the LSQML-PIE algorithm. Finally, in the proposed 
aNBS ptychography algorithm, by establishing noise probes of the other 
wavelengths (594 nm and 543 nm) to blindly separate noise energies, 
the amplitude or phase images in Fig. 1(d) appear to the highest image 
contrast and sharpness than others. This is particularly evident in the 
minimally overlapping edge region, where no significant blurring is 
observed. Furthermore, for different mixed noise types, the proposed 
aNBS ptychography algorithm shows excellent feature uniformity, 
whereas the mPIE and LSQML-PIE algorithms exhibit minor sensitivity 
discrepancies. 

When the signal-to-noise ratio of mixed noises intensities is reduced 

to 20 dB, the three ptychography algorithms undergo 500 iterations, and 
the results are shown in Fig. 2(a). Compared with the 30 dB low- 
intensity noises in Fig. 1(b), the mPIE algorithm appears pitch spots, 
especially at the edges, when background and Poisson random noises 
exist simultaneously, and the amplitude and phase patterns cross with 
each other. A similar phenomenon also occurs in the simulation results 
of the background, Gaussian and Poisson mixed noise. In contrast, the 
reconstruction results are more robust to background and Gaussian 
random noises in terms of convergence performance and image contrast, 
especially in the magnified views. In the reconstruction results of the 
LSQML-PIE algorithm, pitch spots are significantly reduced and cross
talk errors are slightly mitigated, especially in simulations involving 
mixed Gaussian-Poisson noise, but probe shape emerge that contami
nate the amplitude and phase images at random locations. Similar to 
previous results, the LSQML-PIE algorithm does not assimilate Poisson 
random noise very well because it has the worst image contrast 
compared to other noise sources. However, owing to the superiority of 
the noise separation in the aNBS ptychography algorithm, the difference 
in feature uniformity and contrast of the images among the three mixed 
noises is negligible. The presence of both pitch spots and randomly 
positioned contaminating probes are effectively eliminated, causing 
reconstructed results that exhibit remarkable consistency and sharpness. 
Also, the proposed aNBS ptychography algorithm expresses more direct 

Fig. 2. Simulation experiments of different mixed noises: (a) the three algorithm reconstruction results with 20 dB noises intensity; (b) the three algorithm 
reconstruction results with 10 dB noises intensity. 
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response to sensitivity discrepancy to different mixed noise types. 
When the mixed noise intensities are increased to 10 dB, the 

convergence performance of the three algorithms is presented in Fig. 2 
(b). The proposed aNBS ptychography algorithm retains strong robust
ness despite the noise intensities increasing by two orders of magnitude, 
but the decrease in sharpness of the edges is apparent in all three 
different mixed noise scenarios. The results also observed when noise 
intensities were increased from 30 dB to 20 dB in mPIE and LSQML-PIE 
algorithms. This phenomenon can be attributed to the incomplete noise 
separation due to the limited number of noise probes in the aNBS al
gorithm. Also, regarding the iteration parameters, the updated step sizes 
(α, β, and γ) should be significantly smaller than low mixed noise in
tensities to avoid excessive oscillations. Finally, focusing on the per
formance of the mPIE and LSQML-PIE algorithms in high-intensity 
mixed noise environments, all reconstruction results are barely satis
factory or even extremely bad. In particular, the mPIE algorithm exhibits 
non-convergent iterative reconstruction results without any distinctive 
characteristics. 

As the noise intensity increases, the reconstruction quality of images 
in mPIE algorithm gradually decreases until it fails, while the noise- 
optimization algorithm of LSQML-PIE shows a certain noise immunity 
but it shows selectivity for different mixed noise types. After noise in
tensity increases to a certain level, the LSQML-PIE algorithm also fails to 
converge. However, the proposed aNBS algorithm, due to its advantages 
of adaptive and blind noise separation based on the mixed state PIM 
algorithm [20], continues to converge robustly even when the noise 
intensity increases by two orders of magnitude. Furthermore, several 
image quality assessment techniques, including structural similarity 
(SSIM) and peak signal to noise ratio (PSNR) [44], were utilized to 
quantitatively assess the performance between the mPIE reference al
gorithm without any noises processing, the LSQML-PIE noise optimi
zation algorithm and the proposed aNBS ptychographic algorithm. 
Figs. 3(a)− 3(f) show the results of the “Siemens” amplitude image 
quality assessment, where the quantitative SSIM and PSNR metrics be
tween the reconstruction images and the truth image confirm the 
qualitative observation results that the proposed aNBS ptychography 

algorithm provides superior reconstruction capabilities and exhibits 
negligible sensitivity discrepancy in the face of different mixed noise 
types. Furthermore, when the mixed noise intensities increase by two 
orders of magnitude in Table 2 (from 30 dB to 10 dB), the aNBS pty
chography algorithm maintains its robust convergence and exhibits the 
same image convergence accuracy as the convention mPIE and the 
noise-optimization LSQML-PIE algorithm of 30 dB mixed noise. Iden
tical results are observed in the phase reconstruction image of the 
"resChart" pattern, which will not be discussed in detail here. 

