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Abstract

The quality of the measured signature is influenced not only by the instrument’s precision but
also by the selected measurement configuration. In optical scatterometry, the purpose of
measurement configuration optimization (MCO) is to select an optimal or suboptimal
combination of measurement conditions, such as the angles of incidence, azimuth, polarization
and wavelength, to achieve higher measurement accuracy. This analysis not only requires an
effective optimization strategy but is also time-consuming. In this work, we propose a general
MCO method that incorporates error propagation theory and condition-number-based error
estimation technique, by which the MCO problem can be formulated as an optimization
problem for the condition number of the coefficient matrix in the linear estimation of parameter
deviations. The method is demonstrated on a multi-wavelength Mueller matrix scatterometry
measuring a Si grating. With the help of the neural-network-based surrogate model, the
feasibility of the method is verified by making a comparison with Latin hypercube sampling.
Fitting results of the measured and calculated Mueller matrix spectra obtained at the selected
optimal measurement configuration show a good agreement. The proposed method is promising
to provide an alternate solution to globally evaluate the MCO problem in optical scatterometry
and other measurement scenarios.

Keywords: optical scatterometry, measurement configuration, optimization, condition number,
surrogate model

(Some figures may appear in colour only in the online journal)

1. Introduction powerful tool for characterizing nanostructures in the semi-
conductor industry [1-4]. This technique involves measuring
Benefiting from non-contact, non-destructive, fast and low-  the corresponding scattering signatures induced by the sample
cost characteristics, optical scatterometry has been used as a  and extracting the profiles by solving the inverse problem
[5-7]. In scatterometry, the nanostructure’s signature is meas-
ured under a proper measurement configuration. Here, the
measurement configuration refers to the combination of meas-
* Author to whom any correspondence should be addressed. urement conditions such as wavelength, incidence angle,
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azimuth angle, and polarization direction. Measurement con-
figuration optimization (MCO) in optical scatterometry is
highly desirable due to its dual benefits. On the one hand, the
measurement precision or accuracy is affected by the chosen
measurement configuration [8], the optimal measurement con-
figuration mode can mitigate the effect of measurement noise
on the extracted parameters. On the other hand, certain optimal
measurement configurations can lead to the decorrelation of
structural parameters [9], thus improving the robustness of the
extracted parameters in the inverse problem, particularly when
the complexity of nanoscale devices significantly increases.
Many works have been conducted for scatterometry optim-
ization. Logofatu proposed an optimization approach by
defining sensitivity as the estimated precision of the fitting
parameters. The method involves scanning all possible meas-
urement configurations and selecting the measurement con-
ditions that provide the highest sensitivity [10]. Dong et al
conducted a global sensitivity analysis to identify the optimal
measurement configuration by assessing the individual influ-
ence of input parameters on the output signatures based on
the analysis of noise level and the main effect defined in
global sensitivity analysis [11]. Meng et al proposed a neural-
network (NN)-based and density-based sensitivity analysis to
identify the optimal measurement configuration that exhibits
a significant change in optical responses with small variations
in dimensions [12]. Foldyna et al proposed choosing optimal
incidence and azimuth angles based on the standard evalu-
ation of the parameter variances and parameter correlations in
Mueller matrix scatterometry (MMS) [13]. Chen et al treated
the MCO problem as a multi-objective optimization problem,
incorporating both parameter variances and parameter correl-
ations as optimization objectives, and they utilized a multi-
objective genetic algorithm to tackle this problem [8]. Dong
et al proposed a method to reduce the uncertainty of the para-
meters in Mueller matrix ellipsometer by removing the meas-
urement configurations with redundant information based on
the dependence-analysis theory [14]. Chen et al also intro-
duced an MCO method based on the theoretical analysis of
error propagation and treated the norm of the configuration
error propagating matrix as a metric to evaluate the impact of
configuration errors on measurement accuracy [15]. Similarly,
Zhu et al proposed an MCO method utilizing error propaga-
tion theory and singular value decomposition, and the optimal
set is determined through the minimization of the Frobenius
norm of a pseudo-Jacobian matrix [16]. In summary, MCO
methods can be roughly classified into two categories based
on their optimization objectives. The first category is the sens-
itivity analysis-based MCO method, which focuses on eval-
uating the individual influence of an input profile parameter
on the output signatures over all measurement configurations.
The second category is the error analysis-based MCO method,
which applies error propagation theory to the inverse prob-
lem and primarily focuses on optimizing parameters’ uncer-
tainties, correlations, or coefficient matrices. These meth-
ods effectively optimize measurement configurations based
on various assumptions and merits. However, many of them