In actually, both "Siemens" and "ResChart" are images of simple 
patterns with low information entropy. Assessing the reconstruction 
quality of an imaging algorithm is always inseparable from the 
complexity of the information entropy of the image itself. Therefore, 
whether the aNBS algorithm continues to maintain its highly robust 
convergence for specimens to be measured with complex information 
entropy is a question worth considering. Meanwhile, the introduction of 
image processing algorithms to improve the imaging resolution or noise 
immunity robustness of the aNBS algorithm is also not a bad choice 
either for future research. 

4. Experiments 

To verify the correctness of the simulation results, a general trans
mission geometry ptychography experimental setup was established as 
shown in Fig. 4(a), incorporating several additional optical elements 
such as optical filters, beam expanders, and irises, among others. The 
HeNe laser (Newport: N-STP-912) emitted a coherent beam with a 
wavelength of 632.8 nm with excellent energy and pointing fluctuations 
for the construction of the illumination probe. Photon flux and the ra
diation beam diameter (1/e2) were modulated by optical filters, a beam 
expander (Thorlabs: GBE05-B), and a pinhole (Thorlabs: ID25Z) on the 
optical path in front of the focusing lens. Subsequently, a plano-convex 
lens (Newport: KPX049AR.14) with a focal length of 50 mm focused the 
modulated beam onto the back focal plane, where the illumination 
probe diameter was focused to approximately 150 µm. Simultaneously, 
a x-y translation stage (Physik Instrumente: Q-545.140) moved the 

Fig. 3. The imaging quality assessment of three algorithms with different mixed noises (the amplitude image “Siemens”): (a)-(c) PSNR indicators; (d)-(f) 
SSIM indicators. 

L. Liu et al.                                                                                                                                                                                                                                       



Optics and Lasers in Engineering 169 (2023) 107748

7

USAF-1951 resolution target (Newport: RES-1) over 11×11 grids in the 
back focal plane. The grid interval was set to 20 µm with 10% random 
offsets to ensure more than 80% overlap. A 6280×4210 pixels astro
nomical CMOS camera (QHYCCD: QHY268M) with pixel size 3.76 µm 
and 16-bit dynamic range was positioned 13.9 mm away from the res
olution target. The central photosensitive area of 4096×4096 pixels was 
cropped to collect 121 raw data points in the Extend Fullwell 2CMSIT 
mode. Meanwhile, 16×16 binning (M × N = 256×256 pixels image) was 
merged into the raw data to strike a balance between computational 
efficiency and the numerical aperture of the imaging system. Since the 
magnitude of mixed noises coupled in the diffraction signals could be 
dominated by the optical density of the optical filters and exposure times 
and offset factors of the CMOS detector, hence several optical experi
ments were set up with USAF-1951 as follows. 

4.1. The amplitude specimen of resolution target USAF-1951 

In order to obtain low mixed noises in the ptychographic raw data, an 
optical filter (Thorlabs: NE10A-A) with the optical density of 1.0 was 
chosen, and the camera was operated with an exposure time of 0.5 ms 
and an offset factor of 0. According to the general transmission geometry 
ptychography, the raw data with 42 dB mixed noises intensity were 

collected in the CMOS camera shown in Fig. 4(b). Then in each exper
iment, the three algorithms were iterated 1000 times, keeping the al
gorithm parameters constant except for the number of noise probes in 
the aNBS algorithm. To solve more complex physical cases, an addi
tional noise probe with a wavelength of 800 nm was added, and the 
experimental results are shown in Fig. 5. In agreement with the nu
merical simulation results, all algorithms demonstrate perfect conver
gence at a high signal-to-noise ratio, and the 2.2 µm line width features 
of Group 7/Element 6 is clearly observed in Fig. 5(a)− 5(c). On closer 
inspection, the reconstruction results of the proposed aNBS ptychog
raphy algorithm in Fig. 5(c) exhibit the best sharpness and contrast for 
the line pair features and surrounding background region. The low 
overlap surrounding region of the images in Figs. 5(a) and 5(b) appear 
unclean for the mPIE and LSQML-PIE algorithms which use a single 
probe. Focusing on the line-pair features, the mPIE image has the worst 
feature uniformity and is more prominent random freckles than those in 
the LSQML-PIE image. 

By reducing the signal-to-noise ratio of the raw data to a noise in
tensity of 30 dB, as shown in Fig. 4(c), using an optical filter (Thorlabs: 
NE20A-A) with optical density of 2.0, an exposure time of 2 ms, and an 
offset factor of 2 in the camera, the experimental results of the three 
ptychography algorithms are shown in Fig. 6. There is a negligible 

Table 2 
The amplitude image quality assessment results for the “Siemens”.  

Algorithms Mixed noises 30dB 20dB 10dB 

PSNR SSIM PSNR SSIM PSNR SSIM 

mPIE BG and Gauss 28.0216 0.8161 24.7574 0.7015 18.9523 0.4957 
BG and Poiss 28.8677 0.7992 21.8265 0.5677 11.4361 0.0719 
BG, Gauss and Poiss 29.9231 0.8221 22.4222 0.6155 15.6905 0.3849 

LSQML-PIE BG and Gauss 35.7380 0.9013 25.5863 0.7267 17.2410 0.4293 
BG and Poiss 33.6869 0.8917 23.7563 0.5807 16.9308 0.4044 
BG, Gauss and Poiss 38.2726 0.9271 26.5482 0.7406 18.0498 0.4572 

aNBS BG and Gauss 54.1673 0.9988 44.6886 0.9670 29.0063 0.8008 
BG and Poiss 54.0804 0.9985 44.5459 0.9720 28.7779 0.7888 
BG, Gauss and Poiss 54.9173 0.9988 44.6742 0.9724 28.9208 0.7959  

Fig. 4. The transmission geometry experimental setup and ptychographic raw data with different noise intensities: (a) general transmission geometry ptychography 
experimental setup; (b) 42 dB diffraction field; (c) 30 dB diffraction field. (d) 18 dB diffraction field. 

Fig. 5. Experiment results of resolution target USAF-1951 with 42 dB noise intensity: (a) the mPIE algorithm; (b) the LSQML-PIE algorithm; (c) the aNBS pty
chography algorithm. 
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difference in the uniformity and contrast of the image features in Fig. 6 
(c) compared with the image shown in Fig. 5(c). However, in Figs. 6(a) 
and 6(b), the quality of the reconstruction images deteriorates rapidly 
due to the presence of pitch-grid spots, resulting in the disappearance of 
the Group 7/Element 6 line pair from the image and the unusual shapes 
exhibited in the probe. A careful comparison with the mPIE algorithm 
shows that larger line pair features are easier to identify in the LSQML- 
PIE image, such as Group 6/Element 3 or larger others. 

By further using an exposure time of 10 ms, an offset factor of 50, and 
an optical density filter of 3.0 (Thorlabs: NE30A-A) in the experiment to 
increase the magnitude of mixed noises to 18 dB as shown in Fig. 4(d), 
the mPIE and LSQML-PIE algorithms fail to converge and the results are 
not shown in detail here. The proposed aNBS ptychography algorithm 
maintains robust convergence for mixed noises, where the abundant 
random freckles appear on line pair features and surrounding region in 
Fig. 7 relative to Figs. 5(c) and 6(c) despite four noise probes are setup in 
the iteration process. Without considering computational efficiency, it 
may be a valuable move to continuously increase the number of noise 
probes to address the random freckle contamination in the images. 

In comparison with the mPIE and LSQMI-PIE algorithms, both nu
merical simulations and experimental results demonstrate that the 
proposed mixed noises aNBS ptychography algorithm effectively elim
inates random pixel freckles and pitch spots in features and surrounding 
regions, while the reconstructed images show the best sharpness and 
contrast at low and moderate mixed noise intensities. Meantime, the 
reconstruction results of the aNBS ptychography algorithm show no 

image blurring at different mixed noise levels. Especially in real physical 
experiments, it is often difficult to determine whether multiple noises 
are coupled with each other or which type of noise mainly affects the 
results. The proposed aNBS ptychography algorithm still has excellent 
convergence robustness and negligible sensitivity difference for 
different mixed noise types. 