lead to multiple optimization objectives. For instance, if there
are N parameters to be measured, N objectives on parameter
uncertainties or sensitivities, and N(N — 1)/2 objectives on
parameter correlations can be raised. Consequently, a decision
has to be made among the selected measurement schemes,
which can be inefficient for implementation. The development
of a universal MCO method that can be applied not only to
optical scatterometry but also to other relevant measurement
scenarios effectively and efficiently remains a significant sub-
ject of ongoing exploration and discussion.

In this work, we proposed a condition-number-based MCO
method, serving as a complement to existing MCO methods.
Specifically, we utilize the first-order Taylor expansion of the
least squares (LSQ) function to establish the foundation of our
approach. Additionally, by employing the condition-number-
based error estimation technique to assess the solution accur-
acy of the linear equation system, we illustrate that the MCO
problem can be formulated as a max—min problem of the con-
dition number of the coefficient matrix in the linear estimation
of parameter deviations. We should emphasize that the pro-
posed MCO method has applicability not only in OCD met-
rology but also in other related model-based metrologies such
as small-angle x-ray scattering [17]. To address the compu-
tational burden in the MCO problem, we also adopt a NN-
based surrogate model for replacing the time-consuming for-
ward model. The utilization of this surrogate model not only
accelerates the calculations considerably but also facilitates
the adoption of more refined configuration combinations in
the optimization process, thereby enhancing the accuracy of
identifying the optimal configurations.

The remainder of this article is organized as follows.
Section 2 briefly introduces the inverse problem in optical scat-
terometry and then introduces the condition-number-based
MCO method and the NN-based surrogate model adopted in
this work. Section 3 introduces the experimental apparatus, the
profile detail of the investigated sample and the architecture of
the neural network. Section 4 gives the experimental results to
illustrate the validity of the proposed MCO method. Section 5
gives some conclusions.

2. Method

2.1. Condition-number-based MCO problem

The x? function is usually adopted in the inverse problem of
optical scatterometry to evaluate the fitting error between the
measured and theoretical signatures, which is defined as [5]

N2 =S wily—filxa) = [y — f(x,a)] "Wy — f(x,a)],

i=1

(H
where y = (1, y2, ..., yu)" represents the measured signature,
f(x,a) = [f1(x, ), f2(X, ), ..., fu(x,a)]T represents the corres-
ponding theoretical signature calculated at the measurement
configuration a = [aj, ay, ..., ag]" for structural parameter
X = [x1, X2, ..., xy]T under measurement. W is an M x M
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diagonal matrix with diagonal elements w;, w; is the weight-
ing vector and usually chosen to be w; =1/02(y;) (i = 1, 2,
...» M), 0*(y;) is the variance of the measured signature. The
inverse problem can be formulated as the least-square regres-
sion problem in optical scatterometry,

x=argmin {[y ~{(x )] Wy~ f(x )]}, @

where X denotes the extracted parameters, €2 is the structural
parameter domain. The solution to the inverse problem can be
achieved by some iterative algorithms such as the gradient-
based trust region algorithm and the Levenberg—Marquardt
algorithm. Note that this approach requires knowledge of the
measurement noise and a proper choice of weighting factors
could influence the reconstruction results.

In general, there always be some discrepancy between the
extracted parameters and the true parameters due to the pres-
ence of random errors and systematic errors [18]. The ran-
dom errors arise from some random noises in measurement,
such as instrument and the environment, while the system-
atic errors arise from the deterministic offsets in measurement,
such as instrument, measurement method and the adopted for-
ward model. Supposing x be the true parameter value, Ax be
the deviation between the theoretical and the extracted para-
meters which can be expressed as

AX =x( — X. 3)

Suppose that the function f(x, a) is sufficiently smooth and
can be expanded in a first-order Taylor expansion

f(x, a) =f(x, a) + Jx - (x — X), 4

where Jx is the N x M Jacobian matrices with respect to X,
whose elements are given by

0, = af(axa) R )
Substituting X = Xq into equation (4) gives

f(xo, a) =f(Xx, a) + Jx - (xo — X) =f(x, a) + JxAx. (6)
Substituting equation (6) into equation (1) yields

x2= [y —f(k,a) - J,Ax] Wy — f(%,a) - J\Ax]. (7

Taking the derivatives of each side in equation (7) with
respect to each element of vector x yields the following
equation

(W) W [y — (% 2) — JuAx] =0, @®)

After rearranging the terms in equation (8), we obtain the
following equation

JITWJ, Ax = J*'WAy, )

where Ay =y —f(X,a). Some detailed derivations of
equation (9) can be found in appendix. The above equation
gives an estimate of the deviation Ax between xo and X. We
call equation (9) the linear estimator of Ax since it is based
on the first-order Taylor expansion of the function f(x, a). The
final structure parameter X, can be corrected as the sum of the
extracted parameter x and the deviation Ax: x, = X+Ax.

The uncertainties in the measured signatures will be
propagated into the extracted parameters in the process of
solving equation (9). The coefficient matrix, denoted as
JEWJX, is closely linked to the measurement configuration
and offers valuable insights into the uncertainties associated
with the extracted parameters. In fact, the covariance matrix
of x can be estimated as the inverse of the coefficient mat-
rix, represented by C :(JEWJX)_I. Several MCO methods,
as mentioned in [8, 13—16], employ this coefficient matrix as a
foundation of the optimization objective. In this study, we treat
the MCO problem based on the condition-number-based error
estimation technique. The coefficient matrix JTWJ,, depic-
ted in linear equation (9), often reveals the ill-conditioning of
the equation, reflecting the solution’s susceptibility to slight
changes in the input variables. A small condition number of
the coefficient matrix JTWJy suggests that the perturbations
in the signatures at the right-hand side of equation (9) have
a minimal impact on the deviation Ax. Therefore, it is reas-
onable to focus on optimizing J,f WJ, for a more robust solu-
tion. Based on the above statement, the MCO problem can be
described as a ‘max—min’ optimization in this work:

Agp = arg ?éiél max (cond (JYWIK)) |, (10)

where a,p, represents the optimal measurement configuration.
The inner operator ‘max’ calculates the maximum condition
numbers of the coefficient matrix over all parameters in the
parameter domain ) under a certain measurement configur-
ation. The outer operator ‘min’ calculates the condition num-
bers of the coefficient matrix over all measurement schemes in
the domain O for the global minimum. The measurement con-
figurations with smaller condition numbers can be regarded as
optimal schemes. The ‘max’ operator ensures the robustness of
the optimization for a batch of samples with parameter values
fluctuating around their nominal values. The ‘min’ operator
ensures the global optimization of the measurement configur-
ation. The optimal measurement configuration can be determ-
ined using single-objective optimization methods or traversal
methods.

2.2. NN-based surrogate model

It is necessary and critical to reduce the computational burden
in the MCO problem. The complexity of the forward model,
the alternative measurement schemes to be optimized and the
chosen optimization strategy account for the computational
burden in the MCO problem. First, the operation of the forward
model is usually time-consuming in optical scatterometry.
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Figure 1. General procedure for generating the surrogate model.
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Figure 2. Schematic of the architecture of the neural-network-based surrogate model.

Rigorous coupled wave analysis (RCWA) is more effective
in calculating periodic structures compared to other methods
[19]. However, as the architectures become more complex, the
computational efficiency significantly decreases due to the fre-
quent invocation of RCWA with a greater number of slicing
layers and higher truncated orders. Second, the MCO problem
requires an adequate number of samples with parameter values
fluctuating around their nominal values to derive an optimal
measurement configuration that ensures robustness. Lastly, the
computational time can be further burdened by the optimiza-
tion strategy, particularly when time-consuming optimization
algorithms and a substantial number of candidate schemes are
being considered. The surrogate model offers an efficient solu-
tion for tackling such problems, particularly when establish-
ing a complex or computationally expensive forward model is
challenging. Some researchers have successfully utilized arti-
ficial neural networks in optical scatterometry [20-22]. The
NN-based surrogate model has the potential for efficient and
repeatable calculations, which is employed in this work.
Figure 1 depicts the general procedures for constructing
such a surrogate model. The surrogate model is trained, val-
idated or tested by the simulated dataset generated from the
forward model, and the well-trained model replaces the for-
ward model to accelerate the calculation process. A fully con-
nected neural network is employed in this work to construct
the mapping from parameters to signatures. The architecture
of the NN-based surrogate model is presented in figure 2,
The NN-based surrogate model establishes a mapping from
N inputs to M outputs, comprising three essential compon-
ents: an input layer for importing variable parameters, a middle