All the superior results in the simulations and experiments can be 
attributed to the fact that the aNBS algorithm constructs additional 
virtual probes to load the noise energies, which can adaptively blind 
separate coupling mixed noises into the virtual noise probes in pty
chography based on the mixed state PIM algorithm [20]. Further 
focusing on the case of low signal-to-noise ratio, the proposed aNBS 
ptychography algorithm exhibits more than two orders of magnitude 
improvement in noise intensity immunity compared with other 
non-separated noise ptychography algorithms without requiring addi
tional regularization constraints or noise prior assumptions. An impor
tant aspect to consider in the aNBS algorithm is that the iteration 
parameters should be smaller for medium and high signal-to-noise data, 
as smaller step sizes can help avoid iterative oscillations and facilitate 
easier convergence orientation [31]. 

4.2. The biological specimen of human hematocyte smear 

The USAF-1951 resolution target, being a familiar amplitude spec
imen only, does not fully reflect the superiority of the ptychography 
algorithm. To validate the proposed aNBS ptychography algorithm in 
addressing mixed noises, complex human hematocyte smear with more 
information entropy was used in a ptychography experiment. The 
experiment setup of the transmission geometry was similar to that of the 
USAF-1951 ptychography device with a noise intensity of 32 dB, except 
that the distance (14.4 mm) between the detector and the biological 
specimen was varied due to self-thickness of the specimen. The recon
structed amplitude and phase images of the object and the probes are 
shown in Figs. 8(a) and 8(b). In reconstruction results of the regions (a1)- 
(b1) and (a2)-(b2), structural features are clearly distinguishable in the 
phase image, whereas they appear blurred in the amplitude image of the 

Fig. 6. Experiment results of resolution target USAF-1951 with 30 dB noise intensity: (a) the mPIE algorithm; (b) the LSQML-PIE algorithm; (c) the aNBS pty
chography algorithm. 

Fig. 7. Experimental results of the USAF-1951 resolution target with 18 dB 
noise intensity. 

Fig. 8. Experimental results of the aNBS ptychography algorithm on a bio
logical sample with 32 dB noise intensity: (a) amplitude; (b) phase. 
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corresponding area, and vice versa. The complementary imaging helps 
to eliminate the influence of different factors on the ptychography 
results. 

Compared with the amplitude specimen USAF-1951 experiments, 
the reconstruction experiment of the biological specimen demonstrates 
that the proposed mixed-noise aNBS ptychography algorithm has good 
robustness for complicated phase specimens. The imaging results be
tween amplitude and phase reconstructions complement each other 
well, especially in providing detailed information about the specimen, 
such as in the case of non-uniform staining in cells or multiple cells 
stacked together, which can obscure the amplitude or phase imaging 
results. The aNBS ptychography method, with its noise blind separation 
and system error calibration capabilities, provides the most intuitive 
representation of the physical reality of the specimen, ensuring that any 
image quality issues can be attributed to the specimen itself rather than 
external factors. This highlights the advantage of ptychography imaging 
in complex biological specimens. 

5. Conclusion 

In summary, a novel aNBS ptychography algorithm is proposed to 
address mixed noises of different types without sensitivity discrepancy. 
Firstly, a variable scale Fresnel convolution integral based on the 
“Fractional” Fourier transform was introduced to gracefully resolve 
scale constraints between the sampling interval and optical field size 
over different wavelengths in optical propagation. Then, virtual probes 
different from the illumination probe were also innovatively constructed 
to capture the noise energies, enabling the adaptive blind separation of 
mixed noises from coupled raw ptychographic signals. Finally, through 
simulations and experiments, the effectiveness and correctness of the 
aNBS-based ptychography method had quantitatively and qualitatively 
been validated. Results indicate that the proposed algorithm maintains 
robust convergence even as the noise intensity increases by over two 
orders of magnitude compared with existing approaches. More impor
tantly, the algorithm does not depend on noise prior assumptions, reg
ularization constraints, and dynamic iteration parameters during the 
iterative process, which make it more robust and general than state-of- 
the-art ptychographic noise-suppression algorithms. 

There is also a critical issue that needs to be concerned in the future, 
that is, how to further improve the robustness at higher noise levels 
without sacrificing the computational efficiency in phase retrieval. 
These potential strategies should be considered, including increasing the 
number of additional noise probes, designing special virtual samples, 
incorporating proper regularization [6,17], or implementing other ap
proaches [10,32,45] in the aNBS algorithm. 
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