layer for conducting non-linear computation, and an output
layer for predicting feature signatures. The inputs contain both
the structural parameters and the candidate measurement con-
figurations, and the outputs are optical responses, e.g. reflect-
ance, transmittance, and Mueller matrix. The middle layer
consists of Ny, hidden layers with N, neurons in each layer.
The back-propagation algorithm is employed in each iterative
training process to constantly adjust the weights and biases of
neurons. Additionally, the minimum square error is applied as
the train loss function. The rectified linear unit activation func-
tion is selected for the hidden layers, while the output layer
employs a linear function [22].

Please note that the computational performance of the NN-
based surrogate model is contingent upon the configuration of
its hidden layers. In practice, increasing the number of layers
proves to be more advantageous than merely augmenting the
number of neurons within a layer [12]. Hence, a series of pre-
liminary numerical simulations are conducted to identify an
optimal architecture for the hidden layers and the number of
neurons. This step ensures that the surrogate model achieves
excellent performance before replacing the forward model.

3. Experimental setup

The proposed method was tested on an industrial dual-
rotating-compensator MMS (ME-L, Wuhan Eoptics
Technology Co., China) for probing the optimal combination
of incidence angle # and azimuthal angle , namely a = [0,
©]T. As schematically shown in figure 3, the system setting
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Figure 3. Principle of the dual-rotating compensator Mueller matrix scatterometry.

Table 1. The specifics of the training dataset.

Parameter Nominal value Lower bound Upper bound Training dataset size
TCD 37 nm 30 nm 40 nm

Hgt 90 nm 85 nm 95 nm

BCD 70 nm 60 nm 75 nm 500 00

0 — 60° 70°

) — 0° 90°

of the spectroscopic MMS is PCr1SCr2A, where P and A
stand for the polarizer and analyzer, and Crl and Cr2 stand
for the 1st and 2nd rotating compensators. In MMS, it is com-
mon practice to fix the incidence angle 6 and azimuth angle
o while varying the wavelength over a spectral range. In this
work, the spectral range was varied from 200 to 800 nm with
increments of 10 nm. The full 15 Mueller matrix elements can
be obtained from this dual-rotating-compensator setting and
are normalized by the first element. The range of the config-
uration domain © was defined as 6 € [60°, 70°] and ¢ € [0°,
90°], considering the geometric symmetry of the sample in
this test. The calculation of W in equation (10) utilizes the
variances of the measured signatures, which are provided by
the MMS software.

A typical one-dimensional Si grating was tested in this
work. The cross-section of the Si grating is described by a
symmetric trapezoidal model, which includes the top crit-
ical dimension (TCD), grating height (Hgt), bottom critical
dimension (BCD), and period A (as depicted in figure 2). The
testing grating exhibits nominal values of TCD = 37 nm,
Hgt = 90 nm, BCD = 70 nm, and A = 125 nm. In the
MCO analysis, the grating pitch A remains fixed, while the
parameters TCD, Hgt, and BCD vary within the parameter
domain €2, where TCD € [30, 40] nm, Hgt € [85, 95] nm,
and BCD € [60, 75] nm. The parameter domain 2 typ-
ically depends on the variance in the fabrication process
and can be empirically defined as a fluctuation of +10%
around their nominal values in this paper [18]. The main
reason for adopting Si grating in this work is due to its typ-
ical profile, higher refractive index contrast as well as long-
term dimensional stability. It is noteworthy that while the

investigated sample consists of only three parameters, the pro-
posed MCO method is applicable to more complex nanostruc-
tures without a doubt. The simulated dataset was generated
by RCWA and used for training, testing/validating. The spe-
cifics of the training dataset utilized in the experiments are
presented in table 1, encompassing various structural paramet-
ers and the corresponding candidate measurement configur-
ations. The training dataset is obtained by randomly select-
ing the parameters and measurement schemes within their
ranges. The NN-based surrogate model was designed, trained,
and implemented using PyTorch on a computer workstation
(i7-9750H CPU @ 2.60 GHz).

4. Results and discussion

The NN architecture was identified by using an exhaustive
grid search method on a sub-dataset of training data. Figure 4
presents the training losses of different NN architectures. The
NN architecture with three or four hidden layers demon-
strates superior approximation capability and exhibits lower
loss compared to the architecture with only two hidden lay-
ers in this case. However, the NN architecture with four hid-
den layers does not exhibit significantly superior performance
when compared to the architecture with three hidden layers.
These findings suggest that a three-hidden-layer NN archi-
tecture is sufficient for this case, and further increasing the
number of hidden layers is unlikely to result in substantial
performance improvements. The loss of the NN architecture
with three hidden layers decreases as the neuron size increases,
reaching convergence when the neuron size exceeds 1200.
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Figure 5. MSEs between the real and prediction signatures
(Mueller matrix elements).

Consequently, a three-hidden-layer NN architecture with 1200
neurons per hidden layer is selected for this case.

To examine the performance of the surrogate model, we
compare the mean square error (MSE) between the real sig-
natures and predicted ones (Mueller matrix elements) under
20 groups of measurement configurations with 10 different
choices of parameters randomly selected from the table 1 in
each group of measurement configuration, MSE is given by

1
MSE=--> (¥, )" (1)

where x/, and x}, are the mth element of the real signatures
and predicted signatures, respectively. M is the dimension of
the signature. The real signatures were generated by RCWA.
Figure 5 depicts the distributions of means and maximum
MSEs of 10 groups of signatures under each configuration.
Both the mean and maximum MSEs are on the order of
1.0 x 107°-1.0 x 1075, which are less than the noise level
of Mueller matrix elements obtained from the MMS (typically
~1.0 x 1073). The results indicate that the NN-based surrog-
ate model can provide high performance to calculate the sig-
natures in MCO problems.

Figure 6 presents the distributions of the maximum con-
dition numbers of the coefficient matrix JYWJ within the
structural parameter domain €2 and the measurement config-
uration domain O. The incorporation of the NN-based surrog-
ate model greatly facilitates the determination of the optimal
measurement configurations. In particular, we explored the
range of incidence angles 6 from 60° to 70° with an increment
of 1° increment, and azimuthal angles ¢ from 0° to 90° with
an increment of 1°. Compared to previous works [8, 14—16],
the implementation of this surrogate mode allows us to con-
sider more refined angular step sizes during the optimization
process, leading to improved accuracy in identifying optimal
configurations. As can be seen from figure 6, the measure-
ment configurations with smaller condition numbers (indic-
ated by the purple region) are distributed within the ranges of
60° < 0 < 70° and 20° < o < 80°, as well as within the ranges
of 64° < 6 < 70° and 80° < ¢ < 90°, predicting that the accur-
acy of the extracted parameters under these measurement con-
figurations is less susceptible to the errors in measured signa-
tures. Based on this observation, we propose selecting optimal
measurement configurations from these ranges to enhance the
robustness of the extracted parameters.

To verify the validity of the proposed method indirectly,
we examined the uncertainty distributions of three parameters
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Figure 6. The distributions of the maximum condition numbers
under different measurement configurations.

under different measurement configurations. In our research,
we employed Latin hypercube sampling (LHS) as an efficient
sampling method in optical scatterometry. LHS is particularly
well-suited for scenarios with small sample sizes, enabling
accurate estimation of geometry parameters, uncertainties, and
repeatability [23]. To extract the structural parameters, we
assumed Gaussian distributions for the Mueller matrices of the
Si grating, with mean values derived from x = [37, 90, 70]T
nm and variances obtained from MMS. The inverse problem
was solved to determine the structural parameters, and the sim-
ulations were repeated under identical measurement configur-
ations to assess the uncertainty associated with the extracted
parameters

N

1 _\2
m Z (xi,n _xi) ,

n=1

p(xi) = 12)

where N stands for the repeated number, x; , represents the ith
structural parameter extracted from the nth repeated simula-
tion and X; represents the mean of the ith structural parameter
after N times of repeated simulations.

The repeated number N was tested under different measure-
ment configurations to make sure of convergence when using
LHS figure 7 illustrates the variations in estimated uncertain-
ties for three extracted parameters as a function of the repeated
number N at two randomly selected measurement configura-
tions: § = 60°, ¢ = 45°, and 0§ = 65°, ¢ = 60°. As expec-
ted, the estimated uncertainties of the three extracted paramet-
ers exhibit significant fluctuations when N < 100, but demon-
strate relatively smaller variabilities when N > 300 for both
measurement configurations. Notably, even within the range
of N from 300 to 2500, the fluctuations remain relatively
stable, indicating a convergence of the estimated uncertainties
at N = 300.

(@)
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Figure 7. Variations in estimated uncertainties for three extracted
parameters with respect to the repeated number N in LHS at two
randomly selected measurement configurations: (a) 6 = 60°,

¢ =45°, and (b) § = 65°, o = 60°.

Figure 8 presents the uncertainty distributions of three
structural parameters simulated by LHS at N = 300 under
different measurement configurations. In the case of TCD
(figure 8(a)), the measurement configurations with small
uncertainties are located in the ranges of 60° < 6 < 70° and
20° < ¢ < 90°. Similarly, for Hgt (figure 8(b)), the meas-
urement configurations with small uncertainties are located in
the ranges of 60° < 6 < 70° and 0° < ¢ < 80°. In terms of
BCD (figure 8(c)), the measurement configurations with small
uncertainties are identified in two ranges: 60° < 6 < 64° and
20° < ¢ <90°, as well as 64° < 6 < 70° and 20° < ¢ < 85°.
The optimal configuration set, obtained by considering all
three cases, corresponds to 60°< 6 < 64° and 20°< ¢ < 80°.
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Figure 8. The distributions of the uncertainties of three extracted
structural parameters at different measurement configurations
simulated by LHS.

This range aligns with the distribution of the optimal measure-
ment configurations shown in figure 6, which exhibits smaller
condition numbers. However, it should be noted that a dif-
ferent trend emerges in the ranges of 64° < 6 < 70° and
85° < ¢ < 90° (upper right corners of the graphs). Despite
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Figure 9. Fitting results of the measured and calculated Mueller
matrix spectra of the Si grating at the selected measurement
configuration of # = 65° and ¢ = 60°.

the small condition numbers in these ranges, the uncertainties
for the BCT and Hgt parameters increase. The observed phe-
nomenon is expected, as the uncertainties of the parameters
are influenced by factors beyond the condition number of the
coefficient matrix. As previously discussed, a smaller condi-
tion number of the coefficient matrix is associated with a smal-
ler error estimate of the measured parameter and a more robust
solution. However, the final extracted results may be affected
by other various factors, including model errors and instru-
ment errors. The presented results demonstrate that the pro-
posed method effectively achieves a balanced trade-off among
the three parameters, enabling a comprehensive evaluation.
This differs from the commonly used optimization strategies
that optimize multiple objectives individually, such as para-
meters’ uncertainties, sensitivities and correlation coefficients,
which are inefficient and a reasonable compromise has to be
made ultimately among the selected measurement schemes.
In contrast, our proposed one-time optimal strategy offers the
ability to globally evaluate the MCO problem.

Figure 9 presents the fitting results of the measured Mueller
matrix spectra and the corresponding calculated spectra for
the Si grating at the measurement configuration (f = 65°,
p = 60°) selected from the optimal regions depicted in
figure 6. This specific configuration was selected due to its
ease of implementation on the measurement system (MMS).
The fitting results show a good match, and the extracted para-
meters are TCD = 37.3 £ 0.56 nm, Hgt = 91.2 £ 0.55 nm,
and BCD = 72.3 £ 0.72 nm, which deviate slightly from the
nominal values. Here, the uncertainties attached to each struc-
tural parameter were estimated at a confidence level of 95%.
The chosen measurement configuration represents a near-
optimal scheme, as indicated by the observations in figure 6. It
should be noted that there are alternative optimal measurement
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configurations available for experimentation. It is worth point-
ing out that sometimes it is not always feasible to achieve the
globally optimal measurement configuration due to constraints
imposed by specific experimental conditions or limited experi-
mental sensitivity. In many cases, sub-optimal or near-optimal
measurement configurations are adequate to meet measure-
ment requirements while still offering improved parameter
accuracy and practical feasibility. The optimal measurement
configurations can be achieved by a simple traversal method
under limited configuration conditions.

We should note that there is no one-fit-all optimal strategy
that applies to all MCO problems. The application of the
condition-number-based optimal method in this work sug-
gests that it provides an alternative approach to the existing
MCO methods, offering comprehensive and effective solu-
tions. However, this does not imply its superiority over other
methods. Each MCO approach possesses its own strengths
based on various perspectives and optimization metrics. The
selection of the final optimization strategy for an MCO prob-
lem depends on the specific application scenario, optimiza-
tion index, and optimization method. It is recommended to
conduct a comprehensive evaluation of the results obtained
from various MCO methods and subsequently select the most
appropriate configuration scheme. Furthermore, even within
the proposed method, different combinations of measurement
configurations, such as ), 8, and ¢, can yield different MCO
outcomes. The preferences and decisions of the implementer
also matter. In addition, more advanced intelligent optimiza-
tion techniques, such as genetic algorithms, differential evol-
ution, and simulated annealing, can be employed to further
enhance performance.

5. Conclusions

The development of an effective and versatile MCO method
is a meaningful research, deserving further exploration and
innovation. This paper introduces a condition-number-based
MCO method, offering a general and low-cost means of solv-
ing MCO problems in optical scatterometry. The full paper is
summarized as follows:

(1) We utilized the first-order Taylor expansion of the LSQ
function in the inverse problem considering the error
propagation in the measurement. Consequently, we treated
the MCO problem as an optimization problem for the con-
dition number of the coefficient matrix in the linear estim-
ation of the deviation of the parameters.

(2) Considering the computing burden in the MCO problem,
we also adopted an NN-based surrogate model for repla-
cing the time-consuming forward model.

(3) The method was validated on a commercial MMS, meas-
uring a typical Si grating and probing the optimal combin-
ation of incidence and azimuth angles. The feasibility of
the approach was verified by comparing it with the LHS
results.

The proposed method exhibits several advantages, as sub-
stantiated by the experimental results. These advantages can
be observed in the following aspects:

(1) The proposed method holds promise as a general method
for solving MCO problems, not only in optical scattero-
metry but also in other related measurement instruments,
providing a comprehensive evaluation capability.

(2) The incorporation of the NN-based surrogate model not
only accelerates the calculations considerably but also
facilitates employing more refined configuration combin-
ations during the optimization process. As a result, it
enhances the accuracy in identifying optimal configura-
tions.

It should be noted that the condition-number-based MCO
approach presented in this paper may not represent the most
optimal choice of measurement configurations. However, it
is expected to yield reconstructions that are more robust
and accurate compared to randomly chosen configura-
tions. Meanwhile, the neural network adopted in this work
serves as a preliminary surrogate model for optimization.
To achieve more accurate approximation, we recommend
exploring alternative designs for the neural network archi-
tecture, such as incorporating transfer learning or util-
izing other machine learning techniques like mainstream
Bayesian methods in future research. Ultimately, this study
is anticipated to provide a fresh perspective on nano-
structure reconstruction in IC manufacturing, encompassing
not only optical scatterometry but also other measurement
domains.
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Appendix. Derivation of equation (9)

For the sake of brevity, a matrix A (x) =y —f(X,a) — JxAx
is introduced in the following derivation. In this case,
equation (7) can be rewritten as

= A WIA (x)

(A.1)

- Tr.

~[Aw)] [Am)].
where A (x) = W2 A (x). Taking the derivatives of each side in
equation (A.1) with respect to each element of vector x yields

the following equation

28[2:‘)} A(x)=0, (A2)
0 [23)} __ (W%JX)T. (A3)

Substituting equation (A.3) into equation (A.2) gives

0, (A4)

- 2(W%JX) A
i.e.
(Whax) W [y — £(x.a) ~ JxAx] =0, (A.5)

After rearranging the terms in (A.5), we obtain the follow-
ing equation
JIWy — f(%,a) — JxAx] = 0. (A.6)

Supposing Ay =y —f(X,a) and substituting it into
equation (A.6) give

J'WIAx = JTWAYy. (A7)
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